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ABSTRACT The accurate prediction of reliability for long-time running intelligent satellite power
distribution systems is crucial in engineering. In this paper, an adaptive method is proposed to achieve
this goal. Based on lifetime and degradation data, an estimator of the reliability for the system is derived
by mainly using an additive degradation model of combined Poisson and Gaussian processes. A locally
c-optimal approach to choosing effective data from the real-time data flow is given. Associated with the
sequence of observed lifetime and degradation data, a robust criterion is proposed to determine an appropriate
data subset for reliability prediction. A simulation study shows that the proposed method gives superior
performance over the traditional method. Benefiting from adaptive and optimal strategies, the reliability
predictions for 16 to 20 years obtained from the proposed method are convincing even if the initial models
fitted by the ground test data have deviations from the true models.

INDEX TERMS Satellite, intelligent power distribution system, reliability prediction, adaptive estimation,
recursive maximum likelihood.

I. INTRODUCTION
The intelligent satellite power distribution system, dubbed
ISPDS for brevity, is an energy management system that
was developed for new satellites. Since it operate work
15∼20 years in orbit, a more precise prediction method is
one of the most important issues concerning field use.

For such long-running systems, reliability prediction has
attracted more and more interest in reliability analysis. Mori
and Ellingwood [1] used the adaptive importance sam-
pling method to evaluate the time-dependent reliability of
a structural system. In their paper they updated the estima-
tion of the mean vector of the optimal importance variable
until no significant improvement in accuracy was obtained.
Wong et al. [2] proposed an adaptive design approach for
non-linear finite element analysis to predict the reliability
levels of structures. Xu et al. [3] provided a real-time reli-
ability prediction method for a dynamic system based on
the hidden degradation process identification by the recursive
maximum likelihood method. Ma et al. [4] presented mono-
tone degradation models and applied the Bayesian method to
update the estimation of parameters for real-time reliability
analysis. Fan et al. [5] proposed the degradation-data- driven
method to predict the reliability of high-power white light–
emitting diodes based on a general degradation model and

nonlinear least squares estimation. Peng et al. [6] investi-
gated a Bayesian approach, which combined lifetime data
with degradation data to analyze and predict system reliabil-
ity. Jiang et al. [7] proposed a novel time-variant reliability
analysis method based on stochastic process discretization
which is extremely useful for assessing design reliability of
a complex structure. Zhang et al. [8] proposed an interval
PHI2 method to creatively solve the time-dependent reliabil-
ity for random problems with the interval distribution param-
eters. Liu et al. [9] established a non-linear and non-Gaussian
state space model, predicted the degrading tendency by the
particle filter algorithm, and then calculated the conditional
reliability based on a Bayesian frame. Hao et al. [10] pro-
posed a new degradationmodel with a random effect indepen-
dent increment process and iteratively updated the parameters
by using the Bayesian method. Zhang et al. [11] proposed a
novel approach with response surface to estimate the time-
dependent reliability for nondeterministic structures by effec-
tively generating a Gaussian stochastic process. Cai et al. [12]
proposed a WCF approach to estimate the lower confidence
limit of the reliability for Solid State Power Controller which
is a part of the ISPDS. Pan et al. [13] proposed a reliability
estimation approach based on the EM (Expectation Maxi-
mization) algorithm and the Wiener process.
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FIGURE 1. Structure of the intelligent satellite power distribution system

For primary satellite power distribution systems, engineers
often use accelerated degradation ground test data to establish
a degradation model and then predict the reliability of the
system for 15∼20 years. However, the predicted results are
not typically convincing, because no real-time data are used.
If real-time observations of the system could be obtained,
a prediction based on a combination of ground test data and
real-time observations might be more accurate. It is fortunate
that intelligent satellite power distribution systems (ISPDS)
can record operating data so that we can obtain the real-time
data flow. The difference is that the degradation model of its
main component is an additive model of the Gauss and Pois-
son processes. Another important factor is that we can obtain
a real-time data flow. How to extract useful information from
the real-time data flow to develop a good reliability prediction
has received scant attention in the literature.

Themain purpose of this paper is to develop a new adaptive
method that can predict the reliability of ISPDS more accu-
rately by efficiently exploiting the information from ground
test data and real-time data flow in orbit. Themethod includes
a locally c-optimal procedure and a robust criterion to choose
effective data from real-time data flow and develop an adap-
tive reliability prediction based on the recursive maximum
likelihood estimation. In section II, a reliability model for
the intelligent satellite power distribution system is given
based on exponential distributions and an additive degrada-
tion model of Poisson and Gaussian processes. In section III,
a locally c-optimal procedure and a robust criterion are pro-
posed methods for choosing effective data from data flow.
Thus, the explicit expression of the reliability prediction
is developed based on the real-time lifetime data and the
real-time degradation data. Section IV gives one example to
illustrate the key steps of the proposed method. Simulation
comparisons of the proposed method with traditional pre-
dictions used in practice are given in Section V. Concluding
remarks are given in Section VI.

