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ABSTRACT Automatic detection of viewer interest while watching video contents can enable multimedia
applications, such as online video streaming, to recommend contents in real time. However, there is yet
a generic model for detecting viewer interest that is independent of subject and content while using non-
invasive sensors in near-natural settings. This paper is the first attempt at solving this issue by investigating
the feasibility of a generic model for detecting viewer interest based on facial expression and heart rate
features. The proposed model adopts deep learning features, which are trained and tested using multi-
subjects’ data across different video stimuli domains. The experimental results show that the generic model
can reach a similar accuracy to a domain-specific model.

INDEX TERMS Facial expression, heart rate, heart rate variability, viewer interest.

I. INTRODUCTION
Interest is a distinct and anticipatory type of emotion
that characterizes people’s experience with new objects,
events, or situations [1], [2]. Automatic detection of inter-
est can be used for user-centric multimedia applications,
including implicit video/image tagging, audience engage-
ment measurement, and automation of video recommenda-
tion tools [24]. Viewer interest is defined as a type of interest
that occurs during video viewing [3], which encompasses
a certain level of engagement, anticipated effort, and atten-
tional activity [4], [5]. Viewer interest is detectable through
video observation and physiological signals, including facial
expression, eye gaze, heart rate, and skin response. However,
these signals are not always visible, accessible, distinctive
and synchronized. The signals are also prone to subjective
bias and individual preference towards the content type, event
duration, and viewing conditions.

Studying viewer interest in each of the different domains
(or genres) of video stimuli presents unique challenges due
to difference in genre, style, and aesthetics [14]. Short movie
clips are currently the most commonly used type of stimuli,
as movies can generally evoke interests from a wide-range
of viewers. For example, compared to movie news video
would be more subjected to biases due to topical interest,

political standpoint, and socio-economic backgrounds.
However, compared to sports videos, which have a more
structured highlights, selecting the most suitable stimuli
segments from movie videos generally requires a deeper
understanding of the whole movie’s story flow and narrative.

Training new model for detecting viewer interest for each
of the different video domains and subjects would be imprac-
tical in real world applications. Previous work have shown
that viewer interest models trained for a particular sports type
still outperformed those trainedwithmultiple sports types [6].
There is no previous study that has established a generic
model trained with multi-subjects’ data across different video
stimuli domains. This paper is the first attempt at investigat-
ing the suitability of a generic model based on facial expres-
sion and heart rate features for detecting viewer interest.
The experiments, which incorporated domain-general, cross-
domain, and domain-specific training and testing approaches
using sports and movie video stimuli, demonstrate novel
insights on how data homogeneity can influence the detection
performance.

The key findings of this paper are:
(1) It is feasible to achieve a generic (domain-general)

model for viewer interest detection using deep learn-
ing approach that can reach a similar accuracy to the
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domain-specificmodels, whichmeans that we can potentially
avoid hand-crafting features for future studies.

(2) Heart rate features are found to be the better indicators
for viewer interest than facial expression, and the data collec-
tion can be less intrusive during real world implementations,
due to privacy concerns from recording facial data.

II. RELATED WORK
The choice of multimedia stimuli and features is crucial for
developing a machine learning model for detecting viewer
interest. Existing studies have used static stimuli includ-
ing random images of geometrical shapes, random pic-
tures from books and journals, classical paintings [7]–[10],
visual poetry, mannequins, live person faces, and lifeless
objects [2], [11]. Some studies directly asked explicit indica-
tion of interests using manual approach without sensing [2].
Other studies used content-based features to predict the spe-
cific contents that can potentially evoke interests. For exam-
ple, image-based raw pixel value, histogram, self-similarity
and global texture distribution features were used for measur-
ing interestingness of a sequence of images [12]. Similarly,
auditory energy and color histograms from the video frame
are usedwithmachine learning techniques to predict potential
level of affect and interest [13]. A number of low-to-mid
level audio-visual and temporal features were used to predict
aesthetic, affect and interest level from movie clips compared
to viewer ratings [14].

Asking for explicit indication of viewer interest can be
too obtrusive during data collection. Therefore, studies have
started to propose methods to measure interestingness based
on indirect cues that can be sensed. Mouse cursor activity
has been used to measure interests in online video. Interest
score was estimated based on mouse movement features
within the smaller and longer time spans [15]. Intriguingly,
the choice of interesting contents by infants was found to
be statistically correlated with heart rate, visual fixation, and
face activity [11]. Likewise, head-eye responses and facial
expressions can help to predict viewer interest based on
fuzzy-logic-based fusion of binary and probabilistic mea-
sures [16]. More recently, student’s engagement levels during
online writing can be predicted using local binary pattern
features from Kinect-based facial recording and heart rate
responses [17].

