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ABSTRACT This paper proposes a sampled-data H∞ fuzzy observer technique for nonlinear uncertain
oscillating systems that are represented by the Takagi–Sugeno fuzzy model. The observers are designed for
two cases: a measurable premise variable and an immeasurable premise variable. The error system between
the nonlinear uncertain system and the sampled-data observer is constructed. The H∞ performance function
for the oscillating system is defined and is guaranteed in the Lyapunov sense. Sufficient conditions for the
H∞ sampled-data fuzzy observer are given in terms of linear matrix inequalities. Finally, the feasibility of
the proposed technique is shown using two simulation examples.

INDEX TERMS H∞ fuzzy observer, sampled-data system, uncertain oscillating system, Takagi–Sugeno
(T–S) fuzzy model, linear matrix inequality (LMI).

I. INTRODUCTION
In recent years, sampled-data systems have gained much
attention [1]–[3] becausemost engineering applications have
both continuous plant and sampled-data computer-based
implementations. Because continuous- and discrete-time
states coexist in a sampled-data system, the conventional
control techniques for continuous or discrete-time systems
cannot be applied to the sampled-data system. To resolve this
sampled-data problem, many methods have been proposed
in [4]–[6]. Especially, when merged with the Takagi–Sugeno
(T–S) fuzzy modeling, sampled-data control techniques have
also been applied to nonlinear sampled-data systems because
the T–S fuzzy model technique easily solves the nonlinearity
problem using a convex combination method. These T–S
fuzzy control methods for nonlinear sampled-data systems
can be classified into two approaches: input-delay meth-
ods [7]–[9] and discretization methods [10]–[12]. In the
first type of method, discrete-time states are converted to
continuous-time states with a time-varying piecewise con-
tinuous delay, and using the time-delay system control tech-
nique, the stability of the sampled-data system is analyzed.
Next, in the discretization method, the sampled-data system
is mapped to the discrete-time system and analyzed in the
discrete-time domain because the stability analysis of the
discretized sampled-data system guarantees the stability of
the original sampled-data system.

On the other hand, it is well known that state estimation
is an important research issue for stable and reliable system
operation and has been expanded by many methods such as
filter design [13], [14] and observer design [15]–[21]. Previ-
ous filter design techniques were proposed for asymptotically
stable systems. In addition, most conventional observers are
designed by ensuring the convergence of the estimation error.
Therefore, an observer is designed to be coupled with the
controller [15]–[18] or based on an exactly known system
model [19]–[21], and there have been few studies on state
estimation techniques for uncertain oscillating systems. Very
recently, in [22], the sampled-data observer design technique
for uncertain oscillating system was proposed using a newly
defined performance function. However, the performance
function only guarantees the estimation error performance
and does not consider the disturbance rejection performance.
Furthermore, the state estimation technique for the immea-
surable premise variable case is still insufficient.

State estimation for the immeasurable premise variable
case is important for fuzzy estimators. This is because
the measurable premise variable case is not realistic,
as the premise variable is associated with the system
states that should be estimated. To solve the immeasurable
premise variable problem, many studies have been conducted
in [8], [13], [16], [22], [23], and [25]. In [22] and [23], the
membership functions of system and estimator are considered
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to be completely independent, but this approach usually leads
to very conservative conditions. In [8], [13], and [16], the
membership function of the estimator is assumed as an uncer-
tain, but this method guarantees the performance only for
the asymptotically stable system and the performance can
be degraded when much of the system is assumed to be an
uncertain. In [24], an interesting study on the membership
function was conducted. Using this method, the membership
function of the controller can be freely designed within cer-
tain constraints. Although this method was originally pro-
posed for the purpose of giving the controller flexibility and
robustness, it was also applied to solve other problems such
as the nonlinear interconnections of large-scale system [14]
and independence of the membership functions [25].

Motivated by the aforementioned studies, this paper pro-
poses the sampled-data H∞ fuzzy observer for nonlinear
uncertain oscillating systems. The observers are designed for
two cases, a measurable premise variable and an immea-
surable premise variable. The T–S fuzzy model is used to
construct the error system between the nonlinear uncertain
system and sampled-data observer. To guarantee the perfor-
mance in an oscillating system, an H∞ performance func-
tion is defined. The H∞ performance of the sampled-data
observer is ensured in the Lyapunov sense. Sufficient con-
ditions for measurable and immeasurable premise variable
observer design techniques are given explicitly in terms of
linear matrix inequalities (LMIs). Finally, simulation exam-
ples are provided to show the feasibility of the proposed
techniques.

This paper is organized as follows: Section 2 formulates
the sampled-data fuzzy observer with the measurable premise
variable case. The fuzzy observer design technique for the
immeasurable premise variable case is presented in Section 3.
The procedure is validated via some simulation examples in
Section 4. Finally, the conclusion is given in Section 5.
Notation: Subscripts i and j denote fuzzy rule indices.

Notations (·)T and ∗ are used for the transpose of the argu-
ment and the transposed element in the symmetric position,
respectively. Further, He{A} denotes A + AT and λA is the
maximum eigenvalue of matrix ATA. For a positive scalar r ,
Ir represents an integer set {1, 2, . . . , r}. The observer gain
LThm1i means the observer gain Li of Theorem 1.