II. THE RELIABILITY MODEL FOR ISPDS
The intelligent satellite power distribution system is com-
posed of a power convert module, an intelligent manage-
ment module, and a solid-state power controller module. The
power convert module contains a main DC/DC converter
(DC/DC) and a warm standby redundancy. The intelligent
management module uses a cold standby redundant struc-
ture with two telemetry and telecontrol devices (TMTC).
The solid state power controller module has a main solid
state power controller (SSPC) and a warm standby SSPC.

Fig. 1 shows the basic structure of the intelligent satellite
power distribution system.

Suppose that the lifetime TDC/DC of DC/DC and the life-
time TTMTC of TMTC follow the exponential distributions,

TDC/DC ∼ f1(t) = λ1e−λ1t , (1)

TTMTC ∼ f2(t) = λ2e−λ2t . (2)

where λ1 and λ2 are the failure rates of DC/DC and TMTC,
respectively.

The lifetime TSSPC of SSPC is determined by the degrada-
tion value of the Rdson r(t) of its main component, MOSEFT,

TSSPC = inf{t : r(t)/r(0) ≥ l, t > 0}, (3)

where x(t) = ln r(t) = βn1(t) + γ n2(t) + αt + x(0) + ε,
n1(t) is the number of switches of theMOSEFT, n2(t) denotes
the number of short circuits, r(0) = exp(x(0)) is the initial
value of Rdson, and ε is the error. In engineering research,
the following assumptions have been commonly used: ε is
normally distributed with mean 0 and variance σ 2, and n1(t)
and n2(t) follow the Poisson processes with parameters τ1
and τ2, respectively. Note that when the main SSPC is still
operating, the redundant SSPC is on warm standby and is also
connected to the loads, but it does not suffer the shocks of
switches and short circuits.

Let T11 and T12 be the lifetimes of the main DC/DC and
the standby DC/DC, T21 and T22 be the lifetimes of the main
TMTC and the standby TMTC, and T31 and T32 be the life-
times of the main SSPC and the standby SSPC, respectively.
Furthermore, let T1 be the lifetime of the power convert mod-
ule, T2 be the lifetime of the intelligent management module,
and T3 be the lifetime of the solid-state power controller
module. Thus, the lifetime T of ISPDS can be written as

T = min{max(T11,T12),T21 + T22,T3}. (4)

If we know that the system is in operation at time t ,
the reliability model of the system at time y is given by

R(y; t) = P{T > y|T > t}

= P{max(T11,T12) > y|T1 > t}

·P{T21 + T22 > y|T2 > t}

·P{T3 > y|T3 > t}. (5)

From the exponential distribution, we have

P{max(T11,T12) > y|T1 > t}

= 1− P{max(T11,T12) ≤ y|T1 > t}

= 1−
P{max(T11,T12) ≤ y,max(T11,T12) > t)}

P{max(T11,T12) > t}
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= 1−
P{t < T11 ≤ y}P{T12 ≤ y}
1− P{T11 ≤ t}P{T12 ≤ t)}

−
P{T11 ≤ y}P{t < T12 ≤ y}
1− P{T11 ≤ t}P{T12 ≤ t}

+
P{t < T11 ≤ y}P{t < T12 ≤ y}
1− P{T11 ≤ t}P{T12 ≤ t}

= 1−
(e−λ1t − e−λ1y)(2− e−λ1t − e−λ1y)

1− (1− e−λ1t )2
. (6)

Since T21 and T22 are independent and both follow exponen-
tial distribution with failure rate λ2, then T21 + T22 follows
Gamma(2, λ2) distribution; thus, we have

P{T21 + T22 > y|T2 > t}

= 1− P{T21 + T22 ≤ y|T2 > t}

= 1−
P{t < T21 + T22 ≤ y}
P{T21 + T22 > t}

= 1−
(1− λ2ye−λ2y − e−λ2y)− (1− λ2te−λ2t − e−λ2t )

1− (1− λ2te−λ2t − e−λ2t )

= e−λ2(y−t)
λ2y+ 1
λ2t + 1

. (7)

If the main SSPC is still working at time t , we obtain

P{T3 > y|T31 > t}

= P{T31 ≤ y,T32 > y|T31 > t} + P{T31 > y|T31 > t}

=
1

y− t

∫ y

t
P(t < T31 ≤ z,T32 > y|T31 > t)dz

+
P{T31 > y}
P{T31 > t}

=
1

y− t

∫ y
t P(t < T31 ≤ z)P(T32 > y)dz

P(T31 > t)
+
P{T31 > y}
P{T31 > t}

=

∫ y
t A1(z; t)A2(y; z)dz

(y− t)P{x(t)− x(0) < ln l}

+
P{x(y; t)− x(0) < ln l}
P{x(t)− x(0) < ln l}

, (8)

where

A1(z; t) = P{x(t)− x(0) < ln l, x(z; t)− x(0) ≥ ln l}
A2(y; z) = P{x̃(y; z)− x(0) < ln l}

x(t) = βn1(t)+ γ n2(t)+ αt + x(0)+ ε1,
x(z; t) = x(t)+ βn1(z− t)+ γ n2(z− t)+ α(z− t),
x̃(y; z) = βn1(y− z)+ γ n2(y− z)+ αy+ x(0)+ ε2,

ε1, ε2 i.i.d . ∼N (0, σ 2).