Based on the above-mentioned studies, facial expression
and physiological responses are the two most extensively
used viewer responses for detecting interest and engage-
ment levels. Facial expression analysis methods generally
classify emotion states using appearance, geometric and
motion-based features extracted from different parts of faces
including head, eye (eyelid, eyebrow), mouth (nose, lip),
and cheek regions [17]–[21]. Study based on facial land-
mark movements has found that the upper-part of human
face can better detect interest-evoking highlights more than
the lower part [22]. Recent work has also used aggregated
visual features, such as LBP, local-LBP, SIFT and histogram
extracted from face, upper body, and background scene to

classify group-level emotion within social group images [23].
Gabor filter features were used to classify facial expressions
of participants as a way to obtain implicit tagging of image
sequence achieving 51-60% accuracy [24].

As a type of emotion, interests are generally more subtle,
therefore their recognition is more difficult [25]. Facial activ-
ity sometimes do not show any change on emotional feelings,
and subjects may not express their interests through facial
expression [25]. Physiological responses are considered to be
good indicators of emotional states. For example, affective
indexing of music excerpts can be achieved based on a lin-
ear combination of decisions with equal-weights from EEG,
ECG, GSR, and head pose signals [26]. An EEG-based study
achieved amean accuracy of about 64% for arousal rating and
56% for valence ratings of viewers in response to images and
movie clips [27]. Viewers’ fMRI response were used along
with content-based features to measure arousal level of video
clips with a 92-93% accuracy [28].

Heart rate has been found complementary to facial
expression for viewer interest detection [29] and directly pro-
portional to interest and pleasantness, but inversely propor-
tional to our cognitive anticipation to stimuli [30], [31]. More
specifically, acceleration and deceleration of heart rate corre-
late with engagement and negative valence cues (e.g., visual
fixation) [11]. It also indicates short-term attention [32].
Heart rate variability (HRV) features is inversely correlated
with fear, sadness, and happiness [33]–[35]. Other heart rate
features to measure interests include acceleration, decelera-
tion, beats-per-minute readings, intervals: in-between heart
beats, and energy in frequency bands [11], [36]. Fast
and significant changes in these features usually indicate
emotion-evoking events, which vary across different stimuli
types [37]–[39]. Statistical features including standard devi-
ation, skewness, and kurtosis of heart rate were used in
measuring emotions in an arousal-valence space [40]. The
beat-to-beat intervals (better known as RR intervals) are
direct measure of HRV and considered as reliable markers
of human’s affective responses [31]. Energy in different fre-
quency bands represents sympathetic modulation excitement
such as: low frequency (LF), range from 0.04 to 0.15 Hz;
high frequency (HF), range from 0.15 to 0.40 Hz; and very
low frequency (VLF), range from 0.0033 to 0.04 Hz [31].
Negative emotions including fear, anxiety, and pain decrease
the HF, while anger highly correlates with the ratio between
LF and HF [41]. Statistical HRV features, such as stan-
dard deviation of the mean beat-to-beat intervals along with
VLF, has been shown to have a significant correlation with
depression [42], [43].

Deep learning techniques have been found effective for
emotion recognition [44]. A common approach is to use
a stack of neural network layers to automatically extract
low-level features in lower layers, and high-level features
in subsequent layers [45], thereby eliminating the need for
manual engineering of features. State-of-the-art results have
been shown for applying deep learning for object recog-
nition, object classification and learning semantic visual
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FIGURE 1. Experimental protocol.

features [46], however, it has not been established for viewer
interest detection.

III. EXPERIMENT PROTOCOL
The overall experimental protocol is illustrated in Fig. 1.
Facial and heart rate responses were collected from partic-
ipants in three separate user studies using soccer, tennis,
and movie stimuli respectively. The recorded facial videos
were processed to extract intensity scores of facial expression
categories. Heart rate data were recorded as beats-per-minute
readings and RR intervals. Data from these three channels
were pre-processed for normalization and handling missing
values. From these channels, a total of 17 features were
extracted (discussed in Section IV) and three classification
approaches were benchmarked for their robustness in detect-
ing the ‘interested’ states. Full details on the user studies
and some parts of the analysis can be found in [47]. This
paper will summarize the experiments, while focusing on
additional heart rate and deep learning features, and extended
classification methods, which produce the new results.

A. PARTICIPANTS
Subjects were between 21 and 30 years old (mean = 26, stan-
dard deviation = 3), recruited from university student/staff
with consents. A preliminary screening ensured that the sub-
jects were not familiar with the stimuli clips and none of
them had eye or heart condition. Data was collected from

three separate user studies. The first two studies with sports
stimuli were attended by a total of 12 subjects (11 male,
1 female), among which 9 subjects participated in both. The
last study with movie stimuli was attended by a total of
20 subjects (16 male, 4 female), among which 7 subjects have
also participated in the studies with sports stimuli.

B. STIMULI PREPARATION
The sports user study used a total of 3 soccer and 2 tennis
video clips. The duration of these clips varied between
9 and 20 minutes. The source videos were selected from
different international leagues to maintain data heterogeneity.
The soccer clips consisted of 3 goal, 14 shot-on-goal, and
5 foul events. The tennis clips used in the study included 29
rally events, each containing a sequence of back and forth
shots between players within a point. Further details of the
sports stimuli and the selection procedure can be found in [6].

