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ABSTRACT This paper presents a dual-band circularly polarized cross-dipole antenna with wide axial
ratio beamwidths for full upper hemispherical coverage for GPS L1 and L2 bands. The antenna has curved
radiating arms and a corrugated back cavity to enhance the beamwidth. A wideband hybrid coupler is used
to feed the antenna at the two nearby frequency bands. Experimental results show that very wide 3-dB AR
beamwidths of over 200◦ can be obtained, fully covering the upper hemisphere for the two GPS bands.

INDEX TERMS Broadbeam antenna, cross-dipole antenna, circular polarization, dual-band antenna, GPS
antenna.

I. INTRODUCTION
The global positioning system (GPS) has been widely
deployed in military, commercial, and civilian applica-
tions [1], [2]. The circular polarization (CP) is used in this
system because they can suppress the multipath fading prob-
lem. Also, as compared with the linearly polarized antenna,
the CP antenna are less sensitive to the angle between the
transmitting and receiving antennas [3], [4]. For GPS sys-
tems, to obtain higher precision, it is useful for antennas to
have broad AR beamwidths that can cover the upper hemi-
sphere to effectively receive low-elevation satellite signals.
Different frequency bands are used in various GPS appli-
cations [5]. Two of them, L1 (1.575 GHz) and L2 bands
(1.227 GHz), are commonly used by satellites and it is there-
fore desirable to include them in GPS antenna designs.

Traditionally, quadrifilar helix antennas (QHA) with
cardioid-shaped radiation patterns and broad gain beamwidths
have been used for GPS applications [6]–[9]. However,
it is inconvenient to fabricate their curl arms and the fab-
rication tolerance can affect the antenna performance sig-
nificantly. Furthermore, more than one QHA are normally
needed [10], [11] for a dual-band design, increasing the
complexity of the antenna structure.

In recent years, planar cross-dipole antennas have been
reported for wideband [12]–[16] and dual-/multi-band CP
applications [17]–[19]. By taking advantage of the inher-
ent phase difference between the signal line and ground
plane [20], ]21], the sequential rotation feed network can
be simplified considerably. Also, the artificial magnetic con-
ductor [14], [17] or high impedance surface [18] can be
incorporated into the antenna structures to reduce the antenna
profile or enhance the front-to-back ratio. However, their AR
beamwidths are generally insufficient to fully cover the upper
hemisphere. Although the CP designs in [22]–]24] can cover
the upper hemisphere, they are for single-band applications
only. In [24], it uses two antenna ports to achieve hemispher-
ical coverage, complicating the configuration.

In this paper, a dual-band CP cross-dipole antenna with
wide AR beamwidth that fully cover the upper hemisphere
is investigated. The antenna has unequal dipole-arm lengths
to obtain two operating bands. A very wide CP beamwidth of
more than 200◦ is achieved by using curved dipole arms and
a corrugated cavity. The antenna is simulated using ANSYS
HFSS. For demonstration, a prototype was fabricated and
measured in GPS L1 and L2 bands, and reasonable agreement
between the measured and simulated results is obtained.
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FIGURE 1. Configuration of dual-band CP antenna. (a) Perspective view of the whole design. (b) Layout of one
of two substrates. The inset shows the layout of the other substrate. (c) Bottom view of the original wideband
cascaded hybrid coupler. (d) Folded version of (c).

II. ANTENNA CONFIGURATION
Fig. 1(a) shows the configuration of the dual-bandCP antenna
that consists of a cross-dipole printed on two perpendicular
substrates, a circular aluminum back cavity, and a feed net-
work with a cascaded hybrid coupler. The cross-dipole has
unequal curved arms, and each arm has a uniformwidth ofw1.
For the smaller curved dipole arm, its radius and subtended
angle are denoted by r1 and θ1, respectively, whereas the
corresponding parameters of the larger dipole are r2 and θ2.
The cross dipoles are placed inside the cavity, and beneath
the cavity is the feed network. A via passing through the
cavity is used to connect the cross-dipole to the feed network.

The circular cavity has a radius of R, height of hc, and
thickness of tc. A non-uniform corrugation is introduced to
the cavity side wall to broaden the beamwidth. As shown
in Fig. 1(b), the cross dipole and ground plane are printed
on one side of each substrate, whereas a 50-� microstrip
feedline is printed on the other side of the substrate. Each
substrate has a size of h0 × w0, dielectric constant of εr,
thickness of t , and a slit for the perpendicular insertion of
the other substrate. After the mutual insertion of the two
substrates, a short adhesive conducting tape of length l1 is
stuck across the slit, connecting the microstrip feedline to the
dipole ground through a via. It forms a merchant balun [25]
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FIGURE 2. Prototype of dual-band CP antenna. (a) Perspective view of the
whole antenna. (b) Feed network mounted beneath back cavity.
(c) Printed curved arms and ground. (d) Microstrip feedline printed on the
other side of the substrate. (e) Curved arms and ground printed on
the second substrate. (f) Microstrip feedline printed on the other side
of second substrate.

to obtain a differential feed for the dipole. The inset shows
the other substrate. Basically, the layout is the same as that
of the first substrate, but the narrow slit is now fabricated at
the bottom. Also, the horizontal conducting strip is slightly
shifted upwards to avoid shorting that of the first substrate.