If the main SSPC failed at time t0 ≤ t , then we obtain

P{T3 > y|T3 > t}
= P{T32 > y|T32 > t}

=
P{T32 > y}
P{T32 > t}

=
P{x̄(y)− x(0) < ln l}
P{x̄(t)− x(0) < ln l}

, (9)

where

x̄(z) = βn1(z− t0)+ γ n2(z− t0)+ αz+ x(0)+ ε3,
ε3 ∼ N (0, σ 2).

Let iSSPC (t, tSSPC,0) = 1 or 0 denote the switch status of
the main SSPC at time t , switch (occurred at time tSSPC,0), or
not switch (tSSPC,0 = 0). Then, the two above formulas can
be combined as follows:

P{T3 > y|T3 > t}

=

{ ∫ y
t A1(z; t)A2(y; z)dz

(y− t)P{x(t)− x(0) < ln l}

+
P{x(y; t)− x(0) < ln l}
P{x(t)− x(0) < ln l}

}
· {1− iSSPC (t; tSSPC,0)}

+
P{x̄(y)− x(0) < ln l}
P{x̄(t)− x(0) < ln l}

iSSPC (t; tSSPC,0) (10)

III. ADAPTIVE PREDICTION OF THE RELIABILITY
A. ESTIMATION OF THE RELIABILITY BY ADDING
A NEW OBSERVATION
Let Y (t) = {t11(t), t12(t), iDC/DC (t; tDC/DC,0), t21(t), t22(t),
iTMTC (t; tTMTC,0), x1(t), x2(t), n1(t), n2(t), and iSSPC (t; t0)}
be the observed data of ISPDS at time t in orbit, where
t11(t) and t12(t) are lifetimes (or truncated lifetimes) of the
main DC/DC and the standby DC/DC, t21(t) and t22(t) are
lifetimes (or truncated lifetimes) of the main TMTC and the
standby TMTC, x1(t) and x2(t) are the degradation values
for the Rdsons of MOSEFTs in the main SSPC and in the
standby SSPC, and n1(t) and n2(t) are the number of switches
and short-circuits suffered by the MOSEFTs, respectively.
Similarly, we use iDC/DC (t; tDC/DC,0) and iTMTC (t; tTMTC,0)
to denote the switch status of the main DC/DC and the main
TMTC, respectively. Since the purpose of this paper is to
predict the reliability of the system after t hours of operation,
we always assume t12(t) and t22(t) are truncated lifetimes.

Assume we have collected data Y1, . . . ,Yn at times
t1, . . . , tn. (This includes the case of not having any new
observation in orbit, for which n = 0). Based on these
data, we can compute the maximum likelihood estimates
(MLEs) λ̂1(t1, . . . , tn) and λ̂2(t1, . . . , tn) of λ1 and λ2 based
on the likelihood functions L1(t1, . . . , tn) and L2(t1, . . . , tn).
Additionally, we have MLEs α̂(t1, . . . , tn), β̂(t1, . . . , tn),
γ̂ (t1, . . . , tn), and σ̂ 2(t1, . . . , tn) of α, β, γ , and σ 2 from the
likelihood function L3(t1, . . . , tn). If we only have the ground
data (n = 0), the likelihood functions for DC/DC, TMTC,
and SSPC are denoted by L01, L02, and L03, respectively. The
corresponding MLEs for λ1, λ2, α, β, γ , and σ 2 are λ̂10, λ̂20,
α̂0, β̂0, γ̂0, and σ̂ 2

0 .
Let max{φ} = 0, where φ is an empty set. For

DC/DC, adding the new observations t11(t), t12(t), and
iDC/DC (t; tDC/DC,0) at t > tn, the updated likelihood is
given by

L1(t1, . . . , tn, t)

∝ L01 · {λ1e−λ1tDC/DC,0e−λ1t12(t)}iDC/DC (t,tDC/DC,0)

· {e−λ1t11(t)e−λ1t12(t)}1−iDC/DC (t,tDC/DC,0) (11)

and the updated MLE λ̂1(t1, . . . , tn, t) of λ1 can be obtained
by minimizing − logL1(t1, . . . , tn, t). Thus, the reliability
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estimate of the power convert module is updated by

R̂1(y; t1, . . . , tn, t)

= P{T1 > y|T1 > t}

= 1−
B1(y; t1, . . . , tn, t)B2(y; t1, . . . , tn, t)

1−
(
1− e−λ̂1(t1,...,tn,t)t

)2 .

