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ABSTRACT Sentiment analysis is an important but challenging task. Remarkable success has been achieved
on domains where sufficient labeled training data is available. Nevertheless, annotating sufficient data is
labor-intensive and time-consuming, establishing significant barriers for adapting the sentiment classifica-
tion systems to new domains. In this paper, we introduce a Capsule network for sentiment analysis in domain
adaptation scenario with semantic rules (CapsuleDAR). CapsuleDAR exploits capsule network to encode the
intrinsic spatial part-whole relationship constituting domain invariant knowledge that bridges the knowledge
gap between the source and target domains. Furthermore, we also propose a rule network to incorporate the
semantic rules into the capsule network to enhance the comprehensive sentence representation learning.
Extensive experiments are conducted to evaluate the effectiveness of the proposed CapsuleDAR model
on a real world data set of four domains. Experimental results demonstrate that CapsuleDAR achieves
substantially better performance than the strong competitors for the cross-domain sentiment classification
task.

INDEX TERMS Cross-domain sentiment classification, capsule network, semantic rules, deep learning.

I. INTRODUCTION
With the growth of the large collection of opinion-rich
resources, much attention has been given to sentiment clas-
sification, which aims to automatically predict the sentiment
polarity of a piece of text. Sentiment classification has been
one of the most popular research fields due to its broad
applications in brand monitoring, customer services, market
research, politics and social sciences. For example, compa-
nies can develop strategies by mining users’ attitudes toward
product reviews.

Existing sentiment classification methods can be divided
into two categories based on the knowledge and information
they use: lexicon-based methods [1]–[4] and corpus-based
methods [5]–[8]. The lexicon-based approach counts negative
and positive words in the text relying on the sentiment lexi-
con, and assigns the sentiment polarity of the text as positive
if the number of positive words is larger than that of the
negative words. In contrast, the corpus-based method utilizes
machine learning algorithms to train a sentiment classifier.
The performance of corpus-based methods is often more

superior than that of lexicon-based methods when the labeled
training data is sufficient. In this paper, wemainly concentrate
on the corpus-based approach.

The main idea of the conventional corpus-based
approaches is to employ machine learning approaches such
as support vector machine (SVM) [9], naive Bayes [10],
decision tree [11], and logistic regression [12] as text classier
to predict the sentiment polarity of the given texts. The
success of these machine learning algorithms generally relies
heavily on feature engineering which is labor-intensive and
highlights the weakness of the conventional corpus-based
sentiment classification algorithms.

Inspired by the recent success of deep learning in computer
vision and natural language processing [13], the deep neural
networks (e.g., convolutional neural network and long short-
term memory network) have become dominant in the litera-
ture. Remarkable success has been achieved by the previous
studies on domains where a large number of labeled data is
available. Nevertheless, such impressive performance relies
on the assumption that the training data and the test data
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should come from the same underlying data distribution,
establishing significant barriers for adapting the sentiment
classification methods to new domains. To avoid annotating
sufficient instances when dealing with the new domain data,
it is important to explore cross-domain sentiment classifica-
tion algorithms.

Recently, several techniques have been developed for
cross-domain sentiment classification. Structural correspon-
dence learning (SCL) [1], [14] is a prominent domain adap-
tation approach. Pan et al. [2] proposed Spectral Feature
Alignment (SFA) to achieve cross-domain classification
by aligning pivots with non-pivots. To take the advan-
tage of deep neural networks, Glorot et al. [15] proposed
a Stacked Denoising Auto-Encoder (SDA) that automat-
ically learns common feature representations from large
amounts of data in different domains. Zhou et al. [16] pro-
posed a deep learning method for learning feature mapping
between cross-domain heterogeneous features. Subsequently,
Ziser and Reichart [17] proposed a automatic encoder-SCL
model, which combines the SCL method with the autoen-
coder model. This model is proven to be superior to previous
methods. Generally, the aforementioned cross-domain senti-
ment classification method not only extract features from the
source domain but also learn the shared features that bridge
the knowledge gap across domains.

