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ABSTRACT State-of-the-art computer-aided detection (CAD) systems for colonic polyps in computed
tomographic colonography (CTC) tend to yield high detection sensitivities with high false positive (FP) rates.
This paper proposes a novel CTC CAD system using 3-D radiomic features that can obtain high detection
sensitivity at low FP rate. Our previous shape-based methods are used to generate polyp candidates. Then,
a wide variety of radiomic features are developed in the 3-D domain for each initial candidate, including the
multiscale Weber local descriptors and the statistical descriptors calculated from various volumetric feature
maps on the basis of computed tomography (CT) density, CT gradient, fractal dimension, curvature, and fast
radial symmetry transform. These new 3-D radiomic features can characterize polyp candidates in terms of
the shape, texture heterogeneity, and salient pattern. FP reduction is finally performed by Random Forests
with a developed score rank method to tune the training set. 510 fluid-tagging CT scans from 255 patients
with 130 polyps≥5mmwere utilized to validate the proposed system in the fivefold cross-validation strategy.
The detection result reached 98.5% by-polyp sensitivity at 2.0 FPs per scan for polyps≥5 mm. Experimental
results indicate that the proposed system yielded a detection performance with high sensitivity and low FP
rate. We believe that the proposed system would assist radiologists in increasing the detection accuracy and
reducing the interpretation time during colon cancer screening.

INDEX TERMS Computer-aided detection, colonic polyp, radiomic feature, Random Forests.

I. INTRODUCTION
Colorectal cancer is the third most common cause of cancer
death and new cancer cases in 2018 for men and women in
the U.S. according to the statistics from American Cancer
Society [1]. A total of 140250 new cases of colorectal cancer
will be diagnosed in the U.S. in 2018, with 50630 deaths
resulting from the disease. Adenomatous polyps are impor-
tant precursors to colorectal cancer, and polyps require
5–15 years to evolve into cancers. Thus, the risk of colorec-
tal cancers can be reduced by early detection and removal
of colonic polyps before or during malignant transforma-
tion [2], [3].

Computed tomographic colonography (CTC) is a mini-
mally invasive screening technique that detects polyps by
using computed tomography (CT) images [3], [4]. To aid
radiologists in reducing the detection time and increasing

the detection accuracy during CTC interpretation, computer-
aided detection (CAD) has been utilized [5], [6]. To date,
various CAD systems have been developed for colonic polyp
detection. Vining et al. [7] detected colonic polyps using
abnormal colon wall thickness. Summers et al. [8] calcu-
lated the mean, Gaussian, and principal curvatures from
the colon wall inner surface to distinguish polyps from
false positives (FPs). Yoshida and Näppi [9] adopted shape
index (SI) and curvedness (CV) to detect polyp candi-
dates and the quadratic discriminant analysis to reduce FPs.
Näppi and Yoshida [10] eliminated FP candidates through
feature-guided analysis. Näppi et al. [11] detected colorectal
masses based on fuzzy merging and wall-thickening analy-
sis. Jerebko et al. [12] used an ensemble of support vector
machines for polyp candidate classification. Hong et al. [13]
detected polyps by combining texture and shape analysis
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with volume rendering and conformal colon flatten-
ing. Konukoglu and Acar [14] utilized heat diffusion pat-
terns for polyp detection. Li et al. [15] used the Pareto
front to optimize the generation of initial polyp detec-
tions. Suzuki et al. [16] used a mixture of expert 3D
massive-training artificial neural networks to reduce FPs.
Kilic et al. [17] proposed fuzzy rule-based 3D template
matching to detect polyps. Yao et al. [18] used a ray-casting
algorithm to compute the topographical height map for polyp
measurement and FP reduction. van Ravesteijn et al. [19]
used logistic regression to detect polyps. Zhu et al. [20] uti-
lized the Knutsson mapping to improve curvature estima-
tion for FP reduction. Wang et al. [21] proposed adaptive SI
and CV to detect polyp candidates from decomposed colon
structures. Ren et al. [3] detected polyp candidates based
on SI and multiscale dot enhancement filter and reduced
FPs through radiomic features. Tulum et al. [5] extracted
projection-based features to reduce FP candidates generated
by Laplacian of Gaussian filters. Ren et al. [6] developed
morphological features to further reduce FPs. These CAD
systems mainly consist of two stages: detection of polyp
candidates and reduction of FP candidates. Considering that
any polyp missed in the first stage remains undetected in the
final detection results, all possible polyp candidates must be
included in the first stage to ensure sufficient overall perfor-
mance for a CAD system,which likely results in numerous FP
candidates for the second stage. Thus, developing informative
features or new classificationmethods to reduce numerous FP
candidates is a requirement in the second stage.

Convolutional neural networks (CNNs) seem to be a good
solution for FP reduction in the second stage because they
can obtain better performance than conventional classifiers
in image-based object recognition and classification tasks.
CNNs compute image features through a series of convolu-
tional filters, whose kernel elements are determined through
the supervised training. That is, CNNs can learn discrimina-
tive image features without the need for handcrafted image
descriptors. However, the main problem for their applications
in CTC is the lack of a large number of annotated CTC
training images. Thus, studies about the applications of CNNs
in CTC colonic polyp detection are few. Roth et al. [22] used
2.5D CNNs and random view aggregation to reduce FPs for
polyp detection in CTC. The transformations of translation,
rotation, and scaling were used to augment 2.5D views of
polyp candidates for the training of CNNs, and the prediction
probability of a polyp candidate was computed by averaging
multiple prediction scores from the trained CNNs for the
candidate. Näppi et al. [23] used surface rendering method to
generate virtual endoluminal images for the polyp candidates
prompted by a CAD system and then applied these virtual
endoluminal images to deep transfer learning of a pre-trained
CNN for FP reduction. In addition to CNNs, radiomics has
provided another good solution for FP reduction in the second
stage of a CTC CAD system. As an emerging field, radiomics
converts medical images into mineable data through an auto-
mated high-throughput extraction of large amounts (200+)