(12)

where

B1(y; t1, . . . , tn, t) = e−λ̂1(t1,...,tn,t)t − e−λ̂1(t1,...,tn,t)y,

B2(y; t1, . . . , tn, t) = 2− e−λ̂1(t1,...,tn,t)t − e−λ̂1(t1,...,tn,t)y

Similarly, we have the updated likelihood,

L2(t1, . . . , tn, t)

∝ L02 · {λ2e−λ2tTMTC,0e−λ2t22(t)}iTMTC (t;tTMTC,0)

· {e−λ2t21(t)}1−iTMTC (t;tTMTC,0), (13)

the estimate λ̂2(t1, . . . , tn, t) of λ2 and the updated reliability
estimate for the intelligent management module,

R̂2(y; t1, . . . , tn, t) = e−λ̂2(t1,...,tn,t)(y−t)
λ̂2(t1, . . . , tn, t)y+1

λ̂2(t1, . . . , tn, t)t+1
.

(14)

Let For SSPC, adding the new observations x1(t), x2(t),
n1(t), n2(t), and iSSPC(t; t0), the updated likelihood function
can be expressed as

L3(t1, . . . , tn, t)

∝ L3(t1, . . . , tn)

·C1(t;α, β, γ )
[1−iSSPC (t;t0)]

·C1(t0;α, β, γ )iSSPC (t;t0)·{1−max[iSSPC (tn;t0),...,iSSPC (t1;t0)]}

·C2(t, t0;α, β, γ )iSSPC (t;t0) (15)

where

C1(t;α, β, γ ) =
1
σ
exp

{
−

1
2σ 2 [x1(t)− (βn1(t)

+ γ n2(t)+ αt + x(0))]2
}

C2(t, t0;α, β, γ ) =
1
σ
exp

{
−

1
2σ 2 [x2(t)− (βn1(t − t0)

+ γ n2(t − t0)+ αt + x(0))]2
}

which gives the updated MLEs β̂(t1, . . . , tn, t), α̂(t1, . . . ,
tn, t), γ̂ (t1, . . . , tn, t), and σ̂ 2(t1, . . . , tn, t) of β, α, γ , and σ 2.
Thus, the degradation curve of the Rdson of MOSFET is
updated by

x(z; t1, . . . , tn, t)

= β̂(t1, . . . , tn, t)n1(z)+ γ̂ (t1, . . . , tn, t)n2(z)

+ α̂(t1, . . . , tn, t)z+ x(0)+ ε,

ε ∼ N (0, σ̂ 2(t1, . . . , tn, t)). (16)

From the above updated curve, the reliability estimate for the
solid state power controller module becomes

R̂3(y; t1, . . . , tn, t)

= P{T3 > y|T3 > t}

=

{∫ y
t A3(z; t1, . . . , tn, t)A4(y, z; t1, . . . , tn, t)dz

(y− t)P{x(t1, . . . , tn, t)− x(0) < ln l}

+
P{x(y; t1, . . . , tn, t)− x(0) < ln l}
P{x(t1, . . . , tn, t)− x(0) < ln l}

}
· {1− iSSPC (t; tSSPC,0)}

+
P{x̄(y; t1, . . . , tn, t)− x(0) < ln l}
P{x̄(t; t1, . . . , tn, t)− x(0) < ln l}

iSSPC (t; tSSPC,0),

(17)

where

A3(z; t1, . . . , tn, t)

= P{x(t1, . . . , tn, t)− x(0) < ln l,

x(z; t1, . . . , tn, t)− x(0) ≥ ln l},

A4(y, z; t1, . . . , tn, t)

= P{x̃(y, z; t1, . . . , tn, t)− x(0) < ln l},

x(t1, . . . , tn, t)

= β̂(t1, . . . , tn, t)n1(t)+ γ̂ (t1, . . . , tn, t)n2(t)

+ α̂(t1, . . . , tn, t)t + x(0)+ ε1(t1, . . . , tn, t),

x(z; t1, . . . , tn, t)

= x(t1, . . . , tn, t)+ β̂(t1, . . . , tn, t)n1(z− t)

+ γ̂ (t1, . . . , tn, t)n2(z− t)+ α̂(t1, . . . , tn, t)(z− t),

x̃(y, z; t1, . . . , tn, t)

= β̂(t1, . . . , tn, t)n1(y− z)

+ γ̂ (t1, . . . , tn, t)n2(y− z)+ α̂(t1, . . . , tn, t)y

+ x(0)+ ε2(t1, . . . , tn, t),

x̄(z; t1, . . . , tn, t)

= β̂(t1, . . . , tn, t)n1(z− tSSPC,0)

+ γ̂ (t1, . . . , tn, t)n2(z− tSSPC,0)+ α̂(t1, . . . , tn, t)z

+ x(0)+ ε3(t1, . . . , tn, t),

ε1(T1, . . . ,Tn, t), ε2(T1, . . . ,Tn, t), ε3(T1, . . . ,Tn, t)i.i.d .

∼ N (0, σ̂ (t1, . . . , tn, t)2).