II. SAMPLED-DATA FUZZY OBSERVER FOR THE
MEASURABLE PREMISE VARIABLE CASE
Consider an uncertain nonlinear system which can be repre-
sented by following T–S fuzzy model:

Ri : IF z1(t) is 0i1 and · · · and zq(t) is 0
i
q,

THEN

{
ẋ(t) = Aix(t)+ Biw(t)+ f (x(t))
y(kT ) = Cx(kT )

(1)

where x(t) ∈ Rn is the state, w(t) ∈ Lq2 is the distur-
bance, y(kT ) ∈ Rm is the piecewise constant measurement
output with sampling period T ∈ R>0 for t ∈ [kT , kT +
T ), k ∈ Z≥0; 0ip, (i, p) ∈ {Ir := {1, 2, . . . , r}} × {Iq :=

{1, 2, . . . , q}} is the fuzzy set for zp(t); zp(t) is the pth premise
variable and z(t) is the premise variable vector with zp(t), and
Ai, Bi, and C are nominal system matrices with appropriate
dimensions. In addition, f (x(t)) denotes unknown nonlinear
state that is represented as a piece-wise continuous vector
function with the following assumption:
Assumption 1: Vector function f (x(t)) is unknown but sat-

isfies the following quadratic inequality:

f T (x(t))f (x(t)) ≤ α2xT (t)FTFx(t), (2)

where α ∈ R>0 is a bound scalar constant of the uncertainty
and F is a constant matrix with an appropriate dimension.

By fuzzy blending, the global dynamics of the uncertain
fuzzy model (1) are inferred as follows:

ẋ(t) =
r∑
i=1

hi(z(t))
{
Aix(t)+ Biw(t)+ f (x(t))

}
,

y(kT ) = Cx(kT ), (3)

where

hi(z(t)) :=
ωi(z(t))∑r
i=1 ωi(z(t))

, ωi(z(t)) :=
q∏

p=1

0ip(zp(t)),

and 0ip(zp(t)) : Uzp ⊂ R → R[0,1] is the membership
function of zp(t) on compact set Uzp .
In addition, in this section, we need the following two

assumptions to ensure the observability and measurability.
Assumption 2: All pairs (Ai, C) are observable for i ∈ Ir .

Assumption 3: State variable x(t) is not measurable,
but premise variable z(t) and output variable y(kT ) are
measurable.

Based on the parallel distribute compensation (PDC)
scheme, the sampled-data fuzzy observer can be constructed
as follows:

˙̂x(t) =
r∑
i=1

hi(z(t))
{
Aix̂(t)+ Li(y(kT )− ŷ(kT ))

}
,

ŷ(kT ) = Cx̂(kT ), (4)

where x̂(t) ∈ Rn, ŷ(kT ) ∈ Rm, and Li are the state of the
observer, observer output, and observer gain matrix to be
designed, respectively.
Remark 1: The T–S fuzzy observer can be classified into

two categories: a measurable premise variable observer
and an immeasurable premise variable observer. Generally,
the measurable observer is easier to design and allows a wider
feasible region than the immeasurable one. However, it is not
realistic in contrast to the immeasurable case, because the
membership function of the observer is related to state x(t).
The work in this paper considers both cases. In this section,
the measurable case is considered and the immeasurable case
is discussed in the next section.
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By defining estimation error e(t) = x(t)−x̂(t) and e(kT ) =
x(kT )− x̂(kT ), the error system can be formulated as follows:

ė(t) =
r∑
i=1

hi(z(t))
{
(Ai − LiC)e(kT )+ Aiẽ(t)

+Biw(t)+ f (x(t))
}
, (5)

where ẽ(t) = e(t)− e(kT ).
Remark 2: The error system (5) is not fully represented

in the T–S fuzzy model because of the unknown nonlinear
function f (x(t)).

The purpose of this section is therefore to design a
sampled-data observer in the form of (4) such that error
system (5) with w(t) = 0 and f (x(t)) = 0 is asymptotically
stable and there exists a given performance index γ ≥ 0
satisfying the following H∞ performance under the zero
initial condition:∫

∞

0
||e(t)||2dt ≤ γ 2

∫
∞

0
||x(t)||2 + ||w(t)||2dt. (6)

Remark 3: Most previous fuzzy observers were designed
only for exactly known or asymptotically stable systems, and
there are few observer studies for uncertain oscillating sys-
tems. Using performance inequality (6), an improved fuzzy
observer design technique is proposed that can be applied to
not only to asymptotically stable systems but also to uncertain
oscillating systems.