The movie user study used 20 movie clips, col-
lected from MAHNOB-HCI (8 clips) [48], LIRIS-ACCEDE
(5 clips) [49], and YouTube (7 clips). The durations of the
movie clips were between 25 and 112 seconds (average of
68.25 ± 43.66 seconds), which were long enough to evoke
viewers’ emotions [49]. Both manual and automatic process-
ing were applied for selecting the movie clips, as described in
the following sub-sections. During stimuli selection, affective
ratings of the clips were considered rather than their genres.
Clips which are represented as emotionally ‘neutral’ were
not considered, since the goal was to obtain clips that are
potentially able to evoke viewers’ ‘interest’.

1) MOVIE STIMULI SELECTION FROM MAHNOB-HCI
The dataset contains 20 movie clips and two types of sub-
jective feedbacks for them. The feedbacks include emotion
tags and valence-arousal scores (in 9-point scale) collected
from 27 participants for each clip, both of which were used
to select the stimuli clips (detail procedure is discussed in the
following steps). Valence and arousal scores are dimensional
scores indicating the level of perceived pleasantness and acti-
vation. A two-step procedure was followed to select the clips
fromMAHNOB-HCI dataset. To ensure the robustness of the
clip selection, the procedure considered both categorical and
dimensional feedbacks. Firstly, the procedure pre-selected a
number of clips using dominant emotion tags computed with
histogram plot (Step 1). Then the pre-selection was filtered
by a valence-arousal plot (Step 2).
Step 1: A histogram plot (Fig. 2) for each movie clip

was drawn using the emotion tags of the dataset. Each such
plot computed how many times each of the 13 emotion tags
occurred (i.e., rated by participants) for a particular clip. For
each clip, a ‘dominant emotion’ tag was computed based
on the emotion that was tagged for the maximum times for
that clip. For example, clip15 was determined as a ‘neutral’
clip as it received ‘neutral’ tag for the maximum number of
times. Movie clips with (dominant) emotion tags including
happiness, sadness, fear, and disgust, were primarily selected.
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FIGURE 2. Histogram plots of 20 clips from the MAHNOB-HCI dataset.
Y axis stands for the number of occurrences of each emotion tag and clip
id (1 - 20), X axis stands for the 13 emotion tag id (id: 0-12).

Step 2: An ellipse was plotted for each of the 20 clips into
an arousal vs. valence space, using the means and standard
deviations of the valence and arousal scores for that particular
clip. The center and radius of each ellipse were denoted by the
mean and standard deviation of the valence and arousal scores
(Fig. 3, reproduced from [50, Fig. 3]). The selected clips in
Step 1 were furthered filtered using ellipse’s positions and
sizes. Among the movie clips those were primarily selected
in Step 1, a total of 8 clips with the maximum valence and
arousal scores tagged with those emotions were selected.

2) MOVIE STIMULI SELECTION FROM LIRIS-ACCEDE
The dataset contains 9,800 short clips, with lengths between
8 and 12 seconds. LIRS-ACCEDE dataset includes regressed
valence-arousal values, which were reported using a 5-point
manikin. A 5-component k-mean method is used to compute

FIGURE 3. Arousal and valence scores from MAHNOB-HCI dataset plotted
with ellipse. Means and standard deviations of the arousal-valence
scores are used as centers and radiuses of the ellipses. The clip ids (1-20)
are marked at the center of each clip.

FIGURE 4. The 5-component (K = 5) K-mean cluster plots of the
regressed valence-arousal values (obtained from LIRIS-ACCEDE dataset),
where each color represents a separate cluster (id: 1-5).

the clusters for these regressed valence-arousal values
(depicted in Fig. 4 plotted in a valence vs arousal space). The
extreme (comparatively higher) values along the X (valence)
and Y (arousal) axes were used to select a total of 5 clips.
Mean of the valence-arousal values were used to approximate
categorical emotion tags for these 5 clips. The tags were
confirmed by manually viewing the clips.

3) MOVIE STIMULI SELECTION FROM YOUTUBE
7 clips were manually obtained from YouTube by searching
for movie clips (surprise, happy, and fear categories) with
keywords such as ‘the best horror scene’ and ‘the best comedy
scene’. The selection was confirmed by visually observing
each clip. A full list of the 20 selected clips from is presented
in Table 1.

C. DATA COLLECTION PROCEDURE
For collecting viewer interest data, facial expression data
was recorded using a Panasonic full HD camcorder at
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TABLE 1. Details of source and duration of 20 movie stimuli used.

a 25 frame-per-second (fps) sampling rate. Heart rate data
was collected using Mio Alpha (wrist-worn) and Polar H7
(chest-strapped) devices at 1/3 Hz and 1 Hz sampling rates
respectively. Polar H7 provided both beats-per-minute and
RR interval data, while Mio Alpha only gave beats-per-
minute, and the resolution of the RR interval data varied
between 600 and 900 milliseconds. These two heart rate
sensors were used to record redundant data as backup and
complement one another.