Combining Eqs.(12), (14) and (17), we obtain the reliabil-
ity estimate of the system,

R̂(y; t1, . . . , tn, t) = R̂1(y; t1, . . . , tn, t) · R̂2(y; t1, . . . , tn, t)

· R̂3(y; t1, . . . , tn, t). (18)

B. A LOCALLY C-OPTIMAL APPROACH TO CHOOSE
THE SEQUENCE OF OBSERVATIONS
Based on the data Y1, . . . ,Yn at times t1, . . . , tn, for effective
reliability prediction of the system in future y hours, we
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choose the new observations at time tn+1 by the following
scheme:

tn+1 = argmin
t

Var
{
R̂(y; t1, . . . , tn, t)

}
= Var

{
R̂1(y; t1, . . . , tn, t) · R̂2(y; t1, . . . , tn, t)

· R̂3(y; t1, . . . , tn, t)
}
, (19)

where the variance is calculated under the joint distribution
of observations at time t and conditioned on Y1, . . . ,Yn.
Clearly, the variance in Eq.(19) is difficult to compute

with the exact joint distribution of observations at time t .
Therefore, we resort to approximation by the sequential
bootstrap method. The approximation is completed in six
steps:

(1) Simulate the observation t11(t), t12(t), iDC/DC (t;
tDC/DC,0) of DC/DC according to the exponential distribution
with parameter λ̂1(t1, . . . , tn). Let T11 ∼ Exp(λ̂1(t1, . . . , tn))
and T12 ∼ Exp(λ̂1(t1, . . . , tn)). Then,

t11(t) = min(T11, t), (20)

t12(t) = min(T12, t), (21)

iDC/DC (t; tDC/DC,0) =

{
1, T11 < t
0, T11 ≥ t,

(22)

tDC/DC,0 =

{
T11, T11 < t
0, T11 ≥ t.

(23)

Similarly, simulate the observations of TMTC. Let T21 ∼
Exp(λ̂1(t1, . . . , tn)) and T22 ∼ Exp(λ̂1(t1, . . . , tn)).
Then,

t21(t) = min(T21, t), (24)

iTMTC (t; tTMTC,0) =

{
1, T21 < t
0, T21 ≥ t,

(25)

tTMTC,0 =

{
T21, T21 < t
0, T21 ≥ t.

(26)

If tTMTC,0 6= 0, we get

t22(t) = min{T22, t − tTMTC,0}. (27)

(2) Calculate the updated estimates for R1 and R2 based on
the above simulated observations,

R̂1(y; t1, . . . , tn, t)

= 1−
B1(y; t1, . . . , tn, t)B2(y; t1, . . . , tn, t)

1−
(
1− e−λ̂1(t1,...,tn,t)t

)2 (28)

R̂2(y; t1, . . . , tn, t)

= e−λ̂2(t1,...,tn,t)(y−t)
λ̂2(t1, . . . , tn, t)y+ 1

λ̂2(t1, . . . , tn, t)t + 1
. (29)

(3) Simulate n1(t) and n2(t) according to Poisson(τ1 · t)
and Poisson(τ2 · t). Simulate ε1(t1, . . . , tn) from the normal

distribution N (0, σ̂ 2(t1, · · · , tn)). Calculate the Rdson values
x1(t) based on the regression function

x1(t)

= β̂(t1, . . . , tn)n1(t)+ γ̂ (t1, . . . , tn)n2(t)+ α̂(t1, . . . , tn)t

+ x(0)+ ε1(t1, . . . , tn). (30)

If x(t) − x(0) ≥ ln l, it indicates that iSSPC (t; tSSPC,0) = 1.
From the Poisson process, the arriving times of n1(t) switches
are the realized values of order statistics u11 < . . . <

u1n1(t) generated from uniform distribution U (0, t). Simi-
larly, the arriving times of n2(t) short-circuits are values
u21 < . . . < u2n2(t) generated from uniform distribu-
tion U (0, t). From these values and the regression function
Eq.(30), we calculate the switch time tSSPC,0 and n1(tSSPC,0)
and n2(tSSPC,0). Then, we simulate n1(t− tSSPC,0) and n2(t−
tSSPC,0) from Poisson(τ1 · (t − tSSPC,0)) and Poisson(τ2 · (t −
tSSPC,0)), respectively. Then, we simulate ε2(t1, . . . , tn) with
normal distributionN (0, σ̂ 2(t1, . . . , tn)). Calculate x2(t) from
the regression function

x2(t) = β̂(t1, . . . , tn)n1(t − t0)+ γ̂ (t1, . . . , tn)n2(t − t0)

+ α̂(t1, . . . , tn)t + x(0)+ ε2(t1, . . . , tn). (31)

(4) Calculate R̂3(y; t1, . . . , tn, t) according to Eq.(17).
(5) Calculate

R̂(y; t1, . . . , tn, t) = R̂1(y; t1, . . . , tn, t) · R̂2(y; t1, . . . , tn, t)

· R̂3(y; t1, . . . , tn, t) (32)

(6) Repeat the above steps and get 1000 reliability estimates
R̂(1)(y; t1, . . . , tn, t), . . ., R̂(1000)(y; t1, . . . , tn, t). The approx-
imation of Var{R̂(y; t1, . . . , tn, t)} is given by

1
999

1000∑
i=1

[R̂(i)(y; t1, . . . , tn, t)−
¯̂R(y; t1, . . . , tn, t)]2,

¯̂R(y; t1, . . . , tn, t)

=
1

1000

1000∑
i=1

R̂(i)(y; t1, . . . , tn, t). (33)

Usually, the designed lifetime of ISPDS is 15 years, i.e.,
131400 hours. We will stop selecting the new observations at
tn, when tn ≤ 131400 but tn+1 > 131400. For searching each
ti, we use the grid searching method with one hour as a grid.

