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ABSTRACT This paper presents a study on the applicability of using approximate multipliers to enhance
the performance of the VGGNet deep learning network. Approximate multipliers are known to have reduced
power, area, and delay with the cost of an inaccuracy in output. Improving the performance of the VGGNet in
terms of power, area, and speed can be achieved by replacing exact multipliers with approximate multipliers
as demonstrated in this paper. The simulation results show that approximate multiplication has a very
little impact on the accuracy of VGGNet. However, using approximate multipliers can achieve significant
performance gains. The simulation was completed using different generated error matrices that mimic the
inaccuracy that approximate multipliers introduce to the data. The impact of various ranges of the mean
relative error and the standard deviation was tested. The well-known data sets CIFAR-10 and CIFAR-
100 were used for testing the network’s classification accuracy. The impact on the accuracy was assessed
by simulating approximate multiplication in all the layers in the first set of tests, and in selective layers
in the second set of tests. Using approximate multipliers in all the layers leads to very little impact on
the network’s accuracy. In addition, an alternative approach is to use a hybrid of exact and approximate
multipliers. In the hybrid approach, 39.14% of the deeper layer’s multiplications can be approximate while
having a reduced negligible impact on the network’s accuracy.

INDEX TERMS AI accelerator, approximate computing, approximate multiplier, CNN, deep convolutional

network, deep learning, VGGNet.

I. INTRODUCTION

Deep learning using convolutional neural networks (CNNs)
has gained increased momentum in recent years. Image clas-
sification is one of the primary applications for deep learn-
ing using CNN. Several successful CNN architectures were
proposed in the literature. One of the most used architectures
is the VGGNet proposed by Simonyan and Zisserman [1].
One of the widely used VGG configurations is the VGGNet-
16 (referred to as configuration D in [1]), which consists
of 13 convolutional layers, and 3 fully connected layers
with max pooling applied between the layers. VGGNet
has a uniform architecture and uses 3x3 convolutions.
Figure (1) depicts the network architecture as proposed in [1]
including the number of channels in each stage. Accord-
ing to [1], the VGGNet-16 has 138 million parameters.
Since the convolution in a CNN is completed via mul-
tiplication and addition, any improvement on the perfor-
mance or the cost of multiplication will have a significant
impact on the overall performance and cost of the entire
network. According to [12], the VGGNet-16 required 15.5G

multiply-and-accumulates (MACs) operations to complete
the classification of one image.

The concept of approximate computing has emerged in
recent years to increase systems performance and power
efficiency. Usage of approximate computing is promoted
for media related systems due to its ability to tolerate
error. One of the applications of approximate computing
is the approximate multiplier. Compared to an exact mul-
tiplier, the approximate multiplier has a reduced power,
area, and delay. However, it has a cost of inaccuracy
which is usually defined by metrics such as the MRE and
the SD.

The research objective is to demonstrate that approxi-
mate multipliers can be used to optimize the performance
of VGGNet in terms of power, area, and delay. This work
assesses the impact of various approximate multiplication
error ranges on the VGGNet accuracy and identifies the
network layers that are the least impacted by approximate
multiplication. Additionally, the research provides a baseline
for researchers to apply the proposed simulation methods to

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

60438

Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 6, 2018

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.


https://orcid.org/0000-0002-1895-3438
https://orcid.org/0000-0001-8104-6913

I. Hammad, K. El-Sankary: Impact of Approximate Multipliers on VGG Deep Learning Network

IEEE Access

[ maxpool ] [ maxpool ]
[ maxpool ]
[ maxpool ]
v
( FClayer-4096 ]
v
[ FClayer-4096 |
v
[ maxpool ] [ FC layer-1000 ]
L

]

FIGURE 1. VGGNET-16 as proposed by [1].

explore the impact of approximate computing on various deep
learning architectures.

VGGNet was selected for this study as it is one of the most
popular deep learning architectures for image classification.
Additionally, it has a very uniform architecture with 3 x3 con-
volutions and with a modest number of layers comparing to
other popular architectures. These features enable a homoge-
neous evaluation of the impact of approximate multiplication
on the network layers.