The following lemma is useful in the proof of our results.
Lemma 1 [26]: Given any function vectors ε(t) and ẋ(t),

any matrix Nij, and positive definite matrix Q, then the fol-
lowing inequality is satisfied:

−2εT (t)Nij

∫ t

kT
ẋ(τ )dτ

≤ T εT (t)NijQ−1NT
ij ε(t)+

∫ t

kT
ẋT (τ )Qẋ(τ )dτ. (7)

Using the above H∞ performance condition (6), the fol-
lowing sufficient condition for the sampled-data observer is
proposed:
Theorem 1: Consider nonlinear uncertain system (3) and

sampled-data fuzzy observer (4). For a prescribed real num-
ber γ , if there exist some symmetric and positive definite
matrices P and Q, some matrices M , Ni, and Si, and some
given scalars α and λF such that the following LMIs are
satisfied: 2i ∗ ∗

(Ni)T −
1
T Q ∗

M̃ 0 −
γ 2

3α2λF
I

 ≺ 0, i ∈ Ir , (8)

where

2i =


211
i ∗ ∗ ∗

221
i 222

i ∗ ∗

231
i 232

i −He{M} + TQ ∗

BTi M BTi M + N4i BTi M −γ 2I

,

211
i = He{MTAi − SiC} + I

221
i = He{MTAi} − SiC + NT

1i + I ,

222
i = He{MTAi + N2i} + I

231
i = P−M +MTAi − SiC,

232
i = P−M +MTAi + N3i

NT
i = [NT

1i N
T
2i N

T
3i N

T
4i ], and M̃ = diag{M M M 0}, then

error system (5) is asymptotically stable with w(t) = 0 and
f (x(t)) = 0, and H∞ performance (6) is guaranteed. Further,
the matrix of the observer gain is given by Li = (MT )−1Si.

Proof: Choose the following Lyapunov function candi-
date V (t) for (5):

V (t) = eT (t)Pe(t)+
∫ t

kT
(T − t + τ )ėT (t)Qė(t)dτ, (9)

where P = PT � 0, Q = QT � 0, t ∈ [kT , kT + T ),
and k ∈ Z≥0.

Then, the time derivative of (9) is as follows:

V̇ (t) = ėT (t)Pe(t)+ eT (t)Pė(t)+ T ėT (t)Qė(t)

−

∫ t

kT
ėT (τ )Qė(τ )dτ

= ėT (t)Pe(t)+ eT (t)Pė(t)+ T ėT (t)Qė(t)

−

∫ t

kT
ėT (τ )Qė(τ )dτ

+ 2
r∑
i=1

hi(z(t))εT (t)Ni

[
ẽ(t)−

∫ t

kT
ė(τ )dτ

]

+ 2
(
Me(kT )+Mẽ(t)+Mė(t)

)T
×

(
− ė(t)+

r∑
i=1

hi(z(t))
{
(Ai − LiC)e(kT )+ Aiẽ(t)

+Biw(t)+ f (x(t))
})
, (10)

where ε(t) = [e(kT ) ẽ(t) ė(t) w(t)]. Using Lemma 1
to (10), we have

V̇ (t) ≤ ėT (t)Pe(t)+ eT (t)Pė(t)+ T ėT (t)Qė(t)

−

∫ t

kT
ėT (τ )Qė(τ )dτ + 2

r∑
i=1

hi(z(t))εT (t)Niẽ(t)

+T εT (t)Ni(Q)−1NT
i ε(t)+

∫ t

kT
ėT (τ )Qė(τ )dτ

+

r∑
i=1

hi(z(t))
{
− 2eT (kT )MT ė(t)

+ 2eT (kT )MT (Ai − LiC)e(kT )+ 2eT (kT )MTAiẽ(t)

+ 2eT (kT )MTBiw(t)+ 2eT (kT )MT f (x(t))

− 2ẽT (t)MT ė(t)+ 2ẽT (t)MT (Ai − LiC)e(kT )

+ 2ẽT (t)MTAiẽ(t)+ 2ẽT (t)MTBiw(t)

+ 2ẽT (t)MT f (x(t))− 2ėT (t)MT ė(t)

+ 2ėT (t)MT (Ai − LiC)e(kT )
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+ 2ėT (t)MTAiẽ(t)+ 2ėT (t)MTBiw(t)

+ 2ėT (t)MT f (x(t))
}

=

r∑
i=1

hi(z(t))
{
εT (t)2̂iε(t)+ 2eT (kT )MT f (x(t))

+ 2ẽT (t)MT f (x(t))+ 2ėT (t)MT f (x(t))

+T εT (t)Ni(Q)−1NT
i ε(t)

}
, (11)

where

2̂i =


He{MTAi − SiC} ∗

He{MTAi} − SiC + NT
1i He{MTAi + N2i}

P−M +MTAi − SiC P−M +MTAi + N3i
BTi M BTi M + N4i

∗ ∗

∗ ∗

−He{M} + TQ ∗

BTi M 0

.
From the well-known matrix inequality [31],

2XTY ≤ ρXTX + ρ−1Y TY ,

where X and Y are any matrices of appropriate dimen-
sions and ρ > 0, it is clear that 2eT (kT )MT f (x(t)) ≤
ρeT (kT )MTMe(kT )+ ρ−1f T (x(t))f (x(t)). Then, (11) can be
derived as

V̇ (t) ≤
r∑
i=1

hi(z(t))
{
εT (t){2̂i+ρM̃T M̃ + TNi(Q)−1NT

i }ε(t)

+ 3ρ−1f T (x(t))f (x(t))
}
, (12)

where M̃ = diag{M M M 0}. Using Assumption 1 to (12),
we can obtain

V̇ (t) ≤
r∑
i=1

hi(z(t))
{
εT (t){2̂i+ρM̃T M̃+TNi(Q)−1NT

i }ε(t)

+ xT (t){3ρ−1α2FTF}x(t)
}
.