C. SELECT AN APPROPRIATE SUBSET OF THE
DATA FOR RELIABILITY PREDICTION
For reliability prediction of the system after a long operating
time, the observations at earlier times may not fit the current
degradation curve well and will make the prediction radical.
We need to delete some of the early observations after we
have all observations at times t1, . . . , tn. Our goal is to find
an appropriate subset of the data at times tm, . . . , tn, which
can make the prediction most robust.

Based on observations t11(tm), t12(tm), iDC/DC (tm;
tDC/DC,0), . . ., t11(tn), t12(tn), and iDC/DC (tn; tDC/DC,0) for
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DC/DC at time tm, . . . , tn, the likelihood function is

L1(tm, . . . , tn)

∝ L01 · {λ1e−λ1tDC/DC,0e−λ1t12(tn)}iDC/DC (tn,tDC/DC,0)

· {e−λ1t11(tn)e−λ1t12(tn)}1−iDC/DC (tn,tDC/DC,0). (34)

which gives the MLE λ̂1(tm, . . . , tn) of λ1.
Similarly, with the data t21(tm), t22(tm), iTMTC (tm; tTMTC,0),

. . ., t21(tn), t22(tn), and iTMTC (tn; tTMTC,0) for TMTC,
the MLE λ̂2(tm, . . . , tn) of λ2 can be obtained by minimizing

L2(tm, . . . , tn)

∝ L02 · {λ2e−λ2tTMTC,0e−λ2t22(tn)}iTMTC (tn,tTMTC,0)

· {e−λ2t21(tn)}1−iTMTC (tn,tTMTC,0) (35)

For ease of notation, wewrite tSSPC,0 simply as t0. From the
data {x1(tm), x2(tm), n1(tm), n2(tm)(or n1(t0), n2(t0), n1(tm −
t0), n2(tm − t0)), iSSPC (tm, t0), . . ., x1(tn), x2(tn), n1(tn),
n2(tn)(or n1(t0), n2(t0), n1(tn− t0), n2(tn− t0)), iSSPC (tn, t0)},
we can compute the estimates α̂(tm, . . . , tn), β̂(tm, . . . , tn),
γ̂ (tm, . . . , tn), and σ̂ 2(tm, . . . , tn) of α, β, γ , and σ 2 based
on the following likelihood function

L3(tm, . . . , tn)

∝ C1(tm;α, β, γ )[1−iSSPC (tm;t0)]

·C1(t0;α, β, γ )iSSPC (tm;t0)

·C2(tm, t0;α, β, γ )iSSPC (tm;t0)

. . .

·C1(tn;α, β, γ )[1−iSSPC (tn;t0)]

·C1(t0;α, β, γ )iSSPC (tn;t0)·{1−max[iSSPC (tm;t0),...,iSSPC (tn−1;t0)]}

·C2(tn, t0;α, β, γ )iSSPC (tn;t0) (36)

Thenwe refit the degradation curve of the Rdson ofMOSFET
in Eq.(37) and estimate R3 for y = tn + s in Eq.(38),

x(y) = β̂(tm, . . . , tn)n1(y)+ γ̂ (tm, . . . , tn)n2(y)

+ α̂(tm, . . . , tn)y+ x(0)+ ε(tm, . . . , tn), y > tn,

ε(tm, . . . , tn) ∼ N (0, σ̂ 2(tm, . . . , tn)), (37)

R̂3(y; tm, . . . , tn)

=

{∫ tn+s
t A3(z; tm, . . . , tn)A4(tn + s, z; tm, . . . , tn)dz

s · P{x(tm, . . . , tn)− x(0) < ln l}

+
P{x(tn + s; tm, · · · , tn)− x(0) < ln l}

P{x(tm, · · · , tn)− x(0) < ln l}

}
· {1− iSSPC (t; t0)}

+
P{x̄(tn + s; tm, . . . , tn)− x(0) < ln l}
P{x̄(tn; tm, . . . , tn)− x(0) < ln l}

iSSPC (tn; t0),

(38)

where

x(tm, . . . , tn)

= β̂(tm, . . . , tn)n1(tn)+ γ̂ (tm, . . . , tn)n2(tn)

+ α̂(tm, . . . , tn)tn + x(0)+ ε1(tm, . . . , tn),

x(z; tm, . . . , tn)

= x(tm, . . . , tn)+ β̂(tm, . . . , tn)n1(z− tn)

+ γ̂ (tm, . . . , tn)n2(z− tn)+ α̂(tm, . . . , tn)(z− tn),

x̃(tn + s, z; tm, . . . , tn)

= β̂(tm, . . . , tn)n1(tn + s− z)

+ γ̂ (tm, . . . , tn, t)n2(tn + s− z)

+ α̂(tm, . . . , tn)(tn + s)+ x(0)+ ε2(tm, . . . , tn),

x̄(z; tm, . . . , tn)

= β̂(tm, . . . , tn)n1(z− t0)

+ γ̂ (tm, . . . , tn)n2(z− t0)+ α̂(tm, . . . , tn)z

+ x(0)+ ε3(tm, . . . , tn),

ε1(tm, . . . , tn), ε2(tm, . . . , tn), ε3(tm, . . . , tn), i.i.d .