L1 band (1.227 GHz) is nearby L2 band (1.575 GHz).
Since the frequency ratio of these two bands is small, it will
require very narrow coupled lines for a dual-band hybrid
coupler. Therefore, a wideband two-stage cascaded hybrid
coupler [26] is used here. Fig. 1(c) shows the original design
of the two-stage hybrid coupler, whereas Fig. 1(d) shows the
folded version for moving the feed points (Ports 2 and 3 in
Fig. 1(d)) to near the center. The feed substrate has a dielectric
constant of εr1 and thickness of t1. Its radius is the same as
that of the cavity.

III. SIMULATED AND MEASURED RESULTS
To begin with, the wideband cascaded hybrid coupler was
designed to cover the two bands. Table 1 lists its simulated
phase difference and amplitude imbalance between the two
output ports, along with the S-parameters of the four ports.

TABLE 1. Simulated performance of wideband feed network.

FIGURE 3. Measured and simulated VSWRs of dual-band CP antenna:
R = 53.75 mm, hc = 45 mm, hc1 = 14.5 mm, hc2 = 19.5 mm, wc1 = 7.5
mm, wc2 = 7.5 mm, tc = 1.5 mm, εr = 6.15, εr1 = 2.94, t = 0.635 mm, t1 =
0.76 mm, h0 = 70 mm,h1 = 17.14 mm, h2 = 17.38 mm, h3 = 33.48 mm,
h4 = 10 mm, d1 = 2.42 mm, d2 = 2 mm, d3 = 0.635 mm, d4 = 3 mm, r1 =
12.4 mm, r2 = 16.3 mm, θ1 = 158 deg, θ2 = 152 deg, w0 = 50 mm,w1 =
1.8 mm, W1 = 4.62 mm, W2 = 0.45 mm, W3 = 5.25 mm, l1 = 6.94 mm,
L1 = 70 mm, L2 = 31.88 mm, L3 = 2 mm, Wf = 1.92 mm, and
Wf 1 = 0.92 mm.

The overlapping bandwidth is 44.0% (1.10–1.72GHz), which
is sufficient for GPS L1 and L2 bands.

Next, the antenna with the feed network was simulated
and optimized. To verify the simulations, the antenna was
fabricated and measured. Fig. 2 shows the different parts
of the prototype including the cross dipoles. In our mea-
surements, the voltage standing wave ratio (VSWR) was
measured with the Keysight VNA 8361A, whereas the AR,
radiation pattern, realized antenna gain, and total antenna
efficiency were measured with a Satimo StarLab System.
Since our antenna is designed for GPS applications, only
the results of the right-handed CP (RHCP) port (Port 1)
are presented here. Fig. 3(a) shows the measured and sim-
ulated VSWRs of the antenna, with reasonable agreement
between them.With reference to the figure, the measured and
simulated impedance bandwidths (VSWR ≤ 2) are 46.3%
(1.13–1.81 GHz) and 47.8% (1.10–1.79 GHz), respectively.
Fig. 3 also shows the simulated VSWR without the feed
network. With reference to the figure, two frequency bands
corresponding to L1 and L2 bands are found, showing that
the wideband matching of the full structure is due to the feed
network.

Fig. 4 shows the simulated current of the cross-dipole.With
reference to the figure, the currents mainly flow along the
outer and inner dipole arms at 1.227 GHz (L2 band) and
1.575 GHz (L1 band), respectively, which can be expected.
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TABLE 2. Comparison between our design and some previous dual-band CP antennas.

FIGURE 4. Simulated current distribution of dual-band CP antenna.
(a) L2 band (1.227 GHz), t = 0. (b) L2 band, t = T /4. (c) L1 band
(1.575 GHz), t = 0. (d) L1 band, t = T/4.

FIGURE 5. Measured and simulated ARs of dual-band CP antenna in
boresight direction (θ = 0◦).

With reference to Fig. 4(a), the dipole currents at t = 0mainly
flow along the +y direction in the yoz-plane, radiating the
+y- directed E-field. In this case, the currents on all the
other dipole arms are very weak. At t = T/4 (Fig. 4(b)),

FIGURE 6. Measured and simulated radiation patterns of dual-band CP
antenna in xoz (ϕ = 0◦) and yoz planes (ϕ = 90◦). (a) L2 band
(1.227 GHz). (b) L1 band (1.575 GHz).

the currents mainly flow on the other pair of the outer arms
in the −x direction (xoz-plane). Therefore, the −x-directed
E-field is radiated. As a result, RHCP fields can be gener-
ated at 1.227 GHz. Similar current variations at 1.575 GHz
(L1 band) can also be observed from Fig. 4(c) and 4(d).

Fig. 5 shows the measured and simulated ARs in the bore-
sight direction (θ = 0◦). With reference to the figure, the
measured and simulated 3-dB AR bandwidths of L2 band
are 13.0% (1.15–1.31 GHz) and 20.4% (1.10–1.35 GHz),
respectively. For L1 band, the measured and simulated AR
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bandwidths are given by 30.2% (1.35–1.83 GHz) and 23.2%
(1.41–1.78 GHz), respectively. Both the measured and sim-
ulated VSWR and AR bandwidths entirely cover L1 and
L2 bands.