of quantitative features of medical images [3], [24], [25].
It offers a nearly limitless supply of imaging biomarkers that
can potentially aid cancer detection and diagnosis, assess-
ment of prognosis, prediction of response to treatment, and
monitoring of disease status [26], [27]. Radiomics has been
used in lung, breast, prostate, and head-and-neck cancer
studies [3], [24], [28], [29], and the potential of radiomic
features for comprehensive characterization of tumors in tex-
ture and shape has been demonstrated. Thus, we develop a
novel CTC CAD system with a comprehensive set of 3D
radiomic features for colonic polyp detection in this study.
Polyp candidates are detected through our previous candidate
detection method [3], [6]. Then, 80 basic radiomic features
from other CTC studies and 443 new radiomic features spec-
ified for polyps are extracted for each polyp candidate. The
resulting 523 radiomic features include multiscale Weber
Local Descriptors (MWLDs) and the statistical descriptors
calculated from various volumetric feature maps based on CT
density, CT gradient, fractal dimension (FD), SI, CV, and fast
radial symmetry transform (FRST). Random Forests classi-
fier [30] combined with the tuning and balancing method of
the training samples is finally used to classify polyp candi-
dates.

The main contributions in our work are summarized as
follows:

1) Plentiful and diverse radiomic features are collected and
developed to characterize the shape and texture heterogeneity
of polyp candidates. A total of 523 quantitative radiomic fea-
tures (i.e., 80 basic radiomic features and 443 new radiomic
features) are extracted to distinguish true positive (TP) detec-
tions from FPs. To the best of our knowledge, the FD and
FRST feature maps, MWLD, gray-level size zone method
(GLSZM) [31], neighborhood gray-tone difference method
(NGTDM) [32], gray-level difference method (GLDM) [33],
and surrounding region dependencemethod (SRDM) [34] are
the first to be applied for polyp detection in CTC.

2) Considering the 3D properties of polyp candidates,
we compute or expand all radiomic features in 3D space.
The 3D GLSZM, NGTDM, GLDM, and SRDM features and
the newly developed 3DMWLD features are calculated from
various volumetric feature maps.

3) We propose a novel CTC CAD system through
radiomics approach. A score rank method is developed to
tune the training set, and Random Forests classifier is applied
to classify candidates. The proposed CTC CAD system can
achieve a high performance of 98.5% by-polyp sensitivity at
2.0 FPs per scan for polyps ≥5 mm.
The remainder of this paper is organized as follows.

We describe our method in Section II and report the exper-
iments and results in Section III. The discussion and conclu-
sion are given in Sections IV and V, respectively.

II. METHOD
The proposed CTC CAD system includes two stages: polyp
candidate detection and FP reduction. Fig. 1 shows the
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FIGURE 1. Overview of the proposed CTC CAD system.

overview of the proposedCTCCAD system.Ourmain contri-
bution focuses on the extraction of new 3D radiomic features.

A. POLYP CANDIDATE DETECTION
Polyp candidates are detected through our previous shape-
based method [3], [6]. First, the original CT images are
linearly interpolated into an isotropic volumetric CT dataset.
Second, the colon volume is segmented from the isotropic
CT dataset by a partial volume segmentation method [35]
that cleanses the tagged materials in CT images. The colon
wall is generated by the exclusive or operation between the
original colon volume and 3D dilated colon volume [6].
The CT density mapping method [3] is used to correct the
pseudo-enhanced CT density in the colon wall. Finally, polyp
candidates are generated by thresholding the SI and multi-
scale dot enhancement filter [36] that are calculated based on
the Gaussian-smoothed geodesic distance field (GDF) [37]
within the colon wall.

B. RADIOMIC FEATURE EXTRACTION
The radiomic features are calculated based on the statisti-
cal descriptors. Thus, we introduce the statistical descriptors
before extracting radiomic features.

1) STATISTICAL DESCRIPTORS
The statistical descriptors used in this study include inten-
sity features (i.e., first-order statistical descriptors) and tex-
ture features (i.e., second-order statistical descriptors). The
intensity features are calculated from the image intensity
histogram within the volume of interest (VOI), and they can
globally describe the distribution of intensity values of indi-
vidual voxels without concern for spatial relationships. The
texture features, which include GLSZM [31], NGTDM [32],
GLDM [33], and SRDM [34] features, can quantify intrale-
sion heterogeneity differences in the texture that is defined as
the spatial arrangement of voxels of different intensities. That
is, GLSZM,NGTDM,GLDM, and SRDM features can quan-
titatively describe the distribution patterns or spatial relation-
ships between intensity levels of different voxels within a
VOI image. To the best of our knowledge, we are the first
to utilize GLSZM, NGTDM, GLDM, and SRDM features
for CTC polyp detection. Considering the 3D properties of
polyp candidates, we compute the 3D GLSZM and NGTDM

features in accordance with [38]. On the basis of 2D GLDM
and SRDM features [33], [34], the calculations of GLDM and
SRDM features are expanded from 2D to 3D space in this
study.

a: INTENSITY FEATURES
Twenty intensity features are extracted from the intensity
histogram of the VOI image. The first 14 intensity features
are from [24]: energy, entropy, kurtosis, maximum, mean,
mean absolute deviation,median,minimum, range, rootmean
square, skewness, standard deviation, uniformity, and vari-
ance. The remaining six intensity features are from [39]:
the mean and variance of top 25% high intensity values,
the mean and variance of top 50% high intensity val-
ues, and the mean and variance of top 75% high intensity
values.

b: 3D GLSZM AND NGTDM FEATURES
The 3D GLSZM and NGTDM features are calculated by
accounting for the neighboring properties of voxels with
26-voxel connectivity in the 13 directions of 3D space. How-
ever, the 6 voxels at a distance of 1 voxel, the 12 voxels at
a distance of