Despite the effectiveness of prior work, cross-domain sen-
timent classification in real-world remains a challenge for
several reasons. (1) First, most of the conventional cross-
domain sentiment classification methods rely heavily on
hand-crafted features, such as the pivot features. Such fea-
ture engineering process usually requires comprehensive
human domain expertise, which is time-consuming and cost-
intensive. In order to ease the applicability of cross-domain
sentiment classification, it would be highly desirable to
develop cross-domain algorithms that are less dependent
on feature engineering, so that the sentiment classifier for
new domains could be constructed faster. (2) In neural net-
work approaches, spatial patterns aggregated as lower levels
contribute to representing higher level concepts. Here, they
form a recursive process to articulate what to be modeled.
However, these models cannot encode the intrinsic spa-
tial part-whole relationship constituting viewpoint invariant
knowledge that can automatically generalize to novel view-
points, which limits the transferability of deep neural net-
works from the source domain to the target domain.

To alleviate the aforementioned limitations, in this paper,
we propose a Capsule network for sentiment analysis in
Domain Adaptation scenario with semantic Rules (Cap-
suleDAR). Capsule network is originally introduced by [18].
Each capsule in capsule network is an aggregation of neu-
rons, where each neuron represents various attributes of a
particular feature presented in the text. These attributes can
be different types of instantiation parameters, such as n-gram
features, position information of words or phrases, syntactic
features of sentences, etc. A metaphor (also as an argument)
they made is that human visual system intelligently assigns

parts to wholes at the inference time without hard-coding
patterns to be perspective relevant. Thus, capsule network has
much stronger transferring capability than conventional deep
neural networks and traditional machine learning algorithms.
The proposed CapsuleDAR model consists of two capsule
networks, i.e., Base network and Rule network, which have a
similar network structure.

The Base network works on the textual features of the
sentence. Its goal is to leverage capsule network to encode the
intrinsic spatial part-whole relationship constituting domain
invariant knowledge that automatically generalizes to novel
domains, bridging the knowledge gap between the source and
target domains. Furthermore, we also propose a Rule network
to incorporate the semantic rules (such as the structure of
the sentence) into the capsule network to further improve
the performance of the cross-domain sentiment classification.
Specifically, the first rule is to leverage the pivot features
between source and target domains to enhance the perfor-
mance of the convolution filter. The second rule is to exploit
the sentence structure information to enrich the comprehen-
sive representation learning of sentences for cross-domain
sentiment classification.

We summarize our main contributions as follows:

1. To the best of our knowledge, this is the first work deal-
ing with sentiment classification in the domain adapta-
tion scenario using capsule network. Capsule network
shows strong capability of transferring common knowl-
edge from source domain to target domain.

2. We propose a Rule network to incorporate the semantic
rules into the capsule network to capture the common
knowledge across domains.

3. Extensive experiments have been conducted on a real-
world data set of 4 domains to evaluate the effective-
ness of CapsuleDAR model for cross-domain sentiment
classification. The experimental results demonstrate that
the proposed CapsuleDAR model achieves substantial
improvements over the compared methods.

The remainder of this paper is organized as follows.
Section II reviews and discusses the related work, includ-
ing some traditional and recent methods of generic senti-
ment classification, cross-domain sentiment classification,
and capsule networks. In Section III, we fully describe the
proposed model. The experimental setup is introduced in
Section IV, including the evaluation datasets, the compared
methods, the automatic evaluation metrics, and the imple-
mentation details. Section V shows the quantitative evalua-
tion results and analysis. Section VI makes the conclusions
and discusses the future work.

II. RELATED WORK
A. CROSS-DOMAIN SENTIMENT CLASSIFICATION
Sentiment classification is a popular research area, which
has gained much attention from both academia and
industry [5]–[7], [19], [20] and [21] introduced most previ-
ous techniques and datasets for sentiment analysis. In online
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social networks, the large volume of data sources make it
costly and difficult to build a robust and generalized sentiment
classifier across domains. This motivates many studies that
analyze the sentiments of cross-domain textual data.