Fig. 6 shows the measured and simulated radiation pat-
terns of the dual-band CP antenna. With reference to the
figure, for the entire upper hemisphere, the measured L2- and
L1-band cross-polar fields are about 30 dB and 20 dB weaker
than their co-polar counterparts, respectively, leading to very
wide 3-dB AR beamwidths. The measured xoz-and yoz-plane
half-power beamwidths (HPBWs) of L2 band are as wide as
111◦ and 114◦, respectively. For the L1 band, the xoz- and
yoz-plane HPBWs are 103◦ and 109◦, respectively.

Fig. 7 shows the measured and simulated AR beamwidths
of the antenna, with acceptable agreement between the mea-
surement and simulation. With reference to Fig. 7(a), very
wide measured L2-band 3-dB AR beamwidths of 211◦ and
228◦ are obtained in the xoz and yoz planes, respectively. For
the L1 band (Fig. 7(b)), themeasured 3-dBARbeamwidths in
the xoz and yoz planes are 202◦ and 213◦, respectively. Both
the measured and simulated results can fully cover the upper
hemisphere.

To study the effect of the corrugation, the AR beamwidths
of two cavity-backed dual-band CP antennas with and with-
out the corrugation were simulated. Fig. 8 shows the results.
For brevity, it shows the results in the xoz(φ = 0◦) plane
only. With reference to the figure, when there are no cor-
rugations, the AR beamwidths of the antenna are 171◦ and
151◦ at 1.227 GHz and 1.575 GHz, respectively. By inserting
the corrugation, they are broadened to the respective values
of 228◦ and 225◦, fully covering the upper hemisphere. It was
found that for a given corrugation depth, the AR beamwidth
is affected over a narrow frequency range only. To broaden
the AR beamwidth for both frequency bands, a non-uniform
corrugation with different depths is therefore deployed in our
design.

Fig. 9 shows the measured and simulated realized
antenna gains (mismatch included) in the boresight direction
(θ = 0◦). Again, the measured and simulated results
are in reasonable agreement. With reference to the figure,
both the measured and simulated results show two peaks
at around 1.227 GHz (L2 band) and 1.575 GHz (L1 band).
At 1.227 GHz, the measured and simulated peak values are
4.39 dBic and 5.88 dBic, respectively. The discrepancy can be
expected because of imperfections in the experiment. Similar
measured and simulated gains of 5.06 dBic and 5.45 dBic are
obtained at 1.575 GHz (L1 band).

Fig. 10 shows the measured total antenna efficiency
(mismatch included). As can be observed from the figure,
the efficiency also exhibits two peaks in L1 and L2 bands,
as expected. Its peak values are 82.6% and 89.3% at 1.220 and
1.550 GHz, respectively, which are very close to the L2- and
L1-band frequencies. Table 2 compares our design with some
previous dual-band CP antennas. With reference to the table,
although the HPBW in [10] is wider than that of our design,
its peak gain (< 1 dBic) and AR beamwidth (∼100◦) of [10]

FIGURE 7. Measured and simulated AR beamwidths of dual-band CP
antenna in xoz (ϕ = 0◦) and yoz (ϕ = 90◦) planes. (a) L2 band
(1.227 GHz). (b) L1 band (1.575 GHz).

FIGURE 8. Simulated AR beamwidths of cavity-backed dual-band CP
antennas with and without the corrugation at 1.227 GHz and 1.575 GHz in
xoz (ϕ = 0◦) plane.

are much smaller than those of our antenna (peak gain >
4 dBic; AR beamwidth > 200◦) for both frequency bands.
That design [10] has a higher profile despite its footprint
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FIGURE 9. Measured and simulated antenna gains of dual-band CP
antenna in boresight direction (θ = 0◦).

FIGURE 10. Measured antenna efficiency of dual-band CP antenna.

is smaller. Also, it vertically puts two individual quadrifilar
helix antennas together to obtain the two frequency bands,
requiring two feeding ports. For the design in [17], a very
low profile and relatively higher peak gains can be obtained,
but both its HPBW and AR beamwidth are much narrower
than those of our design. It can be seen from the table that
our design has wide AR beamwidths that can cover the upper
hemisphere for both frequency bands. Our design can be used
in GPS ground terminals, vehicles, and ships.

IV. CONCLUSION
The dual-band CP cross-dipole antenna for GPS L1- and L2-
band applications has been investigated. Two sets of curved
dipoles have been designed to obtain the dual-band opera-
tion; the shorter and longer arms are responsible for L1 and
L2 bands, respectively. Apart from using curve dipole arms, a
non-uniform corrugated cavity has been deployed to broaden
the beamwidth. It has been found that the impedance and AR
passbands of the dual-band antenna are sufficient for the two
bands. It has been also found that the L1- and L2-band AR
beamwidths are both over 200◦ in the two principal radiation
planes, covering the entire upper hemisphere.
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