√
2 voxels, and the 8 voxels at a distance of

√
3 voxels around the center voxels are treated differently

in the calculation of 3D NGTDM features to account for
the differences in discretization length [38]. The detailed
definitions and computational formulas of 13 3D GLSZM
features and 5 3D NGTDM features are given in [38]. In this
study, we only list the descriptions of these features.
Thirteen 3D GLSZM features [38], [40]: small-zone

emphasis, large-zone emphasis, gray-level nonuniformity,
zone-size nonuniformity, zone percentage, low-gray-level
zone emphasis, high-gray-level zone emphasis, small-zone
low-gray-level emphasis, small-zone high-gray-level empha-
sis, large-zone low-gray-level emphasis, large-zone high-
gray-level emphasis, gray-level variance, and zone-size
variance.
Five 3D NGTDM features [38], [40]: coarseness, contrast,

busyness, complexity, and strength.

c: 3D GLDM FEATURES
On the basis of 2D GLDM in [33], the 3D GLDM features
describe the occurrence of two arbitrary voxels that have an
given absolute difference in intensity level and are separated
by a specific displacement. Let δi denote a displacement
vector. δi = d ∗Di, where d refers to a specified intersample
spacing, i = 1, 2, . . . , 13, and Di is defined as follows [6]:
D1 = (1, 0, 0); D2 = (0, 1, 0); D3 = (0, 0, 1); D4 =

(0, 1, 1); D5 = (1, 0, 1); D6 = (1, 1, 0); D7 = (0, 1,−1);
D8 = (1, 0,−1); D9 = (1,−1, 0); D10 = (1, 1, 1); D11 =

(1, 1,−1); D12 = (1,−1, 1); D13 = (1,−1,−1).
Four feature measures (i.e., contrast, angular second

moment, entropy, and mean) are computed for each displace-
ment vector δi:

Iδi (v) = |I (v)− I (v+ δi)| , (1)
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pδi (j) = Prob
(
Iδi (v) = j

)
, (2)

CONi =
N∑
j=1

j2pδi (j), (3)

ASMi =

N∑
j=1

pδi (j)
2, (4)

ENTi = −
N∑
j=1

pδi (j) log pδi (j), (5)

MEANi =
1
N

N∑
j=1

jpδi (j), (6)

where I is a discrete image, v is a voxel in I , Iδi is the
absolute difference image, j is an intensity level in Iδi , pδi is
the probability density of Iδi , and N is the number of intensity
levels in Iδi . CONi, ASMi, ENTi, and MEANi are contrast,
angular secondmoment, entropy, andmean, respectively. The
mean, maximum, minimum, range, and variance of CONi
are computed as the first five 3D GLDM features. The same
operations are also applied toASMi,ENTi, andMEANi. In this
manner, 20 3D GLDM features are computed for each value
of the intersample spacing d . Here, the intersample spacing
d is set to 1 and 2, respectively. Thus, 40 3D GLDM features
are considered in this study.

d: 3D SRDM FEATURES
On the basis of 2D SRDM in [34], the 3D SRDM features are
computed from a second-order histogram in two surrounding
regions. Let I denote a quantized image. B1, B2, and B3
denote three cubic windows centered at a voxel v. The side
lengths of B1, B2, and B3 are l1, l2, and l3 (l1 ≤ l2 ≤ l3),
which are empirically set to 3, 5, and 7, respectively. The
region between B1 and B2 is the inner surrounding region R1,
and the region between B2 and B3 is the outer surrounding
region R2 (Fig. 2). m and n are the voxel number in regions
R1 andR2, respectively. The 3DSRDM features are computed
as follows:

CR1 (v) = # {q |q ∈ R1 and I (v)− I (q) > thre } , (7)

CR2 (v) = # {q |q ∈ R2 and I (v)− I (q) > thre } , (8)

A(i, j) = #
{
v
∣∣CR1 (v) = i and CR2 (v) = j, v ∈ V

}
, (9)

N =
m∑
i=0

n∑
j=0

A(i, j), (10)

S(i, j) =

{
1/A(i, j), if A(i, j) > 0,
0, otherwise,

(11)

HWS =
1
N

m∑
i=0

n∑
j=0

j2S(i, j), (12)

VWS =
1
N

m∑
i=0

n∑
j=0

i2S(i, j), (13)

FIGURE 2. Illustration of surrounding regions for the target voxel v .
R1 and R2 indicate the inner and outer surrounding regions, respectively.
l1, l2, and l3 are the side lengths of the three cubic windows.

DWS =
1
N

m+n∑
k=0

k2

 m∑
i=0
i+j=k

n∑
j=0

S(i, j)

, (14)

GWS =
1
N

m∑
i=0

n∑
j=0

ijS(i, j), (15)

where q is a voxel, thre is a given threshold value, # denotes
the number of elements in the set, and V is a VOI. HWS,
VWS,DWS, andGWS represent four 3D SRDM features (i.e.,
horizontal-weighted sum, vertical-weighted sum, diagonal-
weighted sum, and grid-weighted sum [34], respectively).
In this study, the threshold value thre is set to 0 and 1, respec-
tively. Therefore, eight 3D SRDM features are computed.

2) RADIOMIC FEATURES
A total of 523 radiomic features are extracted from the
generated polyp candidates for FP reduction, including
80 basic radiomic features and 443 new radiomic fea-
tures. The 80 basic radiomic features are the traditional
image features expanded from previous CTC CAD studies
[9], [10], [41], [42] and comprise 20 intensity features from
CT image, CT gradient image, SI image, and CV image,
respectively. CT gradient measures the internal structures of
the polyp candidate, and CT gradient image is computed by
using the 3×3×3 Sobel operator. SI measures the topological
shape of the local neighborhood of a voxel, whereas CV
measures the size of the structure of the effective curvature.
Computational details of SI and CV images are given in [9].
The 443 new radiomic features include 66 CT image fea-
tures, 66 CT gradient features, 87 FD features, 66 SI fea-
tures, 86 FRST features, and 72 MWLD features. These new
radiomic features are presented in the following text. To the
best of our knowledge, the MWLD and the feature maps of
FD and FRST are the first to be introduced for colonic polyp
detection in CTC.

a: NEW CT IMAGE, CT GRADIENT, FD, AND SI FEATURES
CT image can be perceived as a rugged surface if CT image
intensities are regarded as the height above a plane [43].
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FD measures the texture complexity of a structure that is
not exactly Euclidean (i.e., ‘‘in-between dimensions’’) giv-
ing the potential for a richer description of the examined
surface [43]. The FD image is computed from CT image in
accordance with [43]. Twenty intensity features and another
feature ‘‘lacunarity’’ [43] are calculated from the FD image
within each polyp candidate. Lacunarity can measure the
‘‘lumpiness’’ of fractal data and provide the metainformation
about calculated FD values in the image. High lacunarity indi-
cates high degree of inhomogeneity in the examined fractal
area [43].