Most previous work belongs to the feature-based transfer,
requiring manual selection of the pivot or non-pivot features.
Among them, the structural correspondence learning (SCL)
introduced by Blitzer et al. [14] is the representative one,
which tried to obtain the mapping matrix from non-pivot
feature space to pivot feature space. Pan et al., [2] intro-
duced the SFA method, which aimed to establish a bridge
between the source domain and the target domain by align-
ing the pivot features and the non-pivot features of differ-
ent domains. Tan et al. [10] tried to select the generalizable
features which occurred frequently in different domains and
had similar probabilities. In [22], a Bayesian probabilistic
model is proposed to deal with the data frommultiple sources
and domains. The above work all needs a large amount of
unlabeled data in the target domain to help build the transfer
procedure. In addition, these methods do not fully explore the
semantics of the words and exploit the data as well as domain
labels.

Recently, deep learning models are proposed to learn
common features and shared parameters for sentiment clas-
sification in domain adaption scenario, and these models
have yielded impressive results. Glorot et al. [15] introduced
a stacked denoising auto-encoder (SDA) to learn uniform
abstractive feature representations for the documents from
both source and target domains. Chen et al., [23] proposed
the mSDA algorithm, which retained the powerful feature
learning ability and solved the high computational cost and
scalability issues of SDA. Subsequently, many extensions of
the SDA method were proposed to further improve the per-
formance of cross-domain sentiment classification [24]–[26].
However, the previous method lacks explanation ability, that
is, it is impossible to demonstrate whether the network has
sufficient ability to learn the pivot features.

In order to improve the interpretability of deep mod-
els, Ziser and Reichart, [17] proposed AE-SCL-SR method
which combined the autoencoder and pivot-based method for
cross-domain classification. Li et al., [6] introduced AMN
method(IJCAI-17) to employ the attention mechanism to
automatically capture the pivot without manual intervention.
In order to improve classification ability, Ziser and Reichart,
[7] proposed a PBLMs method which combined LSTM and
CNN with pivot features.

B. CAPSULE NETWORKS
Recently, a novel type of neural network is proposed using
the concept of capsules to improve the representational limi-
tations of CNN andRNN.Hinton et al. [18] firstly introduced
the concept of ‘‘capsules’’ to address the representational lim-
itations of CNNs and RNNs. Capsules with transformation
matrices allowed networks to automatically learn part-whole
relationships. Consequently, Sabour et al. [27] proposed cap-
sule networks that replaced CNNs with vector-output

capsules. In addition, the max-pooling operation in CNNs is
also replaced with a novel routing-by-agreement algorithm.
The capsule network has shown its potential by achieving a
state-of-the-art result on MNIST data. Xi et al. [28] further
tested out the application of capsule networks on CIFAR data
with higher dimensionality. Hinton et al. [29] proposed a new
iterative routing procedure between capsule layers based on
EM algorithm, which achieves significantly better accuracy
on the smallNORB data set. Wang et al. [30] proposed a
capsule model based on Recurrent Neural Network (RNN)
for sentiment analysis. Given an instance encoded in hid-
den vectors by a typical RNN, the representation module
builds capsule representation by the attention mechanism.
Zhao et al. [31] applied capsule network in text classifica-
tion. They showed that capsule networks outperform strong
baseline methods in text classification.

To date, no work investigates the performance of capsule
networks in cross-domain sentiment classification. This study
takes the lead in this topic.

III. OUR METHODOLOGY
Our model, depicted in Figure 1, is a variant of the capsule
networks proposed in Sabour et al., [27]. It consists of two
networks: a basic network and a rule network, to improve the
performance of cross-domain sentiment classification. In the
rest of this section, we first give the problem definition and
the overview of our model in Section III.A and Section III.B,
respectively. Then, we elaborate the basic network and the
rule network in detail in Section III.C. Finally, the training
process of our model is introduced in Section III.D.

A. PROBLEM DEFINITION
We use X sl = {xsli }

N sl

i=1 to denote the collection of labeled
documents in the source domain, where N sl is the number
of samples in source domain. Each document xsl ∈ X sl

has a sentiment label ysl which is a one-hot representation
of the correct label. In the target domain, we are given an
unlabeled dataset X tu = {x tui }

N tu

i=1, where N
tu is the number of

samples in target domain. The goal of our model is to predict
the sentiment polarity of samples in target domain using the
sentiment classifier pre-trained on the source domain data.