The stimuli were presented using a 22-inch high-definition
monitor in a closed room environment. The sports stimuli
had a frame resolution of 1280 × 720 pixels and a frame
rate of 25 fps. The resolution of the movie stimuli varied
between 640 × 386 and 1280 × 800 as they were collected
from two public datasets and YouTube. A viewing distance
of 80-90 cm between the subject and the monitor was kept
during the study.

FIGURE 5. Data collection protocol for soccer and tennis clips.

1) DATA COLLECTION USING SPORTS STIMULI
User study with soccer and tennis stimuli was conducted in
identical but separate sessions. Each session involved three
steps – recording, feedback, and questionnaire as shown
in Fig. 5. The simultaneous viewing and recording of data

commenced after a short resting time to stabilize heart rate.
After each clip viewed, the subject annotated ‘‘potentially
interesting’’ segments, and identified a number of soccer
highlight segments from the viewed clip. Then, each subject
went through a questionnaire to rate about general informa-
tion in the viewed clip.

FIGURE 6. Data collection protocol for movie clips.

2) DATA COLLECTION USING MOVIE STIMULI
User studywithmovie stimuli startedwith a 5-minutes resting
period after the subject completed a briefing session that
explained the procedures, interfaces, setups, and annotation
methods. Fig. 6 shows the details of the experiment proto-
col. The movie clips were sorted in a happy-fear-sadness-
anger-disgust order (as shown in Table 1). The clips were
sorted in a low-to-high intensity order if there were more
than one clip for a particular emotion type. The intensity was
measured by manually viewing the clips. The primary goal
for sorting clips was to see if the sorting has any influence
on how the participant respond to the stimuli (findings are
discussed in Section IV). A 2-minute blank clip was inserted
between two consecutivemovie clips, so that it neutralizes the
subject’s responses (recording was paused during this time)
and provide time for completing feedbacks using a paper-
based survey form. The feedbacks included: binary rating
(1 - interesting, 0 - not interesting); associated emotion
(neutral, happiness, fear, sadness, anger, surprise, disgust);
valence (1: unpleasant to 5: pleasant); and arousal scores
(1: calm to 5: active).

D. GROUND TRUTH
MAHNOB-HCI and LIRIS-ACCEDE datasets do not
provide viewer interest annotations. Therefore, this study
collected subjects’ annotations and ratings during the data
collection. Each sports and movie video has received a
binary rating (‘interesting’ or not) for each clip. Ground truth
was determined from subjects’ annotations and ratings in
response to soccer, tennis, and movie clips. The ground truth
was prepared with the starting and ending time indices of
segments those receive more than 50% subject agreements
(i.e. majority vote).

IV. FEATURE EXTRACTION
The features used in this study are summarized in Table 2,
which will be described in this section. Facial expression
and heart rate responses are used to extract features from
three channels – facial expression (FE), beats-per-minute
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TABLE 2. Features used in classification of viewer interest.

readings (BPM), and RR intervals as heart rate variabil-
ity (HRV). Features from each channel are used separately
to model viewer interest. During feature selection, features
are hand-picked based on a manual evaluation that checks
for redundancy (correlation) and high number of missing
instances.

FIGURE 7. Positive intensity score of facial expression and
beats-per-minute features for Subject 1.

Fig. 7 depicts positive intensity score and beats-per-minute
reading plotted for a random subject’s data. The features
indicate that the subject’s response is random throughout the
viewing session and is not affected by the sequencing of the
stimuli clips.

A. FACIAL EXPRESSION (FE) FEATURES
Facial expression recognition (FER) is achieved using a sys-
tem that has been trained using non-laboratory based data
from World Wide Web, news, and TV programs [51]. This
system uses Viola-Jones algorithms to detect facial region
and extract 48 landmark points. The landmark points are
used to extract a number of geometric features. The face
regions are used to extract a number of scale-invariant feature
transform (SIFT) features which are further dimensionally
reduced by the minimum redundancy maximum relevance
algorithm. A feature-level fusion is conducted between the
geometric features and the SIFT features, which is classified
into one of the three emotion categories (i.e., positive, neg-
ative, neutral) with a three-class SVM classifier. The three
emotion classes are specified from prototypical emotions

(i.e., positive: happiness, surprise; negative: fear, sadness, and
anger) [6].

The outputs of the FER system are frame-by-frame inten-
sity scores for positive (POS), negative (NEG), and neutral
(NEU) emotion categories. These scores indicate the proba-
bility that a particular frame would be POS, NEG, or NEU
(PPOS,NEG,NEU). No further normalization is applied on these
scores as they are already normalized (i.e., PPOS + PNEG +
PNEU = 1). Linear interpolation is used for handling the
missing frames. The raw intensity scores are smoothened
with a low-pass moving average filtering with a 4-second
time window. These smoothened scores are used directly as
FE features. The three features are time stamped with frame
number.

B. HEART RATE FEATURES
Heart rate features are extracted from timestamped beats-
per-minute readings and RR intervals. Duplicate observations
are discarded and missing observations between two adjacent
observations are computedwith linear interpolation. The low-
resolution beat-per-minute readings collected in response to
soccer stimuli are up-sampled from 1/3 Hz to 1 Hz to comply
with tennis andmovie data. The up-sampled beats-per-minute
readings are then used to estimate RR intervals data. Both
data are normalized by mean subtraction.