To guaranteeH∞ performance (6), the following inequality
is needed:

V̇ (t)+ eT (t)e(t)− γ 2(xT (t)x(t)+ wT (t)w(t)) < 0. (13)

Then, (13) can be induced as follows:

V̇ (t)+ eT (t)e(t)− γ 2(xT (t)x(t)+ wT (t)w(t))

≤

r∑
i=1

hi(z(t))
{
εT (t){2i + ρM̃T M̃ + TNi(Q)−1NT

i }ε(t)

+ xT (t){3ρ−1α2FTF − γ 2I }x(t)
}
. (14)

Thus, the sufficient conditions for (14) can be constructed
as

2̂i + ρM̃T M̃ + TNi(Q)−1NT
i ≺ 0, (15)

3ρ−1α2λF − γ 2
= 0. (16)

Substituting (16) into (15) and applying the Schur comple-
ment to (15), we obtain the LMIs (8). Thus, (13) is satisfied
if (8) holds.

Finally, to guarantee the H∞ performance, we inte-
grate (13) from 0 to∞. Then,

V (∞)−V (0)+
∫
∞

0
||e(t)||2−γ 2(||x(t)||2+||w(t)||2)dt≤0.

(17)

Because V (∞) ≥ 0 and V (0) = 0 under the zero initial
condition, we can verify H∞ performance (6). In addition,
it is clear from (8) that V̇ (t) < 0 is satisfied with w(t) = 0
and f (x(t)) = 0, which indicates the asymptotic stability of
error system (5) with w(t) = 0 and f (x(t)) = 0.
Remark 4: Although Lyapunov function candidate (9) and

its derivation process are similar to the input-delay convert-
ing method for the sampled-data system, there is no need
to convert from the sampled-data system to the time-delay
system, and any delay term is included in the stability analysis
procedure. It has the advantage of reducing conservativeness
of the stability condition.
Remark 5: Theorem 1 gives the sampled-data H∞ fuzzy

observer design technique for the nonlinear uncertain system.
The main advantages of Theorem 1 is that it guarantees
the H∞ performance of oscillating systems and not fully
modeled T–S fuzzy systems as well as asymptotically stable
systems.

Theorem 1 is based on the measurable premise variable
case. The sampled-data H∞ fuzzy observer technique for the
immeasurable premise variable case is discussed in the next
section.

III. SAMPLED-DATA FUZZY OBSERVER FOR THE
IMMEASURABLE PREMISE VARIABLE CASE
In this section, a sampled-data fuzzy observer for the
immeasurable premise variable case is given. Instead of
Assumption 3, we assume immeasurability of the premise
variable z(t).
Assumption 4: State variable x(t) and premise variable

z(t) are not measurable, but the output variable y(kT ) is
measurable.

The fuzzy observer IF-THEN rules for T–S fuzzy
system (3) are constructed as follows:

Ri : IF ẑ1(t) is 4i
1 and · · · and ẑo(t) is 4

i
o

THEN

{
˙̂x(t) = Aix̂(t)+ Li(y(kT )− ŷ(kT ))
ŷ(kT ) = Cx̂(t)

(18)

where 4i
p, (i, p) ∈ Ir × Io is the fuzzy set for ẑp.

Based on the fuzzy observer rules in (18), the sampled-data
fuzzy observer is supposed in the following forms:

˙̂x(t) =
r∑
i=1

gi(ẑ(t))
{
Aix̂(t)+ Li(y(kT )− ŷ(kT ))

}
,

ŷ(kT ) = Cx̂(kT ), (19)
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where

gi(ẑ(t)) :=
ϕil (ẑ(t))∑r
i=1 ϕi(ẑ(t))

, ϕi(ẑ(t)) :=
o∏

p=1

4i
p(ẑp(t)),

and 4i
p(ẑp(t)) : Uẑp ⊂ R → R[0,1] is the membership

function of ẑp(t) on compact set Uẑp .
Remark 6: Unlike measurable premise variable fuzzy

observer (4), immeasurable fuzzy observer (19) is based on
not only the states for observer ẑ(t) but also imperfect premise
matching condition gi(ẑ(t)). Using this structure, an observer
that is more realistic than the conventional PDC approach can
be designed.

Defining the estimation error e(t) = x(t) − x̂(t), the error
system can be formulated as follows:

ė(t) =
r∑
i=1

r∑
i=1

hi(z(t))gj(ẑ(t))
{
(Aj − LjC)e(kT )

+Ajẽ(t)+ (Ai − Aj)x(t)+ Biw(t)+ f (x(t))
}
. (20)

The purpose of this section is to design a sampled-data
observer in the form of (19) such that error system (20) with
w(t) = 0, f (x(t)) = 0, and x(t) = 0 is asymptotically
stable and there exists a given performance index γ ≥ 0
satisfying H∞ performance inequality (6) under the zero
initial condition.