Prior to computation of texture features, the full intensity
range of the target image is quantized into a smaller number
of intensity levels. Here, the intensity values in CT image,
CT gradient image, FD image, and SI image are resampled
into equally spaced bins by using the bin widths of 25,
25, 0.05, and 0.05, respectively. This quantization process
can reduce image noises and normalize intensities across
all patient datasets. Then, 66 texture features (i.e., 13 3D
GLSZM features, 5 3D NGTDM features, 40 3D GLDM
features, and 8 3D SRDM features) are calculated from the
quantized CT image, CT gradient image, FD image, and
SI image, respectively. That is, 66 new CT image features,
66 new CT gradient features, 87 new FD features, and 66 new
SI features are extracted for each generated polyp candidate.

b: NEW FRST FEATURES
FRST enhances the points of high local radial symmetry
within a scene. On the basis of 2D FRST [44], the 3D FRST
is developed to compute the 3D volumetric FRST image for
polyp candidates. Let On and Mn denote the orientation and
magnitude projection images at an integer radius n, respec-
tively. v is a voxel in the CT image. g(v) is the gradient
vector at v. v+ and v− are the positively-affected point and
negatively-affected point of v, respectively (Fig. 3). The ori-
entation projection imageOn andmagnitude projection image
Mn are initially zero and can be updated as follows:

v+ = v+ round
(

g(v)
‖g(v)‖

n
)
, (16)

v− = v− round
(

g(v)
‖g(v)‖

n
)
, (17)

On(v+) = On(v+)+ 1, (18)

On(v−) = On(v−)− 1, (19)

Mn(v+) = Mn(v+)+ ‖g(v)‖ , (20)

Mn(v−) = Mn(v−)− ‖g(v)‖ . (21)

Given the image noises and the weak gradients inside
polyps, the gradient magnitude ‖g(v)‖ at v should be larger
than 0.05. Then, the full transform S is computed as follows:

Fn(v) =
Mn(v)
kn

(
|min {On(v), kn}|

kn

)α
, (22)

S =
1

nmax

nmax∑
n=1

Fn ∗ An, (23)

FIGURE 3. Illustration of 3D FRST. v+ and v− are the positively-affected
point and negatively-affected point of voxel v , respectively. The gradient
vector g(v ) at voxel v points to v+ and points away from v−.

where α is the radial strictness parameter, kn is a scaling factor
that normalizes On and Mn across different radii, nmax is the
maximum radius, and An is a three-dimensional Gaussian
function with the size 2n + 1 and standard deviation 0.5n.
Here, α and kn are empirically set to 2 and 26, respectively.
nmax is the ceil integer value of the polyp candidate radius.
Twenty intensity features are calculated from the 3D FRST
image within the polyp candidate region. Then, the intensity
values in the 3D FRST image are resampled into equally
spaced bins by using a bin width of 0.5. 66 texture features
(i.e., 13 3D GLSZM features, 5 3D NGTDM features, 40 3D
GLDM features, and 8 3D SRDM features) are calculated
from the quantized 3D FRST image. Thus, a total of 86 new
FRST features are extracted for each polyp candidate.

c: NEW MWLD FEATURES
WLD is inspired by the Weber’s Law, i.e., the human percep-
tion of a pattern depends on not only the change of a stimulus
(such as sound and lighting) but also the original intensity of
the stimulus [45]. WLD is a discriminative descriptor and has
been used for texture classification and face detection in 2D
digital images [45], [46]. Considering the 3D properties of
polyp candidates, we develop the new WLD specifically for
polyp candidate classification in this study. The new WLD
characterizes each polyp candidate by using a 2D histogram
of differential excitation and orientation. Differential excita-
tion is computed as the arctangent value of the ratio between
two terms: one is the sum of CT density difference of a current
voxel against its neighbors; the other is the CT density of the
current voxel. CT density at the outer boundary region of the
colonic polyp differs, but that at the other region of the colonic
polyp is approximately constant. Thus, we only compute the
differential excitation at the outer boundary regions of polyp
candidates. Let v denote a voxel at the outer boundary region
OBR of the polyp candidate V . OBR is defined as follows:

OBR = dilate(B), (24)

where B is the outer boundary of the polyp candidate V ,
and dilate(·) denotes the dilation operation with a radius of n
voxels. Nr (v) is the set of voxels on the sides of the cubic box
that has the center v and side length (2r + 1). p is a voxel of
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FIGURE 4. Illustration of orientation component of a polyp candidate.
Voxel v is at the outer boundary region OBR. g(v ) and rq(v ) are the unit
gradient vector and unit centripetal vector at voxel v , respectively.
rq(v ) points from voxel v to the polyp candidate center q.

Nr (v), and I is the CT image. η(v) is the differential excitation
at voxel v, which is computed as follows:

η(v) = arctan

 1
I (v)

∑
p∈Nr (v)

(I (p)− I (v))

, (25)

where η ∈ [−π/2, π/2]. Then, η is linearly quantized into
M dominant differential excitations as shown below:

{ξi} = mod
(⌊
η + π/2
π/M

⌋
,M

)
, i = 0, 1, 2, . . . ,M − 1.