A total of 9 time-varying features are extracted from
the BPM data, namely, beats-per-minute readings, variance,
derivative, kurtosis, skewness, range, energies in high- and
low-frequency bands, and ratio of the energies. A 4-second
sliding window with 90% overlapping is used to compute
the features. Derivative is computed with the first-order dif-
ferences between the adjacent samples within the time win-
dow. The summations of the absolute differences are divided
by the time difference of the time window to obtain the
final derivative value. Statistical aggregation methods are
used over the time samples within the window to compute
variance, skewness, and kurtosis. Difference between the
maximum and minimum of the samples is taken to compute
range. Energy features are computed over all the time samples
without using a sliding window. A band-pass-filter with a
Kaiser window between [0.04, 0.15] Hz and [0.15, 0.4] Hz is
used to compute low- (LF) and high-frequency (HF) energies.
The band-passed samples are squared to compute the energy
features. The ratio between these two energies (LF/HF) is
computed by taking an element-by-element ratio of LF and
HF. Skewness and kurtosis computed from beats-per-minute
data are not used as final features due to high redundancy and
invalid values.

A total of 7 HRV features are extracted from RR inter-
val data, including RR intervals, their standard deviations
(SDNN), successive RR interval pairs which differ by more
than 50 milliseconds (NN50), root-mean-square difference of
successive RR intervals (RMSSD), HF, LF, and LF/HF. The
energy feature are computed in a similar manner for beats-
per-minute data as described in the last paragraph, while the
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other features are computed using a 4-point sliding window.
SDNN is computed by taking the standard deviation over the
time samples. RMSSD was computed using a second order
difference between the adjacent RR samples within the time
window. A square root of the means (of the samples in time
window) is taken as RMSSD. For computing NN50, a first
order difference between adjacent time samples is taken,
and then it is computed how many samples have difference
values > 50.

C. MULTIMODAL DEEP LEARNING FEATURES
In addition to the time-varying features, this study investi-
gates the usefulness of features extracted using deep learning
approach, referred as ‘deep feature’ in this paper. The deep
learning network is designed to contain two hidden layers
and trained with a stack of (two) autoencoders. An autoen-
coder is an artificial neural network used for unsupervised
learning of the data. Each autoencoder, a combination of
encoder and decoder, learns a sparse representation in its
respective hidden layer. A subsequent encoder thus extracts
the representative version of the input data. In this work, the
number of hidden layers and autoencoders are kept smaller
due to smaller dimensionality of the input data. The first
autoencoder takes the extracted features (FE, BPM, HRV)
as input and its output is a compressed version of the input
features. These compressed features are then further encoded
to extract the representative features for the input features.
These representative features are then fed into the second
autoencoder and the subsequent encoder in a similar manner
to extract a set of deep features. Fig. 8 depicts the configura-
tion of the deep feature extraction using the two autoencoders.

The size of each hidden layer is set to be smaller than its
input size and this determines the output size of the respective
autoencoder. During training each autoencoder, a number of
input parameters including the size of hidden layer, number
of passes, factor of regularizer (for the weights of the net-
work), and sparsity regularizer have been configured based
on heuristics. The extracted FE, BPM, and HRV features are
individually fed to the first autoencoder and the outputs are
successively fed to the second autoencoder. The outputs of the
second autoencoder are considered and utilized as the deep
features.

V. VIEWER INTEREST DETECTION
The viewer interest detection is achieved using the Gaus-
sian mixture model (GMM) technique. GMM is a model-
based technique and used in estimating interest from music
and music video. Performance of such model using content-
based features is found higher than support vector regres-
sion [52], [53]. This study chooses GMM over traditional
classifiers as preliminary test results show that GMM achieve
higher performance (F1-score varies 61-64% for domain-
general approach) than Adaboost, SVM, and Decision Tree
(F1-score varies 32-61% for domain-general approach) in this
experimental context.

FIGURE 8. Deep feature extraction from FE, BPM, and HRV modalities
using autoencoders. The sizes of the hidden layer for the first
autoencoder (N1) across the three modalities are: FE = 2; BPM = 5; and
HRV = 7. Similarly, sizes of the hidden layer for the second autoencoder
(N2) are: FE = 1; BPM = 3; and HRV = 4.

The detection method uses two GMMmodels trained with
separate feature samples labelled as ‘interesting’ and ‘not-
interesting’, to classify the features. During testing, a set
(of samples) is tested against the two GMMs using a posterior
probability function. The posterior function inMATLAB pro-
duces a probability score (i.e., posterior probability of each
GMM component) and a likelihood score (i.e., negative log-
likelihood). Equations (1) and (2) show the tests where δINT
and δNINT are the twoGMMs and S is the set of samples being
tested. The posterior probabilities and likelihood scores are
denoted respectively as 8 and 9.