B. FRAMEWORK OVERVIEW
As shown in Figure 1, our overall architecture consists of two
main components: Base network and Rule network. The Base
network employs a capsule network trained with textual fea-
tures to perform sentiment prediction. It contains an embed-
ding layer, a convolutional layer for capturing n-gram features
of the text, an Incaps and a Outcaps layers followed by a
Classcaps layer. The Rule network leverages semantic rules
into the capsule network, which uses the common knowl-
edge to bridge the knowledge gap between source and target
domains. The structure of Rule network is similar to that of
the Base network, and the parameters of the convolutional
layers are shared by these two networks. In the Rule network,
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FIGURE 1. The Architecture of the proposed CapsuleDAR model for cross-domain sentiment classification.

we have an additional Rulecaps layer between Outcaps and
Classcaps layers to fully exploit the semantic rules.

C. OUR METHODOLOGY
Our model consists of two components: Base network and
Rule network. Next, we will elaborate each component of our
model in detail.

1) BASE NETWORK
The Base network is employed to model the text content
features.

a: Embedding Layer
The first layer is the embedding layer. Given input sequence
x, we first convert the i-th word into a low-dimensional
vector representation ei ∈ Rd by embedding layer, where d
donates the dimension of embedded vectors. We donate the
embedding of the sentence as e ∈ Rm×d , where the length as
m, is the concatenation of each word vectors:

e1:m = e1 ⊕ e2 ⊕ . . .⊕ em (1)

where ⊕ is the concatenation operator.

b: Conv Layer
The second layer is the convolutional layer which consists
of one convolutional operation to extract n-gram features
of the input sequence through the convolutional operations.
For sentiment analysis, it is essential for the network to learn

the n-gram features, such as ‘‘not bad’’ for the data from both
source and target domains.

Suppose the vector W ∈ Rk×d is the filter of the convolu-
tion, where k is the filter width. A filter with k width enables
the convolution layer to slide over the input sequence and
obtain a new feature. Formally, a feature zi is learned from
a local window of word sequence ei:i+k−1 by

zi = σ (W � ei:i+k−1 + b) (2)

where b is the bias vector, and � is a convolutional operator.
σ represents a non-linear hyperbolic tangent function. This
convolution filter is applied to every possible window of
words in the input sequence {e1:k , e2:k+1, . . . , em−k+1:m} to
produce a feature map z ∈ Rn−k+1, computed by:

z = [z1, z2, . . . , zm−k+1] (3)

Here, the filter weights and bias terms of each filter are shared
among all locations in the input, preserving spatial locality.
We then apply a max-pooling operation over the feature map
and obtain the maximum value ẑ = max{z} as the learned
feature with respect to the k-length filter. The main idea
behind this max operation is to extract themost salient n-gram
feature for each feature map. In addition, the max pooling
operation naturally handle the problem of variable sentence
lengths. We use multiple filters (with different window sizes)
to learn multiple features, thus the final can be represented as
Z = [ẑ1, . . . , ẑl], where l is the number of filters.
We believe that there are two types of features that are

important for cross-domain sentiment classification: (i) the
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FIGURE 2. The process of filter initialization.

n-gram features that are essential for the sentiment classifi-
cation in source domain; (ii) and the pivot features across the
source domain and the target domain, which can be utilized
to bridge the gap of knowledge between the source domain
and the target domain. Thus, we introduced a pivot-based
filter initialization method to improve the ability of text
expression of our method instead of using random initializa-
tion filters for the convolutional layer.

In particular, we first use the tf-idf [32] method to select
the n-grams with the highest contribution for each sentiment
class in source domain. Then, we employ the SCLmethod [7]
to select pivot features. Following the strategy in [6], given a
collection of the extracted tf-idf features and pivot features,
we use k-means method to cluster these features, and the
centroid vectors of the clusters are used to initialize the filter
weights. Figure 2 shows the example of the bi-gram filter
embedding process, where the gray area shows the filters of
width {2,3,4} with random parameters and blue area donates
the centroid vectors of the clusters.

c: Incaps and Ourcaps Layers
One capsule is a collection of neurons that represent instantia-
tion parameters for a particular type of object. One advantage
of capsules is that they provide a effective way to resemble
the human perception system, which identifies the part-whole
relationship.

Incaps is the first capsule layer, which is constructed by the
data transformation from the Conv layer. This transformation
allows the output of the Conv layer to be directly used as input
to the dynamic routing method. Outcaps is the second capsule
layer, which is produced by Incaps layer via a routingmethod.