(26)

The orientation component θ(v) at voxel v is the angle
between the unit gradient vector g(v) and unit centripetal
vector rq(v). rq(v) points from v to the polyp candidate center
q (Fig. 4). θ (v) is computed as follows:

θ (v) = arccos
[
g(v) · rq(v)

]
, (27)

where θ ∈ [0, π]. Then, θ is linearly quantized into T
dominant orientations as follows:{
ψj
}
=mod

(⌊
θ

π/T

⌋
,T
)
, j=0, 1, 2, . . . ,T−1. (28)

The quantized differential excitation ξ and orientation ψ
are used to compute the 2D histogram {WLD(ξi, ψj)}, i =
0, 1, 2, . . . ,M − 1, j = 0, 1, 2, . . . ,T − 1. The element
WLD(ξi, ψj) at row i and column j of the 2D histogram is
the probability of occurrence of the dominant differential
excitation ξi on the dominant orientationψj. Then, all rows of
the 2D histogram are concatenated as a 1D feature vector, i.e.,
a WLD feature vector. TheWLD feature vector computes the
salient patterns (i.e., differential excitations) and then builds
statistics on these salient patterns along with the orientation
components of the target voxels. For calculation of a MWLD
feature vector, the radius r is set as different values. For each
value of radius r , we compute a WLD feature vector. All
WLD feature vectors are finally concatenated as a MWLD
feature vector that can capture multigranularity salient pat-
terns and is robust to rotation and scaling. In this study, n,
M , and T are empirically set to 2, 6, and 4, respectively. r , in
turn, is set to 1, 2, and 3. Thus, 72 (6 × 4 × 3) new MWLD
features are computed for each polyp candidate.

C. CANDIDATE CLASSIFICATION
Random Forests classifier [30] is an ensemble of decision
trees. In the training procedure, each tree is constructed by
using a bootstrap sample from the entire training set, and each
node is split by using the best feature among a subset of fea-
tures randomly selected without replacement at that node [3].
In the testing procedure, prediction of each testing sample is
carried out by a majority vote. Random Forests classifier is
robust against overfitting and can train the samples of high-
dimensional feature vectors without additional feature selec-
tion [6]. Random Forests classifier involves three parameters
(i.e., number of trees, number of samples for constructing
each tree, and number of features in the random feature subset
for splitting each node) and is usually not very sensitive to
their values. Therefore, Random Forests classifier is highly
suitable for classification task in this study. To avoid large
changes in the values of a feature, the values of each indi-
vidual feature in the training samples are normalized to [0, 1]
by using a linear mapping method (i.e., the min-max normal-
ization method [64]), and the values of the same feature in
the testing samples are normalized with the same normal-
ization parameters as the training samples [6]. Considering
the classification bias caused by imbalanced training samples,
a synthetic minority oversampling technique (SMOTE) [47]
is used to balance the training samples before training by
oversampling the samples of minority class until the sam-
ple number of minority class is equal to that of majority
class.

In the stage of polyp candidate detection, all possible
candidates are considered. Thus, a true polyp corresponds to
one or more TP candidates that possibly include incorrect
candidates, such as small fragments. The feature vectors
of these incorrect TP candidates negatively influence the
classification of Random Forests. Thus, such feature vectors
should be removed from the training set before training.
In this study, we develop a simple machine learning-based
score rank (MLBSR) method to remove the feature vectors
of the incorrect TP candidates and redundant FP candidates
from the training set: For each round of the fivefold cross-
validation used in this study, one fold is used as the testing set,
and the remaining four folds are used as the training set [48].
The training set is initially predicted with Random Forests
by using a fourfold cross validation. All prediction scores of
the training set are collected. Then, all FP candidates corre-
sponding to the training set are sorted in descending order
according to their prediction scores. The feature vectors of the
top 50% FP candidates are retained in the training set because
these difficultly distinguished FP candidates are considered
to be informative. For several TP candidates belonging to the
same true polyp, only the feature vector of the TP candidate
with the highest prediction score is retained in the training set.
After the use of MLBSR method, the training set is normal-
ized and then balanced by SMOTE. RandomForests classifier
is trained with the training set and evaluated with the testing
set [6].

VOLUME 6, 2018 74511



Y. Ren et al.: Novel 3-D Radiomic Features for Computer-Aided Polyp Detection in CT Colonography

FIGURE 5. Size distribution of polyps.

III. EXPERIMENTS AND RESULTS
A. CTC DATA DESCRIPTION
The oral contrast-enhanced CTC data used in this study
included 510 CT scans from 255 patients, which consisted
of 195 patients from the Walter Reed Army Medical Center
(WRAMC) [49] and 60 patients from The Cancer Imag-
ing Archive (TCIA) [50]. Each patient ingested oral con-
trast agents and underwent CT scanning on supine and
prone positions under the condition of colon insufflation
with room air. The WRAMC CTC datasets were acquired
through a four-channel or eight-channel CT scanner (GE
LightSpeed or LightSpeed Ultra, General Electric Medical
Systems) with a table speed of 15 mm/s, 1.25–2.5 mm col-
limation, 1 mm reconstruction interval, 1.25–2.5 mm slice
thickness, 100mAs, 120 kVp, CT slice size of 512× 512 pix-
els, and in-plane pixel spacings ranging from 0.5293 mm ×
0.5293 mm to 0.9141 mm × 0.9141 mm [6]. The TCIA
CTC datasets were acquired by using at least a 16-slice
CT scanner with 0.5–1.0 mm collimation, 0.98–1.5 pitch,
0.8 mm reconstruction interval, 1–1.25 mm slice thickness,
50 effective mAs, 120 kVp, CT slice size of 512 × 512 pix-
els, and in-plane pixel spacings ranging from 0.5859 mm ×
0.5859 mm to 0.9766 mm × 0.9766 mm [6], [51]. The OC
and CTC confirmed 130 polyps of 5 mm or larger in the
255 patients, of which 102 patients had polyps and 153 had
none. These polyps included 15 polyps visible only in either
the supine or prone view and 115 polyps visible in both the
supine and prone views. A total of 12 flat polyps, 90 sessile
polyps, and 28 pedunculated polyps were revealed in the
patient datasets, which had 83 polyps ranging from 5 mm
to 9 mm and 47 polyps lager than or equal to 10 mm [6].
Fig. 5 shows the polyp size distribution.