(8INT , 9INT ) = Test(δINT , S) (1)

(8NINT , 9NINT ) = Test(δNINT , S) (2)

A decision on predicted label is taken using the maxi-
mum posteriori classification approach, where the label of
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the GMM having a higher likelihood score is considered as
the predicted label, LPREDICT (shown in (3)). The GMMs are
trained and tested with each of FE, BPM, and HRV channels
(of features) individually to check each channel’s individual
performance. A principal component analysis (PCA) is not
included since our preliminary tests revealed that the princi-
pal components perform poorly if they are treated as features
and applied in classification. The PCA is applied separately
over the features from each channel and the first 3 principal
components were taken to use as feature for classification.
The accuracy achieved was varying between 40-41% across
the three classification approaches.

LPREDICT = argmax(9INT , 9NINT ) (3)

The features (from three channels) are trained and tested
in identical manner using three approaches, namely, domain-
general, cross-domain, and domain-specific approaches
(described in Table 3). A subject-dependent iteration is
applied in this cross-validation to check if there is any pos-
sible subjective bias over the detection performance.

TABLE 3. Classification Approaches Applied for Viewer Interest
Detection – Soccer, Tennis, and Movie Data are Denoted Respectively
as Ds, Dt, and Dm.

General assumption: Let us consider that Ts and Tr are two
matrices of FE, BPM, or HRV features for testing and training
respectively. The number of subjects for sports (i.e., 12) and
movie (i.e., 20) data is denoted by t, where t ∈ [12, 20].
Assume that (Ts , Tr ) = [X1, X2, . . . ,Xt ], where X is the
normalized feature matrix for a random subject and t denotes
the number of subjects. X = (xij)m×n where xij is the ith
instance of the jth feature, and Y = [y1, y2, . . . , ym]: yj =
[0, 1] is the subject-independent ground truth labels, where
‘0’ indicates ‘interesting’ and ‘1’ indicates ‘not-interesting’.

A. DOMAIN-GENERAL APPROACH
This classification approach tests data obtained for soccer,
tennis, and movie clips separately against a model trained
with all of them. Here ‘data’ denotes the selected ‘fea-
tures’. In this approach, the features extracted from both the
movie data are separately tested against a model trained with
both movie and sports (soccer and tennis) data. A subject-
independent ground truth and a leave-one-video-out cross-
validation method have been used. Due to a shorter length,
data from the 20 movie clips has been considered as a sin-
gle data unit during classification. Thus, the leave-video-out
cross-validation distributes the data from 3 soccer, 2 tennis,
and 20movie clips in such forms: vid1 (soccer); vid2 (soccer);
vid3 (soccer); vid4 (tennis); vid5 (tennis); and vid6 (all movie
clips).

Initialization: The features in Ts come from a single video
data (vidk∈[1,2,...,6]), while features in Tr are from the remain-
ing video data (vidl=[1,2,...,6]−k ). The features in Ts and Tr are
separately normalized so that they have zero mean and unit
variance.
Step 1: The feature instances in Tr = [X1, . . . ,Xt ]

are separated into ‘interesting’ and ‘not-interesting’ clusters
(i.e., αINT, αNINT) using ground-truth labels in Y . For
this purpose, a direct mapping between time-based ground
truth labels (yi) and time-stamped feature instances (xij) is
obtained, as [xij, yi].
Step 2: The separated training instances are used to train

an ‘interesting’ GMM (δINT) and a ‘not-interesting’ GMM
(δNINT), using (4) and (5). The number of components
for each GMM is computed using the Akaike information
criterion (AIC).

δINT =
∑c

p=1
wpd

(
αINT |µp,

∑
p
)
: αINT ∈ Tr (4)

δNINT =
∑c

p=1
wpd

(
αNINT |µp,

∑
p
)
: αNINT ∈ Tr (5)

In (4) and (5), wp and d denote the weight and density
of Gaussian mixture, respectively. The µp,

∑
p, and C are

respectively the mean, covariance, and number of compo-
nents of the GMM.
Step 3: This step is iterated for each subject (t times).

During testing, each subject’s feature instances, Xt∈[12,20] =
[x1, x2, . . . , xm−1, xm]n are further divided into seg-
ments of ‘interesting’ and ‘not-interesting’ feature instances,
[S1, . . . , Sr ]n: r < m. Each such segment contains a num-
ber of sequential instances labelled as ‘interesting’ or ‘not-
interesting’, S = [x1, . . . , xd ]: [y1, . . . , yd ] ∈ [0 ∨ 1].
Step 4: Each such segment, Si is then compared against the

two GMMs and a label is predicted using (1), (2), and (3).
The deep features obtained for FE, BPM, and HRV channels
are used in an identical manner as the original FE, BPM, and
HRV features.

B. CROSS-DOMAIN APPROACH
This approach is used to confirm the need for training with
new type of stimuli, which represents the key challenge
in achieving a generic model. It checks whether a model
trained with sports stimuli can detect viewer interest during
movie stimuli, and vice versa. The training vs testing cases
include: training with movie data and testing with (i) soccer
and (ii) tennis data; training with (iii) soccer and (iv) tennis
data and testing with movie data. This approach treats the
20 movie clips individually as separate clips rather than
a whole group. A subject-dependent iterative test follows
where each subject’s data in response to each clip has been
tested against the trained model.