The main idea of dynamic routing [27] algorithm is to
find A denoting a set of coupling coefficients. Each item
αi,j determines a mapping relationship between two capsule
layers: ui and vj. The coupling coefficient determines the cor-
relation between the j and i layers. Inspired by [33], we denote
the routing process as a minimized agglomerative fuzzy
K-Means like clustering loss function, defined as:

minA,V

{
L(A,V) := −

∑
i

∑
j

αij < WjTiui, vj >

+ λ
∑
i

∑
j

αijlogαij

}
,

s.t. αij > 0,
∑
j

αij = 1, ||vj|| 6 1 (4)

where <,> represents the inner product, V donates the col-
lection of higher layer capsules V = {v1, v2, v3 . . . , vc}.
An effective way to solve this problem is to use an optimized
coordinate descent to optimize A and V .

The length of capsules can represent the probability of the
presence of the corresponding feature. After obtaining the
high-level capsule feature, we perform a nonlinear squash
operation on the high-level capsule ensuring that the direction
of the vector is constant.

squash(vj) =
‖vj‖2

ξ + ‖vj‖2
vj
‖vj‖

(5)

where ξ is the soft parameter. We summarize the dynamic
routing method in Algorithm 1.

Algorithm 1 Dynamic Routing
for all capsule i in layer l and j in l+1:
initial: sj←

∑n
i=1WjTiui,

for iteration t do
sj← sj/||sj||,
bij←< WjTiui, sj >,
cij← softmax(bij),
sj←

∑
i cijWjTiui,

for all capsule j: vj = squash(sj),
return vj;

d: Classcaps
The last layer for Base network is the Classcaps layer. Class-
caps layer is constructed from Outcaps using dynamic rout-
ing. The number of capsules in this layer is dependent on the
category of the sentiment classification task, where the length
of the capsule represents the probability of the existence of
each class.

2) RULE NETWORK
Each neuron in a capsule not only represents the features in
sentence level (words, entities, lengths, etc.,), but also repre-
sents whether this instance contains particular structure (e.g.,
sentence structure) and how each element in this structure
contributes to the sentiment classification. In this section,
we designed aRule network that allows the network to learn
from the sentence structures.

Different from the Base network, the Rule network is
employed to model the sentence structure features. The basic
structure of Rule network is similar to that of the Base net-
work. In particular, the first and second layers are embedding
and conv layers respectively, followed by two capsule layers:
Incap and Outcaps layers. In the Rule network, we have an
additional Rulecaps layer between Outcaps and Classcaps
layers, which is different from the Base network.

In Rule network, the input of Embedding layer is the
clause behind the transition words. So in the Outcaps
layer, the learned information is a textual representation
that includes the particular structure of sentences. Since the
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embedding layer, conv layer, Outcaps and Classcaps in Rule
network are similar to that of the Base network, we will
mainly explain the unique Rulecaps layer of Rule network
in this section.
Rulecaps: As illustrated in Figure 1, the input of Rulecaps

is the output of the Outcaps layers from both Base and Rule
networks. Specifically, the output of Outcaps layers from both
Base and Rule networks are connected in parallel, and we
then send it into a dynamic routing algorithm to obtain the
final Classcaps layer for Rule network. Thus, the capsules of
the final output layer will consist of the feature information
of the entire sentence and clause.

However, in the process of constructing Rulecaps with
dynamic routing algorithm (as illustrated in Algorithm 1),
the large iteration value t will lead to over-fitting of sen-
tence structure information. Therefore, we add a temperature
parameter into the softmax operations in Algorithm 1, which
increases the contribution of these clauses to higher-level
capsule networks.

pi =
e(bi/T )∑
j e

(bj/T )
(6)

where bi represents the output of softmax layer, represent-
ing the probability of each class. pi is the standard softmax
function when T is set to 1. Setting a higher value of T can
generate a smoother probability distribution on each class.

D. TRAINING OBJECTIVE
The training objective of our method consists of two parts.
One is for the sentiment classifier, another is for minimizing
the distance between the source and target features. We use
the margin loss function for sentiment classification objective
and use deep CORAL loss for minimizing the difference
between source and target domains.