The focus of this research is on the optimization of pre-
trained networks which exclude the training phase. Several
systems rely on pre-trained weights especially in low power
applications. For these systems the training is done on a
central server, then the weights are downloaded to many client
devices which usually have limited hardware resources. One
example is the internet of things (IoT) hardware accelerator
presented in [13] which uses pre-trained weights.

In this paper, a simulation for the impact of approximate
multipliers on the accuracy of VGGNet is presented. The
simulation included testing the impact of approximate mul-
tiplication on all the layers in the first set of tests and on
selective layers in the second set of tests. The simulation
results of both approaches show that approximate multipliers
can be used to achieve significant performance gains with a
very minimal cost of added accuracy error.

This paper is organized as follows: Section II provides
a background on the approximate multiplier. Section III
demonstrates the concept of approximate multipliers
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simulation by adding error matrices to the network’s layers.
Section IV presents the results of simulating approximate
multiplication in all VGGNet layers. Section V focuses on the
impact of applying approximate multiplication in selective
network layers and proposes the hybrid approach. Section VI
summarizes the research conclusion.

Il. BACKGROUND ON THE APPROXIMATE MULTIPLIER
Approximate multipliers can be utilized in applications that
are tolerant to inaccuracy. Several different approximate mul-
tiplier designs were recently proposed as a replacement for
the exact multiplier such as [2]-[6] and [14]. Approximate
multipliers can lower the design cost in terms of power, delay
and chip size, with the cost of having a certain calculation
error. The mean relative error (MRE) is used along with other
metrics such as the SD to assess inaccuracy of approximate
multipliers. The MRE is the primary common metric used
to evaluate the error in approximate multipliers, this can
be found in the approximate multiplier publications [2]-[6]
and [14]. The MRE is defined as:

n

1 |Yi — Yi|

MRE = — ; i (1)
In equation (1), Yi is the exact value while Yi is the approxi-
mate value. One example of an approximate multiplier is the
16-bit design proposed by Venkatachalam and Ko [2]. The
multiplier in [2] has achieved power, area and delay savings
of 72%, 56%, and 31% respectively while introducing an
MRE of 7.6%. Another example is the approximate multiplier
in [5] which introduces an MRE of 1.47% while having a
reduction of 59%, 50%, and 47% in the power, area, and
delay. Several other implementations for the approximate
multiplier can be found in [3], [4], [6], [7], and [14]. The
design in [7] showed that a decreased area and power in
an approximate multiplier can be achieved by introducing
a higher error. Therefore, this allows for a flexibility in the
design by balancing the trade-off between the accuracy loss
and the achieved savings in power and area.

Ill. APPROXIMATE MULTIPLIER SIMULATION

This section presents the concept of approximate multiplier
error simulation for deep learning networks. To test the
impact of approximate multipliers on the accuracy of the
network, the multiplication accuracy should contain a certain
MRE that an approximate multiplier would have introduced if
it was used instead of an exact multiplier. To test the impact of
approximate multiplication on the accuracy of the VGGNet,
a pre-trained VGGNet was used [8]. This network was built
using the python based deep learning platform Keras [9].
This network was modified to add an error matrix prior to
completing the convolution at certain layers of the network,
depending on whether they are part of the test case or not. The
error matrix was applied through element-wise multiplication
with the layer input Y. The error matrix was also applied to
the fully connected layers in some test cases. In equation (2),
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Y’is the modified layer input after applying a certain MRE.
Y =YOE )

Where © is element-wise multiplication operator. The matrix
E is tuned to apply the required MRE value. For example,
to simulate an MRE value of 2.5% using a Uniform probabil-
ity density function (PDF), the matrix E will contain random
values ranging from (0.95-1.05). To simulate the impact of
approximate multipliers on the network’s accuracy. Several
test cases for Uniform and Gaussian PDFs error matrices
were applied. These test cases are generic to cover the charac-
teristics of various approximate multipliers in the literature.
The MRE and the PDFs of these simulated test cases can be
mapped to these published approximate multipliers designs
as demonstrated in the next section. Figure (2), shows the his-
togram of a sample of Uniform and Gaussian error matrices
used for one test image in the first layer of the network.
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FIGURE 2. A histogram for an error matrix using 500 bins. (a) a sample
Uniform error matrix (MVRE=~2.5%). (b) a sample Gaussian error matrix
(MRE=~1.4%).