Initialization: The features in Ts and Tr are obtained from
the data of two different domains (sports vs movie, or movie
vs sports). The features are separately normalized to have
zero mean and unit variance.

Training: The features in Tr are separated into two clusters
of training data labeled as ‘interesting’ and ‘not-interesting’,
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following the identical procedure described in Step 1 of
Section V-A. Two GMMs are trained with ‘interesting’ and
‘not-interesting’ training data using (4) and (5).

Testing: For each subject, the feature data, Xi is divided
into segments of feature instances labeled as ‘interesting’ or
‘not-interesting’. The method used is identical to Step 3 of
Section V-A.

Each such segment is then tested against the two GMMs
and two likelihood scores are obtained, as shown in
(1) and (2). The predicted label is obtained from the corre-
sponding label of that GMM which produces a higher likeli-
hood score as shown in (3).

C. DOMAIN-SPECIFIC APPROACH
In this approach, features extracted from the data of a spe-
cific domain (i.e., movie, soccer, or tennis) are used both in
training and testing. The subject-independent ground truth
and a leave-one-subject-out cross-validation is used. In case
of movie data (t = 20), features from each subject’ data
are tested against the model trained with the remaining 19
subjects’ features. And in case of soccer and tennis data
(t = 12), features from each subject’s data are tested against
the model trained with the remaining 11 subjects’ feature
data.
Initialization: The leave-one-subject-out cross-validation

assumes Ts = Xi=1:t as a random subject’s feature data and
Tr = [X1, . . . ,Xt ] − Xi: t ∈ [12, 20] as the remaining
subjects’ (12 or 20) feature data. The features in Ts and Tr are
normalized separately to have zero mean and unit variance.
Classification: The procedure is identical to the steps

described in Section V-A. The feature instances in Tr are
separated and used to train two GMMs using (4) and (5).
During testing, the feature instances in Ts are divided into
segments of feature instances and each of them is tested
against the two GMMs using (1) and (2). The predicted label
is obtained from the label of the corresponding GMM that
yields a higher likelihood score, using (3).

VI. EXPERIMENTAL RESULTS
A. PERFORMANCE MEASURES
Each time a predicted label (LPREDICT ) is computed, it is com-
pared with the actual ground truth label, LACTUAL . LACTUAL
is calculated as [y1 ∨ y2 ∨ . . . ∨ yd ]: yi = [0 or 1]. Four
performance matrices including true positive, false positive,
true negative, and false negative (i.e., respectively TP, FP,
TN, and FN) are computed. True positive is measured as the
number of feature (instance) segments which are both pre-
dicted and labelled as ‘interesting’. Similarly, false positive
is measured as the number of segments which are predicted
as ‘interesting’ but labelled as ‘not-interesting’. True negative
is the number of segments which are both predicted and
labelled as ‘not-interesting’. False negative is measured as the
number of segments which are predicted as ‘not-interesting’
but labelled as ‘interesting’. The performance matrices are

used further to compute recall, specification, and F1-score as
performance measures.

The total counts for TP, FP, TN, and FN of each subject’s
feature data are combined as confusionmatrix. These subject-
dependent confusion matrices are further aggregated into
a summarized confusion matrix for each channel (i.e., FE,
BPM, and HRV), presented in Table V. The aggregation is
completed by taking the cases with the maximum TP and
maximum TN. The precision, recall, and F1 scores obtained
during classification in a subject-dependent manner are com-
bined for each video/clip and then combined for each channel.
Then means, standard deviations, and maximums of these
precision, recall, and F1 scores are taken to aggregate them
for each channel and for each classification approach.

TABLE 4. Detection performance.

B. ACCURACY OF VIEWER INTEREST DETECTION
Table IV presents the performance of viewer interest detec-
tion across different channels and classification approaches,
indicated by the mean, max and standard deviation (SD)
of precision and recall rates. Across all channels, domain-
specific approach consistently produces the highest precision
(78%) and recall (60%) rates, followed by domain-general
and cross-domain approaches. However, use of deep fea-
tures improves the performance of domain-general approach
(precision: 55%, recall: 83%). The standard deviations vary
within 2-30% across the three classification approaches,
which indicates a critical tradeoff between higher accuracy
and lower precision. Nevertheless, themaximumvalues of the
precision-recall performance of each experiment are not that
different to the mean values, indicating that the classification
performance is rather consistent at 50-87% precision, and
57-96% recall rates.

HRV features consistently generates higher precision but
lower recall rates than BPM and FE features across the
three approaches. This indicates that HRV features give
fewer but more accurate detection of ‘interesting’ instances.
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FIGURE 9. Box plot of F1-scores (in %) for facial expression, heart rate
(bpm), and heart rate variability (RR) data.