1) SENTIMENT CLASSIFICATION LOSS
Inspired by CapsNet proposed by Sabour et al., [27],
we design a two-branch object functions that integrate the
knowledge of sentence structures into the networks. For senti-
ment classification, the goal of the first branch is to maximize
the active probability of correct sentiment for the Base Net-
work. We calculate this objective (denoted as Ls) by hinge
loss:

Ls(θ ) =
N∑
p=1

max(0, 1− TpCs
p) (7)

where Cs
p is the first branch output layer of capsules index by

p. Tp is a indicator such that p = 1 if the capsule p is active,
and otherwise p = 0. Similar to the first objective, the aim
of the second objective Lc is to maximize the probability of
the output layer capsule Cc

p for Rule Network. In particular,
this output includes information learned by the structured
knowledge.

Lc(θ ) =
N∑
p=1

max(0, 1− TpCc
p) (8)

TABLE 1. Transition words list.

The final sentiment classification Objective function L is
obtained by adding the above two parts:

L(θ ) = Ls(θ )+ Lc(θ ) (9)

2) CORAL LOSS
In this paper, we use CORAL [34] loss tominimize the feature
differences between source and target domains. CORAL is an
effective method for measuring the distances of distributions
between two domains. Recall that we denote labeled training
instances as X sl = {xsli } (with N

sl instances), and unlabeled
target data as X tu = {x tui } (with N

tu instances).
Suppose that Ms and Mt indicate the feature covariance

matrices. The distance between the second-order statistic of
the source and target features are treated as CORAL loss:

Lcoral =
||Ms −Mt ||

2
F

4d2
(10)

where || . . . ||F represents the Frobenius norm and the covari-
ance matrix of two domains data are computed by:

Ms =
(X sl>X sl − (1/N sl)(I>X sl)>(I>X sl))

N sl − 1
(11)

Mt =
(X tu>X tu − (1/Ntu)(I>X tu)>(I>X tu))

Ntu − 1
(12)

where I indicates the column vector that all equal to 1.
Overall, the objective function for cross-domain sentiment

classification is:

J (θ ) = L(θ )+ Lcoral (13)

Finally, we utilize ADADELTA optimization algorithm
with the minibatch strategy to update the parameters of our
model.

IV. EXPERIMENTAL SETUP
A. EXPERIMENTAL DATA
In this study, we conduct extensive experiments on the Ama-
zon Review dataset [14] to illustrate the effectiveness of the
proposed CapsuleDAR model for cross-domain sentiment
classification task. Following Blitzer et al., [14], we use the
reviews from four product domains, including DVD (D),
Kitchen (K), Books (B) and Electronics (E), that have been
widely applied to evaluate the performance of sentiment clas-
sification in domain adaptation scenario. In total, there are
2000 labeled reviews (1000 positive and 1000 negative) given
for each domain. Furthermore, a large-scale unlabeled dataset
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TABLE 2. The classification results for cross domain sentiment analysis.

is also provided (34741 reviews for D, 6000 reviews for B,
13153 reviews for E and 16785 reviews for K).

Following the common settings in previous cross-domain
sentiment classification studies [2], we constructed 12 cross-
domain sentiment classification tasks (K → E,K →

D,K → B,D → E,D → B,D → K ,E → D,E →
K ,E → B,B → E,B → D,B → K ). Where the
left side of the arrow corresponds to the source domain and
right side of the arrow is the target domain. For each source
domain for train, we randomly selected 800 samples of pos-
itive and negative respectively. For the test set, we randomly
select 400 reviews(200 positive and 200 negative) from target
domain, The remaining 1600 reviews are used to minimize
the difference between the source domain and the target
domain during training process.

B. MODEL CONFIGURATIONS
We summarize the implementation details of our model as
follows:

1) sentence structure: Before training the model, we pre-
process the data through the sentence transition struc-
ture, and extracted the clauses after the transition
words as part of the training sample. Transition words,
for example ‘‘however’’, are strong indicators, which
imply that the words following the transition words
generally carry the whole sentiment of the review. For
instance, suppose a sentence contains two clauses, con-
nected by the transition word ‘‘however’’, the clauses
behind ‘‘however’’ represent the sentiment of the whole
sentence. The common transition words list is given
in Table 1.