∼ N (0, σ̂ (tm, . . . , tn)2).

Thus, we have a reliability prediction for the system at
y = tn + s based on the data at times tm, . . . , tn,

R̂(y; tm, . . . , tn)

=

1− B3(tn + s; tm, . . . , tn)B4(tn + s; tm, . . . , tn)

1−
(
1− e−λ̂1(tm,...,tn)tn

)2


·

{
e−λ̂2(tm,...,tn)s

} λ̂2(tm, . . . , tn)(tn + s)+ 1

λ̂2(tm, . . . , tn)tn + 1
· R̂3(tn + s; tm, . . . , tn). (39)

where

B1(tn+s; tm, . . . , tn) = e−λ̂1(tm,...,tn)tn−e−λ̂1(tm,...,tn)(tn+s),

B2(tn+s; tm, . . . , tn) = 2− e−λ̂1(tm,...,tn)tn−e−λ̂1(tm,...,tn)(tn+s)

We choosem such that
∣∣∣R̂(y; tm, . . . , tn) −R̂(y; tm−1, . . . , tn)∣∣∣

is largest from m = 2 to m = n and the final prediction is
R̂(s; tm, . . . , tn).

IV. ILLUSTRATION
From historical experience for MOSFET, the mean switch
is 100,000 and the mean short circuit is 800. Then, we let
τ1 = 0.7610 and τ2 = 0.0061 be the parameters of the two
Poisson processes, respectively. From a large amount of his-
torical data, the engineers at Beijing Spacecrafts constructed
an emulator for ground tests with λ1 = 5.9 × 10−7 for
DC/DC, λ2 = 5.9 × 10−7 for TMTC and x(t) = βn1(t) +
γ n2(t) + αt + x(0) + ε for MOSFETs in SSPC, where β =
1.046 × 10−6, γ = 4.924 × 10−5, α = 5.124 × 10−8,
σ 2
= 0.07223, and x(0) = 10.827. From this emulator,

the simulated lifetime data for DC/DC and TMTC are listed
in Table 1 and Table 2, and the simulated degradation data are
listed in Table 3.

Then, we took these simulated data as the ground data
and applied the process for choosing an effective data
subset, provided in Section 3, for reliability prediction
of 15 + s, s = 1 years. The first observing time
was T1 = 2160 and the simulated observations were

58724 VOLUME 6, 2018



J. Wang, Y. Tian: Adaptive Reliability Prediction Method for the Intelligent Satellite Power Distribution System

FIGURE 2. Graph of the effective observing times.

TABLE 1. The simulated lifetime data for DC/DC.

TABLE 2. The simulated lifetime data for TMTC.

t11(T1) = 2160, t12(T1) = 2160, t21(T1) = 2160, t22(T1) =
0, iDC/DC (T1; tDC/DC,0) = 0, iTMTC (T1; tTMTC,0) = 0,
n1(T1) = 1654, n2(T1) = 14, x1(T1) = 11.07574, x2(T1) =
10.26039, iSSPC (T1; tSSPC,0) = 0; the second observing
time was T2 = 4320, the simulated observations were
t11(T2) = 4320, t12(T2) = 4320, t21(T2) = 4320, t22(T2) =
0, iDC/DC (T2; tDC/DC,0) = 0, iTMTC (T2; tTMTC,0) = 0,
n1(T2) = 3429, n2(T2) = 39, x1(T2) = 10.52651, x2(T2) =
10.68197, iSSPC (T2; tSSPC,0) = 0; . . . ; the 33rd observ-
ing time, which was the last observing time was T33 =
129600, the simulated observations were t11(T33) = 129600,
t12(T33) = 129600, t21(T33) = 129600, t22(T33) = 0,

TABLE 3. The simulated degradation data of Rdson for MOSFET.

iDC/DC (T33; tDC/DC,0) = 0, iTMTC (T33; tTMTC,0) = 0,
n1(T33) = 98212, n2(T33) = 786, x1(T33) = 10.99811,
x2(T33) = 10.88710, iSSPC (T33; tSSPC,0) = 0. The m
we chose by using the robust criterion was 7, the 7th
observing time was T7 = 15120, and the simulated
observations at this time point were t11(T7) = 15120,
t12(T7) = 15120, t21(T7) = 15120, t22(T7) = 0,
iDC/DC (T7; tDC/DC,0) = 0, iTMTC (T7; tTMTC,0) = 0,
n1(T7) = 11342, n2(T7) = 100, x1(T7) = 11.09100,
x2(T7) = 10.70740, iSSPC (T7; tSSPC,0) = 0. So the effective
data subset were the 7th to the 33rd observing time, and
finally we got a series of 27 observing times shown in Fig. 2.
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Based on the simulated data at these observation times
to predict the system reliability for 15 + 1 years, which is
0.9849781028. Note that the true reliability of the system is
0.9886399246.