In this simulation, each test case error range was divided
into 10000 unique values. The error matrix £ was con-
structed randomly from these values using Uniform or Gaus-
sian PDFs. Each error matrix for a layer in a test case was
generated using a different seed. All the tests were executed
using ‘float16’ precision.
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To test the impact on the accuracy, CIFAR-10 and
CIFAR-100 datasets were used. CIFAR-10 dataset con-
sists of 60000 32x32 color images in 10 classes, with
6000 images per class. CIFAR-10 has 50000 training images
and 10000 test images [11]. CIFAR-100 has 100 classes con-
taining 600 images each divided as 500 training images and
100 testing images per class. As CIFAR-10 and CIFAR-100
datasets are used, the network architecture in this paper is
slightly different than the original VGGNet-16 as per [1]. The
network architecture contains changes that were proposed
in [10] which handled the design of VGGNet for CIFAR-10
and CIFAR-100 datasets. The network design in [10] is tai-
lored for inputs with size 32 x 32 instead of 224 x 224,
consequently, the dimensions of this network’s layers are
smaller than the original VGGNet as proposed in [1]. The
network changes also include using 2 fully connected layers
instead of 3 fully connected layers, and changes in other
settings such as batch normalization and dropout to reduce
overfitting [10]. Figure (3) demonstrates the architecture of
this modified VGGNet that is used for the simulation. As the
focus of this simulation is to assess the impact of approximate
multipliers on a pre-trained network, the error matrices were
applied to the test images only.
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FIGURE 3. Modified VGGNET as per [10].

To evaluate the impact of approximate multipliers, two set
of tests were executed. The first set of tests are the “MRE
Tests”” while the second tests are “‘Layer Impact Tests™. In the
“MRE Tests”, the error matrix was added to each layer of
the network. In each test case, a specific MRE value was
simulated to assess its impact on the network accuracy. In the
“Layer Impact Tests™, the error matrix was applied only to a
selective group of layers in each test case. This was done to
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evaluate the impact of having approximate multiplication in
these particular layers. The next two sections will discuss the
simulation results for both the “MRE Tests”” and the “Layer
Impact Tests”’. During the simulation, each test case consisted
of 100 loops, in each loop the entire dataset (CIFAR-10 or
CIFAR-100) was applied. In each test case, an error matrix
with approximately the same MRE and PDF was applied to
the tested layers of the network. However, the error matrices
had different seeds in each layer of every loop. The tables
in this paper list the average network error of the 100 loops.
Additionally, due to having different random seeds for the
error matrices the listed MRE and SD values in all the tables
are approximate.

IV. MRE TESTS

Several Uniform and Gaussian error matrices with different
MRE values were simulated to assess their overall impact
on the network’s accuracy. Table 1 shows the results of the
simulation using CIFAR-10 dataset while Table 2 shows the
results of the simulation using CIFAR-100 dataset. For each
test case, Table 1 and Table 2 list the MRE, the SD, the net-
work error rate, and the error difference compared to an exact
multiplier. The network error rate in Table 1 and Table 2 refers
to the percentage of incorrect image classifications by the
network. The error difference reflects the additional error
which resulted from using an approximate multiplier instead
of an exact multiplier. In the used architecture for this sim-
ulation an execution with an exact multiplier using CIFAR-
10 dataset results in a network error rate of 6.4%, while the
error is 29.51% for CIFAR-100 dataset. These numbers will
be used as a baseline to assess the impact of the approximate
multiplier. The network error rate can have minor variations
based on the training settings and the used hyperparameters.
According to [10], the human rater for CIFAR-10 is 6%,
therefore, the used baseline rate is very close to the human
classification error rate.