2) hyper-parameter adjustment: In all the experiments,
we set the kernel size for filters of the convolutional
layer as {1, 2, 3, 4, 5} respectively and the number of
filters is set to 100. For filters initialization, 500 piv-
ots feature were chosen. We utilize 300-dimensional
word2vec trained on English Google News corpus
to initialize the word embeddings. Other weight

parameters are initialized by randomly sampling the
values from the uniform distribution U(−0.01, 0.01).
We select the number of iterations for dynamic rout-
ing between 1-5. The model is optimized with the
ADADELTA optimization algorithm with batch-size
64 and decay rate 0.95 [35].

C. BASELINE METHODS
To fully estimate the effectiveness of our model, we compare
CapsuleDAR model with several strong baselines for senti-
ment classification in domain adaptation scenario:

• SCL-MI [14]: It is a structural correspondence learning
(SCL) for learning distributed pivot feature representa-
tions from both the source domain and the target domain.
Following [14], the number of pivot features are chosen
from the range of 500 and 1000, and we set the SVD size
as one of the value in (50, 100, 150).

• SS-FE [36]: This method uses the principal component
analysis (PCA) to select important features and sent
them to a sample Naive Bayes method. We choose the
number of principal components with the percentage of
variance contribution that is larger than 99.5 percent.

• DANN [5]: It applies a generative adversarial network
(GAN) framework to the cross-domain sentiment anal-
ysis with neural network. Following [5], the adaptation
parameter is selected between 10−2 and 1 on a logarith-
mic scale. We set size of the hidden layer l to either 50 or
100. the learning rate is 10−3.

• SVM [5]: It uses support vector machine (SVM) with a
linear kernel based on mSDA representations. For SVM,
the hyper-parameter C is selected between 10−5 and 1.

• DACNN [6]: It is a variant of DANN, which uses convo-
lutional neural network to replace the full connect neural
networks. The parameters are the same with [37].

• DAmSDA [5]: It is also an extension of DANNmethod.
The feature representation obtained from Marginal-
ized Stacked Denoising Autoencoders (mSDA) are
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FIGURE 3. Loss vs. Accuracy.

TABLE 3. Ablation test results of our model on three kinds of domain
setups.

exploited. Each instance is encoded into a condense
vector of 30000 dimensions.

• AE-SCL-SR [17]: This model combines the benefits
of autoencoder and structural correspondence learning
to boost the performance of cross-domain sentiment
classification. The learning rate for stochastic gradient
descent(SGD) is set to 0.1. The decay weight is set to
10−5. The number of pivot features is selected from
(100,200,300,400,500).

• PBLM [7]: It utilizes a DNNs framework (CNN and
LSTM) for cross-domain sentiment classification based
on the pivot features. The hyperparameters are set to the
same values as in [17]. Especially, the kernel of the size
of convelutional layer is 3 for CNN.

• CapsuleNoDA: This model is a variant of our model
without performing domain adaptation. Which is only
training on source domain and test on target domain
directly.

V. EXPERIMENTAL RESULTS
In this section, we report the model comparison from both
quantitative and qualitative perspectives.

TABLE 4. The experimental results with respect to varying iteration
numbers.

A. CROSS-DOMAIN SENTIMENT CLASSIFICATION
RESULTS
In our experiments, the automatic evaluation metric is classi-
fication accuracy, which is widely adopted in sentiment clas-
sification. We summarize the experimental results in Table 2.
From the results, we can observe that our model consis-
tently and substantially outperforms the compared baseline
methods, and achieves the state-of-the-art results on all the
12 setups. For example, our model gains 7.9% improve-
ment over AMN (the best competitor) on average. The stan-
dard CNN and LSTMwithout performing domain adaptation
perform poorly since they do not consider the difference
between source and target domains and exploit the benefit of
large-scale source domain data. The pivot-based neural net-
works, such as PBLM-CNN, AMN, AE-SCL-SR, DACNN,
stably exceed the standard LSTM and CNN methods by a
significant margin, which verifies the effectiveness of the
pivot-based features in cross-domain sentiment classification.
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TABLE 5. Visualization of pivot features from source and target domains.