V. SIMULATION STUDY
In this section, we investigate the performance of the pro-
posed method using simulations. Three reliability models are
used for generating the simulation samples: (1) the param-
eters λ1, λ2, β, γ , α, and σ 2 are smaller than the emulator
parameters, i.e., λ1 = 5.9 × 10−8, λ2 = 5.9 × 10−8,
β = 1.046×10−7, γ = 4.924×10−6, α = 5.124×10−9, and
σ 2
= 0.007223; (2) the parameters λ1, λ2, β, γ , α, and σ 2

are the same as their emulator parameters, λ1 = 5.9× 10−7,
λ2 = 5.9 × 10−7, β = 1.046 × 10−6, γ = 4.924 × 10−5,
α = 5.124×10−8, and σ 2

= 0.07223; and (3) the parameters
λ1, λ2, β, γ , α, and σ 2 of the reliability model are bigger
than their emulator parameters, i.e., λ1 = 1.18 × 10−6,
λ2 = 1.18 × 10−6, β = 2.092 × 10−6, γ = 9.848 × 10−5,
α = 1.025 × 10−7, and σ 2

= 0.14446. Our objective is to
predict the system reliability for 15+s years based on the data
in 15 years, where s = 1, 2, 3, 4, 5. These predictions are of
intrinsic interest to the investigators at Beijing Spacecrafts.
We compare the performance of the proposed method with
the traditionalmethod, which predicts system reliability using
only the ground data listed in Table 1 to Table 3.

For each reliability model, we simulated the data at
t1, . . . , tn from the model with parameters τ1, τ2, λ1, λ2, β,
γ , α, and σ 2 and predicted the system reliability for 15 + s
years conditioned on the lifetime of the system longer than tn.
We simulated 1000 repeated samples and computed the mean
and the mean squared error (MSE) of the 1000 predictions.
Tables 4-6 show the simulation results under three models.

TABLE 4. Mean and MSE of prediction under λ1 = 5.9× 10−8,
λ2 = 5.9× 10−8, β = 1.046× 10−7, γ = 4.924× 10−6, α = 5.124× 10−9,
σ2 = 0.007223.

From the simulation results shown in Tables 4, 5, and 6,
we see that the proposed method performs uniformly better
than the traditional method, with smaller bias of prediction
and a low MSE, which shows that the prediction is accurate.
The simulation study also clearly demonstrates the supe-
rior robustness of the proposed method against the model

TABLE 5. Mean and MSE of prediction under λ1 = 5.9× 10−7,
λ2 = 5.9× 10−7, β = 1.046× 10−6, γ = 4.924× 10−5, α = 5.124× 10−8,
σ2 = 0.07223.

TABLE 6. Mean and MSE of prediction under λ1 = 1.18× 10−6,
λ2 = 1.18× 10−6, β = 2.092× 10−6, γ = 9.848× 10−5, α = 1.025× 10−7,
σ2 = 0.14446.

assumptions, as it performed well for both bad and good
true models with the same ground data. Because the bias is
a much smaller component of MSE, in terms of the MSE,
the performance of the proposed method deteriorates as we
move towards the far future. This is expected because any
extrapolation technology for prediction should perform less
well when the extrapolated time is further from the data range.

VI. CONCLUSION
Intelligent power systems are new power systems which have
been developed for satellites and space stations and have been
used widely on these aircrafts recently. The essential differ-
ence between the new systems and the primary systems is that
the former can record the operating data and transform it to
the ground if required. Consequently, it will make predictions
of reliability be more accurate. In this paper, we propose an
adaptive prediction method for reliability by using real-time
lifetime data, real-time degradation data and the ground test-
ing data before launching. The proposedmethod provides two
optimal criteria for the selection of an effective subset of data
and the time-dependent prediction of the reliability. Based
on the real-time degradation, the updated additive model of
the Gaussian and Poisson processes can also be obtained to
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describe the degradation of the solid-state power controller
precisely.With this updatedmodel, further reliability analysis
for SSPC can be performed in the future.

A demonstrative example is given and simulations are
conducted with various models to illustrate the efficiency of
the proposed method and its superior performance over the
traditional one. Simulation results also show that, regardless
of whether the initial lifetime model and the degradation
model fitted by the ground testing data are close to the true
models or not, the proposed method provides better predic-
tions of reliability for 16 to 20 years. The improvement is
significant comparing to the traditional method. Future work
on this aspect include exploring alternative optimal criteria to
obtain more accurate prediction for long-running ISPDS, and
potential extension of the proposed method to the reliability
analysis of similar long-running systems which also have
real-time data flow.
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