B. EVALUATION OF THE PROPOSED CAD SYSTEM
An experienced radiologist manually segmented all visible
polyps of the CTC datasets in this study. A polyp candidate
was counted as a TP if the polyp candidate overlapped a
ground truth. Otherwise, the polyp candidate was counted as
a FP [3], [6]. A polyp was considered detected if observed on
either the supine or prone position [52]. After applying the
previous polyp candidate detection method [3], [6], radiomic

features were calculated from each polyp candidate and used
for classification. To avoid the overfitting problem in the
stage of candidate classification, we used Random Forests
classifier to classify polyp candidates and adopted fivefold
cross-validation strategy to evaluate the performance of the
proposed method. Random Forests classifier constructs each
tree using a bootstrap sample from the entire training set and
splits each node using the best feature among a subset of
features randomly selected without replacement at that node.
Thus, Random Forests classifier is robust against overfitting
and can train the samples of high-dimensional feature vectors
without additional feature selection. In addition, N-fold cross
validation completely separates the training set and testing
set. It can minimize the evaluation bias and maximize the
available datasets, which alleviates overfitting. According
to [30] and [53], Random Forests classifier is not very sen-
sitive to the parameter values and can obtain good and stable
classification performance if enough trees are constructed. In
consideration of the low computational cost and stable clas-
sification performance, the parameters of Random Forests
classifier in this study were set as follows: the tree number
was 100, the sample number for constructing each tree was
the sample number of the entire training set, and the number
of features in the random feature subset at each node was the
square root of the number of all features.

In the fivefold cross validation, all 255 patients were ran-
domly partitioned into five non-intersecting folds. Each fold
involved 51 patients. For each cross-validation round, one
fold was used as the testing set, and the remaining four
folds were used as the training set [3]. After the training
set was processed by the MLBSR, min-max normalization,
and SMOTE methods, Random Forests classifier was trained
with the training set and then used to predict the testing set.
Each fold was predicted only once after the fivefold cross
validation. All prediction scores of the testing set during cross
validation were collected and used for free-response receiver
operating characteristics (FROC) analysis. The detection sen-
sitivity and FP rate were quantified as by-polyp sensitivity
and the average number of FPs per scan [52], [54], respec-
tively. The normalized area under the FROC curve (nAz) [55]
in the range of [0, 5] FPs per scan was used as a performance
measure of the FROC curve in the FROC analysis.

C. PERFORMANCE ANALYSIS OF THE PROPOSED CAD
SYSTEM
To obtain the enough overall performance, we adjusted the
candidate detection method to ensure all polyps detected on
either the supine or prone positions in the stage of polyp
candidate detection, which produced 23964 FP candidates
with two polyp views missed. Then, all 523 radiomic features
were calculated from each candidate and sent to Random
Forests for classification.

1) ANALYSIS OF THE FP REDUCTION
For Random Forests classifier, the sample number for con-
structing each tree was set as the sample number of the
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TABLE 1. The nAz values of Random Forests classifier with different parameters in the testing set during fivefold cross validation. The number of trees is
n, and the number of features in the random feature subset at each node is floor

(
m ∗
√

523
)

.

FIGURE 6. FROC curves of (a) the proposed system with/without the MLBSR method, (b) different normalization methods, and (c) different feature
groups for all polyps ≥5 mm in the fivefold cross validation.

entire training set according to [30]. Table 1 shows the nAz
values of Random Forests classifier in the stage of candidate
classification with the tree number and the feature number
of the feature subset randomly selected at each node equal to
different values. The nAz values were relatively stable if Ran-
dom Forests classifier constructed enough trees. However,
the more trees were constructed, the higher computational
cost was demanded. As shown in Table 1, several parameter
settings make Random Forests classifier yield the maximum
nAz value of 0.9591, but the parameter setting used in this
study (i.e., the number of trees is equal to 100, and the
number of features in the random feature subset at each node
is equal to the square root of the number of all features)
obtains not only the maximum nAz value but also the lowest
computational cost.

The MLBSR and SMOTE methods were used to deal with
the imbalanced training set during the training procedure
of Random Forests classifier. We conducted the following
experiments to evaluate the MLBSR method: (1) only the
SMOTE method was used, and (2) both the SMOTE and
MLBSR methods were used. Fig. 6(a) shows the FROC
curves of the proposed system with/without the MLBSR
method. After the use of MLBSR method, the nAz value
increased from 0.9462 to 0.9591. Thus, the proposed system

achieved better performance when the MLBSR method was
used to fine tune the training set. In this study, the val-
ues of each individual feature in the training set were lin-
early normalized to [0, 1] by the min-max normalization
method. We compared the min-max normalization method
with the L1-norm and L2-norm normalization methods [56]
that divided the values of a feature in the training set by
using the L1-norm and L2-norm of the values of this fea-
ture, respectively. The FROC curves of the proposed system
with the three normalization methods are shown in Fig. 6(b).
The min-max normalization method achieved the nAz value
of 0.9591, whereas the L1-norm and L2-norm normaliza-
tion methods yielded the nAz values of 0.9538 and 0.9557,
respectively. Thus, the performance of the min-max normal-
ization method was best, and the L2-norm normalization
method slightly outperformed the L1-norm normalization
method.

All 523 radiomic features used in this study included
80 basic radiomic features (i.e., the traditional image fea-
tures from previous CTC CAD studies) and 443 newly
developed radiomic features. The 443 new radiomic fea-
tures comprised 6 subgroups of new radiomic features (i.e.,
66 new CT image features, 66 new CT gradient features,
87 new FD features, 66 new SI features, 86 new FRST
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TABLE 2. The 40 most important radiomic features with high values of the mean Gini importance scores.

features, and 72 new MWLD features). To analyze the
classification performance of the extracted features, different
feature groups were fed into Random Forests in the five-
fold cross validation for classification of all polyps ≥5 mm.
Fig. 6(c) shows the FROC curves of 9 feature groups (i.e.,
6 subgroups of new radiomic features, all 443 new radiomic
features, 80 basic radiomic features, and all 523 radiomic
features). Among the 6 subgroups of new radiomic features,
the 66 new CT image features yielded the maximum nAz
value of 0.8033 and performed best, whereas the 66 new
SI features obtained the minimum nAz value of 0.5725 and
exhibited the poorest performance. The nAz values of the
80 basic radiomic features, 443 new radiomic features, and
their combination were 0.8679, 0.9217, and 0.9591, respec-
tively. Therefore, the 80 basic radiomic features outper-
formed each of the 6 subgroups of new radiomic features.
All 443 new radiomic features (i.e., the combination of the
6 subgroups of new radiomic features) performed better
than the 80 basic radiomic features, and their combination
(i.e., all 523 radiomic features) yielded the best performance
for classification of all polyps ≥5 mm. The classification
results indicate that the newly developed radiomic features
can characterize colonic polyps and improve the detection
performance of the CAD method.