The CapsuleNoDA, which is trained only on the source
domain and directly used to predict the sentiment polarity of
the reviews from target domain, still outperform the baseline
methods by a large margin. This may be because that the
capsule network is capable of preserving the instantiation
parameters of the sentiment categories and has the potential
of encoding the intrinsic spatial relationship between a part
and a whole constituting viewpoint invariant knowledge that
automatically generalizes to new domains.

Following [7], we also illustrate the adequacy of the Cap-
suleDAR for domain adaptation in Figure 3. As we can see
from Figure 3 that for our model, there is a strong correlation
between the cross-entropy loss value and the classification
accuracy of the proposed model.

B. ABLATION STUDY
In order to investigate the impact of each part of our
model, we perform the ablation test of CapsuleDAR in terms

of discarding the sentence structure rule (denoted as w/o
sentence structure), the weight initialization rule (denoted
as w/o weight initialization), both sentence structure and
weight initialization rules (denoted as w/o both rules), and
capsule network (denoted as w/o capsule). Note that for
the model without capsule network, we remove the cap-
sule network from CapsuleDAR, and a CNN version of
our method is applied, which combines pivot based fil-
ter initialization method and semantic sentence structure
rule.

The ablation results are summarized in Table 4. From the
results, we can observe that all the proposed factors contribute
great improvement to CapsuleDAR. In particular, the accu-
racy scores decrease sharply when discarding the capsule
network. This is within our expectation since capsule network
is able to capture the part-whole relationship that constitutes
domain invariant knowledge automatically generalizing to
novel domains. In addition, the proposed two semantic rules
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also contribute to the effectiveness of CapsuleDAR. Not sur-
prisingly, combining all factors achieves the best performance
for all the experiments.

C. NUMBER OF ROUTING ITERATIONS
The number of routing iterations is one of the most important
hyperparameters of CapsuleDAR, which is unique to the
capsule network and has a big influence on the performance
and runtime of our model. In this experiment, we investigate
what the best number should be on all three dataset setups.
We run the experiments with the number of routing iterations
as one of (1, 2, 3, 4, 5, 6, 7, 8, 9, 10). The experimental results
show that we can achieve the best results with the number of
iterations between 1 to 5. After 5 iterations, there will be over-
fitting phenomenon leading to a decrease in accuracy.

D. VISUALIZATION OF ATTENTION WEIGHTS
CapsuleDAR also provides an intuitive way to demonstrate
the important pivot features from source and target domains
by visualizing the connection strength between capsule lay-
ers. The connection strength shows the importance of each
primary capsule for text categories, acting like a parallel
attention mechanism. Due to the space limitation, we take
three negative samples and three positive samples from each
of Kitchen and Books domains as examples, and highlight
the pivot features in red (for negative samples) or blue color
(for positive samples). The results are reported in Table 5.
Our model can effectively learn important features in both
source and target domains. For instance, ‘‘terrible’’, ‘‘horri-
ble’’, ‘‘disappointment’’, ‘‘unhappy’’, ‘‘boring’’ are selected
for negative reviews and ‘‘awesome’’, ‘‘great’’, ‘‘perfect’’,
‘‘wonderful’’ are selected for positive reviews.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed a capsule network framework
for sentiment classification in domain adaptation scenario.
Capsule network could preserve the instantiation parameters
of the training text categories and encode the intrinsic spa-
tial part-whole relationship constituting viewpoint invariant
knowledge that could generalize to new domains, bridging
the knowledge gap between the source domain and the target
domain. In addition, we also incorporate two typical semantic
rules, e.g., weight initialization rule and sentence structure
information, into the capsule network to further improve
the performance of the cross-domain sentiment classifica-
tion. Extensive experiments have been conducted on a real-
world dataset from 4 domains. The experimental results show
that the proposed CapsuleDAR significantly outperforms the
state-of-the-art methods for cross-domain sentiment classifi-
cation.

In the future, we plan to incorporate the sentiment
resources (e.g., sentiment lexicon, intensity words, negation
words) into the capsule networks, which can provide more
comprehensive information for sentiment classification. Fur-
thermore, we may also devote our effort to exploit the human

reading cognitive process in sentiment analysis, which helps
comprehend and understand the text in depth.
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