The following Lemma is useful for solving the immea-
surable premise variable problem and the proof of our main
results.
Lemma 2: Inequality
r∑
i=1

r∑
j=1

hi(z(t))gj(ẑ(t))εT (t)9ijε(t) < 0, (i, j) ∈ Ir × Ir

holds for any symmetric matrix 9ij and function vector ε(t)
if the inequality

gi(ẑ(t))− µihi(z(t)) ≥ 0 (21)

is satisfied for any given scalar 0 < µi < 1 and there exist
some symmetric matrix 3i and Oij such that the following
inequalities are satisfied:

9ij −3i ≺ 0, (i, j) ∈ Ir × Ir , (22)

9ii −3i − Oii ≺ 0, i ∈ Ir , (23)

µj(9ij −3i − Oij)+ µi(9ji −3j − Oji) ≺ 0,

(i, j) ∈ Ij × Ir , (24)

3i + µiOii ≺ 0, i ∈ Ir , (25)

3i + µjOij +3j + µiOji ≺ 0, (i, j) ∈ Ij × Ir . (26)
Proof: The proof can be accomplished using a method

to that in [24].
r∑
i=1

r∑
j=1

hi(z(t))gj(ẑ(t))εT (t)9ijε(t)

=

r∑
i=1

r∑
j=1

hi(z(t)){gj(ẑ(t))+ µjhj(z(t))− µjhj(z(t))}

× εT (t)9ijε(t)

+

r∑
i=1

r∑
j=1

hi(z(t)){hj(z(t))− µjhj(z(t))}εT (t)3iε(t)

−

r∑
i=1

r∑
j=1

hi(z(t)){gj(ẑ(t))− µjhj(z(t))}εT (t)3iε(t)

+

r∑
i=1

r∑
j=1

hi(z(t))hj(z(t))εT (t)µjOijε(t)

−

r∑
i=1

r∑
j=1

hi(z(t))hj(z(t))εT (t)µjOijε(t)

=

r∑
i=1

r∑
j=1

hi(z(t))hj(z(t))µjεT (t){9ij −3i − Oij}ε(t)

+

r∑
i=1

r∑
j=1

hi(z(t)){gj(ẑ(t))− µjhj(z(t))}

× εT (t){9ij −3i}ε(t)

+

r∑
i=1

r∑
j=1

hi(z(t))hj(z(t))εT (t){3i + µjOij}ε(t). (27)

Considering (21) and (22), then (27) can be derived as

r∑
i=1

r∑
j=1

hi(z(t))gj(ẑ(t))εT (t)9ijε(t)

≤

r∑
i=1

r∑
j=1

hi(z(t))hj(z(t))µjεT (t){9ij −3i − Oij}ε(t)

+

r∑
i=1

r∑
j=1

hi(z(t))hj(z(t))εT (t){3i + µjOij}ε(t)

=

r∑
i=1

h2i (z(t))µiε
T (t){9ii −3i − Oii}ε(t)

+

r∑
i=1

r∑
j>i

hi(z(t))hj(z(t))µjεT (t){µj(9ij −3i − Oij)

+µi(9ji −3j − Oji)}ε(t)

+

r∑
i=1

h2i (z(t))ε
T (t){3i + µiOii}ε(t)

+

r∑
i=1

r∑
j>1

hi(z(t))hj(z(t))

× εT (t){3i + µjOij +3j + µiOji}ε(t).

Therefore,
∑r

i=1
∑r

j=1 hi(z(t))gj(ẑ(t))ε
T (t)9ijε(t) < 0 holds

if (22)-(25) are satisfied.
Remark 7: If membership function constraint (21) is satis-

fied for all fuzzy rules, the membership function of observer
gi(ẑ(t)) can be freely designed. In addition, because inequal-
ity (21) is always satisfied if gi(ẑ(t)) = hi(z(t)), the PDC
scheme is the special case of the imperfect premise matching
condition.
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Then, the sufficient condition for the sampled-data fuzzy
observer with an immeasurable premise variable ban be sum-
marized as the following Theorem:
Theorem 2: Consider nonlinear uncertain system (3) and

sampled-data fuzzy observer (19). Let the membership func-
tions of the T–S fuzzy system and sampled-data fuzzy
observer satisfy gi(ẑ(t))−µihi(z(t)) ≥ 0 for any given scalar
0 < µi < 1. Further, there exist some symmetric and positive
definite matrices P and Q, some matricesM , Nij, and Si, and
some given scalars α, λF , and λÃij such that following LMIs
are satisfied:

9ij −3i ≺ 0, (i, j) ∈ Ir × Ir , (28)

9ii −3i − Oii ≺ 0, i ∈ Ir , (29)

µj(9ij −3i − Oij)+ µi(9ji −3j − Oji) ≺ 0,

(i, j) ∈ Ij × Ir , (30)

3i + µiOii ≺ 0, i ∈ Ir , (31)

3i + µjOij +3j + µiOji ≺ 0, (i, j) ∈ Ij × Ir , (32)

where

9ij =


8ij ∗ ∗

(Nij)T −
1
T
Q ∗

M̃ 0 −
γ 2

3(α2 + 1)(λF + λÃij )
I

,

8ij =


811
ij ∗ ∗ ∗

821
ij 822

ij ∗ ∗

831
ij 832

ij 833
ij ∗

BTi M BTi M + N4ij BTi M −γ 2I

,
811
ij = He{MTAj − SjC} + I ,

821
ij = He{MTAj} − SjC + NT

1ij + I ,

822
ij = He{MTAj + N2ij} + I ,

831
ij = P−M +MTAj − SjC,

832
ij = P−M +MTAj + N3ij,

833
ij = −He{M} + TQ.