To further demonstrate the effectiveness of the new
radiomic features, we computed the mean Gini importance
scores [3], [6] of all 523 radiomic features in the fivefold cross
validation and then ranked these radiomic features according
to their meanGini importance scores. Table 2 lists the 40most

important radiomic features with high values of themeanGini
importance scores, which comprise 7 basic radiomic features
(i.e., 5 intensity features of CT image, 1 intensity feature
of CT gradient, and 1 intensity feature of SI) and 33 new
radiomic features. The 33 most important new features con-
sisted of 1 CT image feature, 2 CT gradient features, 2 SI
features, 8 FRST features, 14 FD features, and 6 MWLD
features. Thus, the new radiomic features are effective and
informative.

2) OVERALL PERFORMANCE
The 80 basic radiomic features (i.e., the traditional image
features from previous CTC CAD studies), 443 new radiomic
features, and their combination (i.e., all 523 radiomic fea-
tures) were inputted into Random Forests in the fivefold cross
validation for detection of different-sized polyps: polyps ≥5
mm, polyps of 5−9 mm, and polyps ≥10 mm, respectively.
Fig. 7 shows the FROC curves of the 80 basic radiomic
features, 443 new radiomic features, and their combination
for different polyp sizes. Table 3 tabulates the correspond-
ing detection results. Among the three feature groups, all
523 radiomic features yielded the best classification per-
formance, and the new radiomic features performed bet-
ter than the basic radiomic features for different polyp
sizes. The detection results indicate that the proposed CAD
method could achieve a high detection sensitivity with a
low FP rate. The FP detections at 98.5% by-polyp sensitiv-
ity and 2.0 FPs per scan for polyps ≥5 mm were counted
according to their locations. Among the remaining FPs
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FIGURE 7. FROC curves of the 80 basic radiomic features, 443 new radiomic features, and their combination (i.e., all 523 radiomic features) for (a) polyps
≥5 mm, (b) polyps of 5−9 mm, and (c) polyps ≥10 mm, respectively.

FIGURE 8. FROC curves of different CAD systems for (a) polyps ≥5 mm, (b) polyps of 5−9 mm, and (c) polyps ≥10 mm, respectively.

TABLE 3. Detection results of different feature groups for different polyp sizes.

after FP reduction, 63.5%, 11.7%, 23.2%, and 1.6%
of them were on haustra folds, flat colon walls, ileo-
cecal valves, and rectal tubes, respectively. These FPs
were difficultly distinguished from true polyps, as their
shapes and internal structures were similar to those of
polyps.

D. DIRECT COMPARISON OF THE PERFORMANCE OF
DIFFERENT CAD SYSTEMS
For a direct comparison between the performance of the
proposed CAD system and other CAD systems, Lee’s CAD

system [55], our previous CAD system 1 [3], and our previ-
ous CAD system 2 [6] were evaluated in the fivefold cross
validation with the same CTC datasets used in this study.
Fig. 8 shows the FROC curves of the proposed CAD system,
Lee’s CAD system [55], our previous CAD system 1 [3],
and our previous CAD system 2 [6] for different polyp sizes.
Table 4 shows the corresponding detection performance,
which indicates that the proposed CAD system achieved
higher sensitivity than the other three CAD systems at the
same FP rate for different polyp sizes. Thus, the proposed
CAD system outperformed the other three CAD systems for
detecting colonic polyps in CTC.
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TABLE 4. Direct comparison between the performance of the proposed CAD system and the other three CAD systems.

TABLE 5. Indirect comparison of the performance of different CTC CAD systems.

[15]

E. INDIRECT COMPARISON OF THE PERFORMANCE OF
DIFFERENT CAD SYSTEMS
In general, directly comparing the proposed system with
other existing systems is difficult given the use of different
CTC datasets, different polyp samples, different evaluation
strategies, and different evaluation criteria. However, an indi-
rect comparison in similar conditions is still valuable [3].
Table 5 shows the indirect comparison between the perfor-
mance of the proposed system and other CAD systems with
different CTC datasets from the WRAMC database. The
proposed system performed comparably to the best among
other CTC CAD systems that were validated on theWRAMC
datasets.

IV. DISCUSSION
In this paper, a novel CAD system using radiomics is devel-
oped for polyp detection in CTC. The previous shape-based
candidate detection method [3], [6] is used to segment polyp

candidates. Then, 523 quantitative radiomic features are com-
puted to characterize each polyp candidate. The generated
polyp candidates are finally classified by using Random
Forests during the fivefold cross validation. In each round of
cross validation, the MLBSR and SMOTE methods are used
to process the training set.