However, HRV gives a large variation in precision and recall
rates with standard deviations between 11-30% across the
three approaches. Using BPM features generally achieves
higher recall rates (more detection with less accuracy) than
using HRV and FE features. The standard deviations of
precisions and recall rates vary between 11-34%. The FE
features have the least precision and recall rates with the
lowest variance among the three feature channels.

Fig. 9 presents box plots of the F1-scores (in %) obtained
for FE, BPM, and HRV features in the three classification
approaches. The F1-scores obtained for all subjects in each
feature channel and each classification approach are com-
bined together to compute the minimum, 25th percentile,
median, 75th percentile, and maximum. The box plots
confirm the higher accuracy of domain-specific approach
(45-78%) over domain-general (31-69%) and cross-domain
(11-67%) approaches. It is also evident that the BPM features
consistently achieve higher accuracy.

The plots show high variance as they are constructed based
on a combination of each subject’s data, instead of aggrega-
tion. According to the error bars, the variance in F1-scores is
higher for HRV features, while lower for BPM features. The
variance generally is lower for the FE features.

FIGURE 10. Mean F1-scores achieved by the three feature channels in
domain-general (with and without deep features), domain-specific, and
cross-domain approaches.

C. PERFORMANCE WITH DEEP FEATURES
Fig. 10 illustrates the means (in %) of the F1-scores obtained
in the three classification approaches. The F1-scores com-
puted for all subjects in each feature channel and each classi-
fication approach are aggregated. The use of deep features in
the domain-general approach increases its performance from
45-52% to 62-64%. It achieves a higher overall accuracy than
the domain-specific approach (52-65%).

Among the three feature channels, BPM features have
higher and more consistently stable accuracy (51-64%) than
HRV (30-65%) and FE (49-61%) features. The FE fea-
tures are the second in achieving consistent accuracy. The
HRV features achieve lower accuracy in the domain-general
(without deep features) and cross-domain approaches, which
are improved after the deep features are included. Overall,
the accuracy of FE, BPM, and HRV features increases after
applying deep features.

TABLE 5. Confusion matrix for best cases for each channel obtained
using domain-general, cross-domain, and domain-specific approaches.

Table V depicts the confusion matrix with cases where
the TP and TN are maximum for each channel and classi-
fication approach. The hits, false alarms, and true rejections
are computed by taking fractions of measured TP, FN, FP,
and TN. The overall results indicate that the domain-specific
approach performs better (0.67 hits) than the domain-general
(0.56 hits) and cross-domain (0.50 hits) approaches. Both the
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domain-specific and domain-general approaches have zero
miss rates and thus omitted in Table V.

Among the three feature channels, the use of BPM features
appears to produce the most consistent and highest detec-
tion rates in all three classification approaches. Using HRV
features consistently give higher rejection rates than FE and
BPM features. The (high resolution) beats-per-minute and
RR interval data appear to produce better features than facial
expression features. This also indicates that the BPM features
are better in detecting an ‘interesting’ state while the HRV
features are better in detecting a ‘not-interesting’ state.

VII. DISCUSSION
This work uses machine learning techniques to automatically
detect viewer interest in response to stimuli using facial
expression and heart rate signals. Compared to facial expres-
sion, heart rate is a more a spontaneous physiological signal,
therefore is expected to be more indicative to viewer interest.
The experimental results support this hypothesis as heart
rate (F1: 52-62%) and heart rate variability (F1: 30-64%)
features show superior performance over facial expression
(F1: 48-51%) features across all training-testing approaches.
However, a higher variance in F1-scores when heart rate
features were used couldmean that facial expression is amore
robust modality for detecting viewer interest, as the data is
less affected by signals quality and resolution when different
wearable sensors are used for recording the viewer’s heart
rate.

The experimental results also demonstrate that deep learn-
ing approach can improve the performance of a genericmodel
(F1: 61-64%) up to the level of a domain-specific model
(F1: 52-65%) for viewer interest detection. This supports the
hypothesis that extraction of deep learning features using
auto-encoder-based neural networks can capture higher-
level and more representative features from viewer interest
that cannot be captured by manually engineered features.
However, domain-specific model still (as expected) yields the
highest accuracy compared to the domain-general and cross-
domain approaches.

VIII. CONCLUSION
This work investigates the feasibility of a generic model to
detect viewer interest using facial expression and heart rate
features. To overcome the constraint of limited modality,
the experiment includes features from three channels includ-
ing facial expression, heart rate, and heart rate variability.
Heart rate and variability features achieve performance with a
diverse range, which can be minimized by using higher reso-
lution data. Deep learning features are useful to capture subtle
and representative patterns in viewer bio-signals, which facil-
itates building a genericmodel for affect recognition. The size
of the neural network is kept small in this work (i.e., two auto-
encoders) since the dimensionality (i.e., size) of the extracted
features is relatively low. A higher sample size would be
useful in designing a bigger and sophisticated neural network.
Future work will investigate more sophisticated nonlinear

features including Poincare and recurrence features. Other
classification techniques can be used (apart from GMM) to
test if the performance of the general model can be improved
further.
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