NT
ij = [NT

1ij N
T
2ij N

T
3ij N

T
4ij], and M̃ = diag{M M M 0}.

Then, error system (20) is asymptotically stable with
w(t) = 0, f (x(t)) = 0, and x(t) = 0, and H∞ performance
(6) is guaranteed. Further, the matrix of the observer gain is
given by Li = (MT )−1Si.

Proof: The proof can be derived in a similar way to that
of Theorem 1. Then, we can obtain the following inequalities:

V̇ (t) ≤
r∑
i=1

r∑
j=1

hi(z(t))gj(ẑ(t))

×

{
εT (t)8̂ijε(t)+ 2eT (kT )MT f (x(t))

+ 2ẽT (t)MT f (x(t)

+ 2ėT (t)MT f (x(t))+ T εT (t)Nij(Q)−1NT
ij ε(t)

+ 2eT (kT )MT (Ai − Aj)x(t)

+ 2ẽT (t)MT (Ai − Aj)x(t)

+ 2ėT (t)MT (Ai − Aj)x(t)
}
, (33)

where

8̂ij =


He{MTAj − SjC} ∗

He{MTAj} − SjC + NT
1ij He{MTAj + N2ij}

P−M +MTAj − SjC P−M +MTAj + N3ij
BTi M BTi M + N4ij

∗ ∗

∗ ∗

−He{M} + TQ ∗

BTi M 0

.
Let us define Ãij = Ai−Aj, then from the inequality in [31],

it is clear that

2eT (kT )MT f (x(t))

≤ ρeT (kT )MTMe(kT )+ ρ−1f T (x(t))f (x(t)), (34)

2eT (kT )MT (Ai − Aj)x(t)

≤ ρ
λÃij

λF
eT (kT )MTMe(kT )

+ ρ−1
λF

λÃij

xT (t)(Ai − Aj)T (Ai − Aj)x(t). (35)

By using (34), (35), and Assumption 1, the inequality (33)
can be derived as

V̇ (t) ≤
r∑
i=1

r∑
j=1

hi(z(t))gj(ẑ(t))

×

{
εT (t){8̂ij + ρ(1+

λÃij

λF
)M̃T M̃

+ TNij(Q)−1NT
ij }ε(t)

+ xT (t){3ρ−1α2FTF

+ 3ρ−1
λF

λÃij

(Ai − Aj)T (Ai − Aj)}x(t)
}
. (36)

From the above inequality (36), the H∞ performance con-
dition (13) can be induced as follows:

V̇ (t)+ eT (t)e(t)− γ 2(xT (t)x(t)+ wT (t)w(t))

≤

r∑
i=1

r∑
j=1

hi(z(t))gj(ẑ(t))
{
εT (t){8ij

+ ρ(1+
λÃij

λF
)M̃T M̃ + TNij(Q)−1NT

ij }ε(t)

+ xT (t){3ρ−1α2FTF

+ 3ρ−1
λF

λÃij

(Ai − Aj)T (Ai − Aj)− γ 2I }x(t)
}
. (37)

If ρ = 3λF (α2 + 1)/γ 2, (37) can be formulated as:

V̇ (t)+ eT (t)e(t)− γ 2(xT (t)x(t)+ wT (t)w(t))

≤

r∑
i=1

r∑
j=1

hi(z(t))gj(ẑ(t))εT (t){8ij
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+
3
γ 2 (λF + λÃij )(α

2
+ 1)M̃T M̃ + TNij(Q)−1NT

ij }ε(t)

(38)

Finally, by using the Schur complement and applying
Lemma 22 to (38), it is obvious that the sufficient condition
for (13) can be derived as LMIs (28)-(32).
Remark 8: Unlike Theorem 1, asymptotic stability is guar-

anteed when x(t) = 0 as well as f (x(t)) = 0 and w(t) = 0
because of the membership function mismatches between the
system and observer.
Remark 9: This paper is mainly motivated by the

approaches in [22]. However, there are following differ-
ences. First, this paper deals with the state estimation of
the partially unknown or uncertain system, not the unknown
interconnection of the interconnected system. Second, the
disturbance attenuation performance is considered as well as
the estimation of the oscillating system. Third, the imperfect
premise matching condition is considered to solve the inde-
pendence problem of the membership function [25]. Finally,
since there are no discretization process in the development
of the stability analysis, the proposed approaches give more
feasible results than those of [22].
Remark 10: The main reasons of inherent conservatism

in Theorem 1 and 2 are the construction of Lyapunov
function (9) and the upper bound of Lemma 1 which is
based on the Jensen inequality [27]. Thus, the conservatism
problem can be reduced by using the different Lyapunov
functions [28], [29] and the refined Jensen inequality [30].
Remark 11: The major contributions of this paper can be

summarized as follows:
• The sampled-data H∞ fuzzy observer is designed for
a nonlinear uncertain system. Using the newly defined
H∞ performance function, the proposed design tech-
nique can be applied to an oscillating system and par-
tially unknown system as well as an asymptotically
stable system.

• Using the imperfect premise matching technique,
the sampled-data fuzzy observers are designed for sys-
tems with an immeasurable premise variable as well as
those with a measurable premise variable.