As can be seen from Table 1 and Table 2, the error dif-
ference resulting from the added MRE is very minimal and
can be considered negligible especially for lower MRE cases.
Similar or exceeding error differences can be a result of a

TABLE 1. Test results using CIFAR-10.

. Error Diff.
M%trlx £ MRE SD (o) ENetwl({rl: from Exact
ype fror Rate Multiplier
No Error 0% N/A 6.4% 0%
Uniform ~0.75% ~0.087% 6.422% +0.012%
Uniform ~1.25% ~1.443% 6.43% +0.03%
Uniform ~2.5% ~2.887% 6.495% +0.095%
Uniform ~5% ~5.774% 6.598% +0.198%
Uniform ~7.5% ~8.66% 6.828% +0.428%
Uniform ~10% ~11.55% 7.358% +0.958%
Gaussian ~0.6% ~0.75% 6.423% +0.023%
Gaussian ~1.4% ~1.80% 6.438% +0.038%
Gaussian ~2.4% ~3.0% 6.477% +0.077%
Gaussian ~3.6% ~4.5% 6.53% +0.13%
Gaussian ~4.8% ~6.0% 6.599% +0.199%
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TABLE 2. Test results using CIFAR-100.

. Error Diff.
M;mx E MR SD (o) ENetWI‘;“: from Exact
ype fror Rate Multiplier
No Error 0% N/A 29.51% 0%
Uniform  ~0.75%  ~0.087%  29.556% +0.046%
Uniform  ~125%  ~1.443%  29.563% +0.053%
Uniform  ~2.5%  ~2.887%  29.580% +0.070%
Uniform ~5% ~5.774%  29.779% +0.269%
Uniform  ~7.5%  ~8.66%  30.206% +0.696%
Uniform  ~10%  ~11.55%  30.937% +1.427%
Gaussian  ~0.6%  ~0.75%  29.563% +0.053%
Gaussian ~ ~14%  ~1.80%  29.574% +0.064%
Gaussian ~ ~2.4% ~3.0% 29.626% +0.116%
Gaussian ~ ~3.6% ~4.5% 29.718% +0.208%
Gaussian ~ ~4.8% ~6.0% 29.85% +0.34%

TABLE 3. Reported performance of approximate multipliers in the
literature compared to exact multipliers.

. Power Area Delay
Design MRE Savings Reduction Decrease
DRUM [5] 1.47% (G) 59% 50% 47%
Vasileios [3] 3.6% (G) 34.14% 34.17% 11.11%
Suganthi [2] 7.63% 71.7% 55.6% 30.9%
Georgios [6] 2.5% (U) 47% 38% 35%
Tongxin [14] 1.64% 59.9% 50.1% 36.3%

tweak to one of the hyperparameters during network training.
Figure (4) illustrates the approximate relation between the
increase in MRE and the increase in the error difference.
While all tests in Tables 1 and 2 were executed using float-
16 data type, float-32 data type was also simulated using a
subset of tests from Table 1 and Table 2. Using float-32 gave
very similar results to float-16, therefore, these simulation
results are applicable to both 16 bits and 32 bits approximate
multipliers.

The error matrices used in Table 1 and Table 2 are generic
to cover a broad spectrum of possible errors resulting from the
usage of approximate multipliers. However, these test cases
can be mapped to the reported performances of proposed
approximate multipliers in the literature as Table 3 presents.
Table 3 lists the reported performance enhancements for var-
ious approximate multipliers in comparison to exact multi-
pliers. By mapping the simulation results from Table 1 and
Table 2 to the approximate multipliers performance result
in Table 3, the advantage of using approximate multipliers in
VGGNet can be clearly seen. An example is the approximate
multiplier DRUM [5], this multiplier has a Gaussian error
with MRE of 1.47% and SD of 1.803%. By replacing the
VGG’s exact multipliers by DRUM’s approximate multipli-
ers, the multiplication cost can have approximate savings in
power, area, and delay of 59%, 50%, and 47% respectively.
One CIFAR image classification using the modified VGGNet
as per [10] requires 313.41M MACs. According to the Gaus-
sian simulation results in Table 1 and Table 2, this replace-
ment will cause an approximate additional network error of
only 0.038% using CIFAR-10 and 0.064% using CIFAR-100.
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FIGURE 4. An estimated relationship between the MRE of approximate
multipliers and the additional error in the accuracy of VGGNet.
(a) Uniform MRE impact. (b) Gaussian MRE impact.