The 523 radiomic features include 3DMWLD features and
the statistical features (i.e., intensity features, 3D GLSZM
features, 3D NGTDM features, 3D GLDM features, and 3D
SRDM features) calculated from the following 3D volumetric
feature maps: CT image, CT gradient image, FD image, SI
image, CV image, and FRST image. The CT image measures
the tissue density of the polyp candidates through the CT
density values. The CT gradient image reflects the internal
structures of the polyp candidates. The SI and CV images
describe the convex shape and shape scale of the polyp
candidates, respectively. The FD image describes the texture
complexity bymeasuring the local variations of CT density in
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FIGURE 9. Examples of 3D feature images of the typical TP and FP
candidates. Rows 1 and 2 show a TP and FP candidates, respectively. For
visual display of the polyp candidate shape, the 3D views of the polyp
candidates are presented in column 1. Column 2 shows the original CT
images where the red solid curves delineate the polyp candidate
boundaries. Columns 3 to 7 show the feature images of CT gradient, FD,
SI, CV, and FRST of the polyp candidates with the display window settings
of 145 ± 145, 1.5 ± 1.5, 0.5 ± 0.5, 1 ± 1, and 2 ± 2, respectively. The 3D
views show that the outer boundaries of the TP and FP candidates are
semi-spherical and ridge-likeness, respectively. In the CT images,
the polyp candidates show similar CT density with the surrounding
normal tissues. The outer boundaries of the polyp candidates are distinct,
but their inner boundaries not. The CT gradient and FD images show high
intensity values in the outer boundary regions of the polyp candidates.
The TP candidate exhibits more voxels with high SI values than the FP
candidate. For the polyp candidates, the gentle shape changes of their
outer isosurfaces lead to low CV values, whereas the sharp shape
changes of their inner isosurfaces cause high CV values. Compared with
the semi-spherical TP candidate, the ridge-likeness FP candidate has two
flat sides that show lower CV values. The FRST image of the TP candidate
exhibits higher intensity values than that of the FP candidate.

the neighborhood of each voxel. The FRST image enhances
the local structures of high radial symmetry. Fig. 9 shows
the examples of 3D feature images of the typical TP and
FP candidates. The histogram-based intensity features are
used to globally quantify the distribution characteristics of
intensity levels within these feature images. After the feature
images of CT density, CT gradient, FD, SI, and FRST are
quantized, the 3D GLSZM, NGTDM, GLDM, and SRDM
texture features are used to quantitatively represent the texture
heterogeneity differences and spatial relationships between
intensity levels of different voxels in these quantized feature
images. The 3D MWLD features are simple and robust local
descriptors developed specifically for polyp candidate classi-
fication. With respect to the calculation of 3D WLD features
for a polyp candidate, we compute the differential excitation
component and orientation component for each voxel in the
outer boundary region of the polyp candidate. The differential
excitation component describes the local salient pattern, and
the orientation component shows the angle between the gra-
dient vector and centripetal vector. The two components of
all target voxels are used to generate a 2D WLD histogram.
All rows of the 2D WLD histogram are concatenated as a
1D feature vector (i.e., 3D WLD features) that character-
izes the frequency information of salient patterns within the
outer boundary region of the polyp candidate. The 3D WLD
features are dense descriptors because they are computed
pixelwise. Furthermore, the 3DMWLD features are obtained
by concatenating theWLD feature vectors of different scales.
Thus, the 3D MWLD features are multigranularity features
and robust to rotation and scaling, which can capture salient
patterns in the CT images. To summarize, the 523 totally
calculated radiomic features can provide the information of

FIGURE 10. Several typical TPs and FPs detected by the proposed CTC
CAD system at 98.5% by-polyp sensitivity and 2.0 FPs per scan for polyps
≥5 mm. (a) From the top down, row 1 presents several flat polyps, and
rows 2 and 3 reveal several polyps on the haustral folds and flat colon
walls, respectively. (b) From the top down, FPs shown in rows 1, 2, 3, and
4 are located on the rectal tubes, ileocecal valves, haustral folds, and
colon walls, respectively.

shape, texture, and salient pattern frequency for each polyp
candidate.

We have conducted experiments to evaluate the clas-
sification performance of the extracted radiomic features.
The 523 radiomic features can be divided into 80 basic
radiomic features (i.e., the traditional image features from
previous CTC CAD studies) and 443 new radiomic features.
All 523 radiomic features were sorted in decreasing order
according to their mean Gini importance scores. Among
the 40 most important radiomic features listed in Table 2,
only 7 features were basic radiomic features, and the other
33 features were new radiomic features. The classification
performance of the 80 basic radiomic features, 443 new
radiomic features, and the combination of these two feature
groups for different polyp sizes are shown in Fig. 7 and
Table 3. The 443 new radiomic features outperformed the
80 basic radiomic features, and the combination of the two
feature groups achieved the best classification performance.
Thus, the new radiomic features are informative and can
effectively characterize colonic polyps. However, the pro-
posed radiomic features still have the following limitations:
1) the correlation relationship of the proposed radiomic
features need to be further studied since there might be
redundant information among these features; 2) some polyps
of 5 mm or smaller are not sensitive much to the proposed
radiomic features because these polyps might be too small
to have the texture. Thus, we intend to address these issues
and improve the robustness of the proposed features in future
work.
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To further validate the system performance, we directly
compared the proposed system with Lee’s CAD system and
our previous two systems on the same CTC datasets (Fig. 8).
The direct comparison results tabulated in Table 4 indicate
that the proposed system performed better than Lee’s CAD
system and our previous two systems. Fig. 10 shows several
typical TPs and FPs detected by the proposed CTC CAD
system at 98.5% by-polyp sensitivity and 2.0 FPs per scan
for polyps ≥5 mm. We also made an indirect comparison
between the proposed system and other existing CAD sys-
tems in the literatures that used different CTC datasets from
the WRAMC database (Table 5). Table 5 shows that the
proposed system performed comparably to those state-of-the-
art CTC CAD systems. The direct/indirect comparison with
other CAD systems reflects the excellent overall performance
of the proposed system. However, no methods are robust to
all types of colonic polyps since polyps vary a lot not only in
shape and size but also the texture or something else. Thus,
we will improve the adaptiveness of the proposed CTC CAD
system for diverse polyps and expect to evaluate it on a larger
CTC database in future research.

V. CONCLUSION
This study presents a novel CTC CAD system with radiomics
for polyp detection. After applying our previous candidate
detection method to generate polyp candidates, 80 basic
radiomic features and 443 new radiomic features are
extracted for each polyp candidate and then sent to Ran-
dom Forests for classification. The MLBSR method is also
developed to adjust the training samples. The proposed sys-
tem achieved high detection sensitivity at low FP rate and
performed better than our previously developed CTC CAD
systems. We believe that the proposed CTC CAD system
has the potential of assisting radiologists in reducing the
workload and human errors during colon cancer screening.
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