IV. SIMULATION EXAMPLES
In this section, two simulation examples are given to
demonstrate the effectiveness of the proposed techniques.
In Example 1, we show the effectiveness of the proposed
techniques in an asymptotically stable system using a tunnel
diode circuit system. In Example 2, using a mass-spring
system, the simulation is performed in an oscillating system.

A. EXAMPLE 1
In order to demonstrate the performance of the proposed tech-
niques for an asymptotically stable system, the following tun-
nel diode circuit system as shown in Fig. 1 is considered [32]:

Cv̇C (t) = −0.002vC (t)− 0.01(vC (t))3 + iL(t)+ f (vC (t)),

Li̇L(t) = −vC (t)− RiL(t)+ w(t),

y(kT ) = vC (kT ),

FIGURE 1. Tunnel diode circuit.

where vC (t) is the voltage of the capacitor, iL is the cur-
rent of the inductor, f (vC (t)) is the uncertainty term, w(t)
is the disturbance, and y(kT ) is the output; the parame-
ters of the capacitor, inductor, and resistance are set to
C = 20 mF, L = 1000 mH , and R = 10 �, respectively.
We assume that f (vC (t)) = 0.05 sin(vC (t)) and by choosing
x(t) = [xT1 xT2 ]

T
= [vTC iTL ]

T , the membership functions are
given by

h1(z(t)) = 0.8−
x21 (t)

16
, h2(z(t)) = 0.2+

x21 (t)

16
,

and the T–S fuzzy system can be constructed as

ẋ(t) =
r∑
i=1

hi(z(t))
{
Aix(t)+ Biw(t)+ αFx(t)

}
,

y(kT ) = Cx(kT ),

where

A1 =
[
0.8 50
−1 −10

]
, A2 =

[
−3.7 50
−1 −10

]
,

B1 =
[
0
1

]
, B2 =

[
0
1

]
,

C =
[
1 0

]
, F =

[
0.5 0
0 0

]
, and α = 0.1.

The sampling time, disturbance, and initial values are
set as T = 0.02, w(t) = e−0.7t sin(5t), and x(0) = [0.1 −
0.05]T , x̂(0) = [0 0]T , respectively. In this subsection,
we consider two cases: one with a measurable premise vari-
able and one with an immeasurable premise variable.

Assuming a sampling period T = 0.02 and solving the
corresponding LMIs in Theorem 1 with γThm1 = 0.3 and
Theorem 2 with γThm2 = 0.7 and µ1 = µ2 = 0.05, the fuzzy
observer gains can be obtained as follows:

LThm11 =

[
43.9405
2.0981

]
, LThm12 =

[
39.5175
2.1068

]
,

LThm21 =

[
38.6216
2.8336

]
, LThm22 =

[
34.2129
2.8358

]
.

The time responses of the system and observer in the
measurable premise variable case are shown in Figs. 2 and 3.
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FIGURE 2. State variable x1(t) and x̂1(t) for the tunnel diode circuit
system (measurable premise variable case): original (solid) and
Theorem 1 (dashed).

FIGURE 3. State variable x2(t) and x̂2(t) for the tunnel diode circuit
system (measurable premise variable case): original (solid) and
Theorem 1 (dashed).

The states of the system x1(t) and x2(t) converge to zero
when disturbance w(t) and uncertain term f (x(t)) approach
zero as t → ∞ because the system is asymptotically stable.
In addition, the error between the system and observer is
bounded within some neighborhood of the origin. In order
to conform the H∞ performance of the proposed observer,
the performance value is calculated under the zero initial
condition e(0) = [0 0]T as follows:

γ ? =

√√√√ ∫ 10
0 eT (τ )e(τ )dτ∫ 10

0 wT (τ )w(τ )+ xT (τ )x(τ )dτ
= 0.0820

< γThm1,

which implies that the H∞ performance is well guaranteed.
Next, the membership functions of the observer in the

immeasurable premise variable case are given by g1(ẑ(t)) =
0.5ex̂

2
1 (t)/3 and g2(ẑ(t)) = 1− 0.5ex̂

2
1 (t)/3. The time responses

of the system and observer are shown in Figs. 4 and 5. As in
the measurable premise variable case, the states of the system
and observer converge to zero as t → ∞, and the error
between the system and observer is bounded within some
neighborhood of the origin. In addition, under the zero initial

FIGURE 4. State variable x1(t) and x̂1(t) for the tunnel diode circuit
system (immeasurable premise variable case): original (solid) and
Theorem 2 (dashed).

FIGURE 5. State variable x2(t) and x̂2(t) for the tunnel diode circuit
system (immeasurable premise variable case): original (solid) and
Theorem 2 (dashed).

condition, the performance value is calculated as

γ ? =

√√√√ ∫ 10
0 eT (τ )e(τ )dτ∫ 10

0 wT (τ )w(τ )+ xT (τ )x(τ )dτ
= 0.0909

< γThm2,

which implies that, although there is some performance
degradation compared to the measurable premise variable
case, the H∞ performance is also well guaranteed in the
immeasurable premise variable case.