This is based on the closest simulation test case with MRE
of 1.4% and SD of 1.8%. This additional network error is
minimal considering the achieved reduction in power and area
and the significant increase in speed. The Speed increase is
very critical for deep learning applications, researchers are
vigorously trying to speed up deep learning training and test-
ing. More examples can be seen by mapping the performance
enhancements of the approximate multipliers in [2], [3], [6],
and [14] to the closest simulated test in Table 1 and Table 2.
Note that (G) and (U) in Table 3 refers to Gaussian and
Uniform distribution, respectively.

The approximate multipliers listed in Table 3 proposes dif-
ferent design methods on the hardware level for the approx-
imate multiplication. For example, the design [3] uses a
method of approximation that is performed by rounding
the high radix values to their nearest power of two. The
design [5] uses a different method which is applied by
dynamic range selection scheme and truncation. These differ-
ent design methods lead to different PDF characteristics for
the MRE as specified in Table 3. The simulations presented
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FIGURE 5. Accuracy results for 100 loops of simulation for the Uniform
PDF with MRE=~2.5%.

in this paper are generic as presented in Table 1 and Table 2.
These simulation results can be used for approximate map-
ping between an approximate multiplier’s MRE error and the
impact on the accuracy of the VGGNet.

Using 8-bits and 12-bits approximate multipliers, [7] has
shown that a decrease in the required power and area can be
achieved by increasing the error. For example, in the proposed
12-bit approximate multiplier, an increase in the maximum
relative error from 1% to 2% has dropped the power from
475 uW to 284 W and the area from 720.8 um to 523.8 pm.
Also, the power has dropped from 247 uW to 125 uW and
the area from 483 pm to 285 um by increasing the error from
5% to 10%.

As mentioned earlier, Table 1 and Table 2 test cases list
the network accuracy by averaging the simulation results
of 100 loops. Figure (5) shows the network error for 100 loops
of simulation for the Uniform PDF with MRE=~2.5% test
case. The figure shows the loop number and the corre-
sponding network accuracy. Interestingly, some of the loops
achieved better results compared to an exact multiplier. The
applied error matrices in these cases have randomly reshaped
the layer’s input for a better classification by the network.

V. LAYER IMPACT TESTS

In this section, the impact of applying approximate mul-
tiplication on specific layers is evaluated. Table 4 details
the number of parameters per layer, the number of MACs
in each layer and their percentage of the total number of
MAGC:s in the network. Table 4 information is based on one
CIFAR-10 image.

To apply the layer impact testing, several test cases were
simulated, where, consecutive layers were grouped together
in each test case. A total of 6 sets of layer groups were used
to assess the impact of approximate multiplication on these
segments of the network. Table 5 illustrates the details of
the applied test cases. For all the test cases CIFAR-10 was
used with a uniform error matrix (MRE =~7.5%). The error
matrix was applied on the specified layers only.
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TABLE 4. Number of MACs per layer.

Layer Param MAC:s per (%) of Output Size
Count Image MAC:s. per Image
Conv-64-1 1.79k 1.77M 0.564% (32,32,64)
Conv-64-2 36.93k 37.75M 12.042% (32,32,64)
Conv-128-1 73.86k 18.87M 6.021% (16,16,128)
Conv-128-2 147.58k 37.75M 12.042%  (16,16,128)
Conv-256-1 295.17k 18.87M 6.021% (8.,8,256)
Conv-256-2 590.08k 37.75M 12.042% (8,8,256)
Conv-256-3 590.08k 37.75M 12.042% (8.,8,256)
Conv-512-1 1.18M 18.87M 6.021% (4,4,512)
Conv-512-2 2.36M 37.75M 12.042% (4,4,512)
Conv-512-3 2.36M 37.75M 12.042% (4,4,512)
Conv-512-4 2.36M 9.44M 3.011% (2,2,512)
Conv-512-5 2.36M 9.44M 3.011% (2,2,512)
Conv-512-6 2.36M 9.44M 3.011% (2,2,512)
FC-1 262.66k 262.14k 0.084% (512)
FC-2 5.13k 5.12k 0.002% 10)
Total 15M 313.46M 100% N/A

TABLE 5. Layers testing results using Uniform error matrix (MRE=~7.5%).