B. EXAMPLE 2
In order to show the performance of the proposed tech-
niques for an oscillating system, we consider the following
mass-spring systems [22], [23]:

ẍ(t) = −ϑ(x(t))− f (x(t)),

y(kT ) = x(kT ).

where ϑ(x(t)) = 0.01x(t)+0.67x3(t) and f (x(t)) is uncertain
function that is assumed to be f (x(t)) = 0.01 sin(x(t)).
Then, the membership functions are given by h1(z(t)) =
1 − x2(t) and h2(z(t)) = x2(t) and the mass-spring system
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can be constructed as

ẋ(t) =
r∑
i=1

hi(z(t))
{
Aix(t)+ Biw(t)+ αFx(t))

}
,

y(kT ) = Cx(kT ),

where

A1 =
[

0 1
−0.01 0

]
, A2 =

[
0 1
−0.68 0

]
,

B1 =
[
0.1
0

]
, B2 =

[
0.1
0

]
,

C =
[
1 0

]
, F =

[
0 0
−0.1 0

]
, and α = 0.1.

The sampling time, disturbance, and initial values are
set as T = 0.05, w(t) = 0.1e−0.5t sin(3t), and x(0) =
[0.5 0.3]T , x̂(0) = [0 0]T , respectively. In this section,
we consider two cases: one with a measurable premise vari-
able and one with an immeasurable premise variable.

First, to demonstrate the performance in the measurable
premise variable case, using Theorem 1 with γThm1 = 0.12,
and solving the corresponding LMIs, the sampled-data fuzzy
observer gains are

LThm11 =

[
6.8052
2.3806

]
, LThm12 =

[
6.8113
1.7338

]
.

FIGURE 6. State variables x1(t) and x̂1(t) for the mass-spring system
(measurable premise variable case): original (solid) and Theorem 1
(dashed).

The time responses of the system and observer are shown
in Figs. 6 and 7. As shown in figures, the error between the
system and observer does not converge to zero although dis-
turbance w(t) approaches zero as t → ∞ because uncertain
term f (x(t)) is not zero. However, the error is bounded within
some neighborhood of the origin. In addition, under the zero
initial condition e(0) = [0 0]T , the performance scalar value
is calculated as

γ ? =

√√√√ ∫ 20
0 eT (τ )e(τ )dτ∫ 20

0 wT (τ )w(τ )+ xT (τ )x(τ )dτ
= 0.0147

< γThm1,

which implies that the H∞ performance is well guaranteed.

FIGURE 7. State variables x2(t) and x̂2(t) for the mass-spring system
(measurable premise variable case): original (solid) and Theorem 1
(dashed).

TABLE 1. Performance comparison for the mass-spring system
with [8] and [22].

Next, the immeasurable premise variable case is consid-
ered. Using Theorem 2 with µ1 = µ2 = 0.01 and γ = 0.25
and solving the corresponding LMIs, the sampled-data fuzzy
observer gains are

LThm21 =

[
9.8832
13.1487

]
, LThm22 =

[
9.8864
12.5037

]
.

FIGURE 8. Membership function assumption: g1(ẑ(t))− 0.05h1(z(t))
(solid) and g2(ẑ(t))− 0.05h2(z(t)) (dashed).

The membership functions of the observer are given by
g1(ẑ(t)) = 0.6 − 0.5x̂21 (t) and g2(ẑ(t)) = 0.4 + 0.5x̂21 (t).
In Fig. 8, the time response of the membership function
assumption gi(ẑ(t)) − 0.01hi(z(t)) is shown where the mem-
bership function inequality (21) is satisfied for all fuzzy rules.
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FIGURE 9. State variables x1(t) and x̂1(t) for the mass-spring system
(immeasurable premise variable case): original (solid) and Theorem 2
(dashed).

FIGURE 10. State variables x2(t) and x̂2(t) for the mass-spring system
(immeasurable premise variable case): original (solid) and Theorem 2
(dashed).

The time responses of the system and observer are shown
in Figs. 9 and 10. Although there is a performance degra-
dation compared to that of the measurable case because of
the inconsistency of the membership function of the system
and observer, the error is bounded within some neighborhood
of the origin. In addition, under the zero initial condition
e(0) = [0 0]T , the performance scalar value is calculated as

γ ? =

√√√√ ∫ 20
0 eT (τ )e(τ )dτ∫ 20

0 wT (τ )w(τ )+ xT (τ )x(τ )dτ
= 0.1184

< γThm2,

which implies that the H∞ performance is also well guar-
anteed in the immeasurable premise variable case of an
oscillating system.

V. CONCLUSION
This paper established the sampled-data H∞ fuzzy observer
for nonlinear uncertain oscillating systems. To obtain a
sampled-data fuzzy observer for the measurable premise
variable case, the uncertain nonlinear system and the

sampled-data observer were represented using the T–S fuzzy
model. The estimation error system was constructed, and
the H∞ performance function for the oscillating system
was defined. The H∞ performance was guaranteed in the
Lyapunov sense, and its sufficient conditions were derived in
terms of the LMIs. The fuzzy observer in the immeasurable
premise variable case was designed using the same process
used in the measurable case, and the sufficient conditions
were also expressed in LMI format. Finally, the feasibility
of the proposed technique was confirmed via two simulation
examples.

Future works
To improve the performance of observer design techniques,
the sampled-data observer will be designed by using the fuzzy
Lyapunov method [33] and refined Jensen inequality [30].
In addition, the proposed approach will be applied to the
time-delay systems [34], [35] and observer-based control
techniques [36].
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