Group Network Error Diff.
Error Matrix Location from Exact
ID Err. Rate L
Multiplier
Lo4 The 2 conv-64 layers 6.715% +0.315%
L128 The 2 conv-128 layers 6.484% +0.084%
L256 The 3 conv-256 layers 6.513% +0.113%
L512-1 The first 3 conv-512 layers 6.445% +0.045%
L512-2 The second 3 conv-512 layers 6.42% +0.02%
LFC The fully-connected layers 6.612% +0.212%

TABLE 6. Tests results for the hybrid approach.

Matrix £ Network Error Diff. Err. Diff from
f; . MRE Error from Exact  All Layer Appr.
P Rate Multiplier Multiplier
Uniform ~1.25% 6.414% +0.014% -0.016%
Uniform ~2.5% 6.419% +0.019% -0.076%
Uniform ~5% 6.437% +0.037% -0.161%
Uniform ~7.5% 6.488% +0.088% -0.340%
Uniform ~10% 6.502% +0.102% -0.856%
Gaussian ~1.4% 6.417% +0.017% -0.021%
Gaussian ~2.4% 6.420% +0.020% -0.057%
Gaussian ~3.6% 6.432% +0.032% -0.098%
Gaussian ~4.8% 6.436% +0.036% -0.163%

As can be seen from Table 5, having an approximate
multiplier on groups “L512-1"" and “L512-2"" have the least
impact on the overall accuracy. These layers count for 39.14%
of the total multiplications required as per Table 4. Therefore,
a hybrid approach can be used in which the approximate
multiplication is used in only these deeper layers.

The hybrid approach simulation results are presented
in Table 6. In this approach, the approximate multiplication
was applied only on the 512 channel layers of the network.
A subset of tests from Table 1 were repeated in Table 6 to test
this hybrid approach. Table 6 lists the reduction in network
error achieved compared to the “all layers™ approach in the
previous section as per Table 1.

As can be seen from Table 6, the hybrid approach has
a negligible impact on the accuracy compared to an exact
multiplier, for the case of Gaussian PDF with MRE=~1.4%
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which is similar to the approximate multiplier proposed in [5],
the added network error rate is only 0.017%. Additionally,
this approach has a reduced additional network error com-
pared to the “all layers” approximate multiplier approach
which was presented in the previous section. In summary,
using an approximate multiplier similar to [5], 39.14% of the
network’s MACs can have approximately half the power, area
and delay with the cost of 0.017% of an added network error.

VI. CONCLUSION

This research work demonstrates that deep learning can
be optimized using approximate computing. Approximate
computing can reduce the chip power and area while increas-
ing the speed. The paper started by providing a background
on the approximate multiplier, then the concept of approx-
imate multiplier simulation was introduced. The primary
contribution was to simulate the impact of the approximate
multipliers on the accuracy of image classification using
VGGNet. The simulation included applying several error
matrices with various MRE values which cover the impact
of several proposed approximate multipliers in the literature.
The simulation covered both Uniform and Gaussian PDFs
and assessed their impact on the network’s accuracy. The sim-
ulation results show that approximate multipliers have very
little impact on the network’s accuracy. This comes with the
advantage of significant reductions in power, area, and delay.
Additionally, an alternative hybrid approach was proposed
which uses a mix of exact and approximate multipliers. In the
hybrid approach, the approximate multiplication can be used
in deeper layers of the network which has the least impact
on the accuracy. The hybrid approach simulation leads to
a reduced negligible impact on the accuracy while having
significant savings in power, area, and delay on a large portion
of the network.
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