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ABSTRACT TV spectrum has lower path loss, longer transmission range, and higher penetration capability,
resulting in a wide range of potential important applications. However, unlike Wi-Fi bands, TV spectrum
is subjected to high spatial and temporal variations due to the random arrivals and departures of primary
users (PUs), which results in new technical challenges in TV spectrum utilization. One important issue
is how to allocate TV spectrum to secondary users (SUs) by taking the spatial and temporal variations
into consideration. This has been largely ignored in previous studies. In this paper, we first formulate the
TV spectrum allocation problem as a 0-1 integer optimization problem, and then we approximate our optimal
objective via Log-Sum-Exp function. Thereafter, we solve this problem by implementing a Markov chain
in a distributed manner. Furthermore, we extend the static problem setting to a dynamic environment where
the number of vacant TV channels varies with time due to the arrivals and departures of PUs. Simulation
results show that our proposed distributed algorithm can converge very fast to the optimal solution, and can
achieve a close-to optimal performance with a guaranteed loss bound.

INDEX TERMS TV spectrum allocation, distributed algorithm, time-reversible Markov chains, spatial
variation, temporal variation.

I. INTRODUCTION
According to the report by Cisco Visual Networking Index
(CVNI), worldwide data traffic grew 63% in 2016, and is pre-
dicted to continue its rapid growth for several years [1]. This
increasing demand for high data-rate wireless services has
led to an impending spectrum crisis. After the transition from
analog to digital television broadcast, a substantial amount of
TV spectrum that was previously used by analog transmission
will become available due to the higher spectrum efficiency
of digital TV. These newly freed up spectra are referred to as
TV white spaces (TVWS), which have drawn much attention
as they could provide promising means to mitigate the spec-
trum scarcity problem aswell as offer enormous opportunities
for new applications [2]–[4]. In 2008, Federal Communi-
cations Commission (FCC) permitted the use of TVWS on
an unlicensed basis [5] so long as requirements, such as
minimizing the interference to the licensed users are met.

Furthermore, in 2010, FCC released the final rule to approve
TVWS for unlicensed operation [6].

Previous literatures have been mainly focused on how
to detect and quantify the availability of TVWS [7], [8].
Recently, researchers and regulators have begun to investigate
how to allocate TVWS for wireless services. The spectrum
allocation problem has been extensively studied in wire-
less networks [9]–[12]. However, due to the unique nature
of TVWS, spectrum allocation is very different from that in
WiFi network. First, in order not to interfere with the licensed
users, only the vacant TV spectrum can be allocated to the
secondary users (SUs). Second, according to the measure-
ment of available TV spectrum at Harvard University [13],
TVWS displays significant spatial variation; therefore dif-
ferent SUs at different locations may have different sets
of available TV spectrum for exploitation. Third, since the
operations of licensed users are highly unpredictable and thus
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they can become active at any time. Hence temporal variation
of TVWS is also expected. In this case, the TV spectrum
allocated to SUs may vary with time [14]. Thus, spectrum
allocation in TVWS faces great challenges, and is very much
different from that in WiFi network.

Although some papers have studied TVWS allocation
issues [15]–[20], they did not take the spatial and temporal
variations of TVWS into consideration. To fill this gap, in this
paper, we propose a distributed algorithm for TV spectrum
allocation which can provide performance guarantee without
the propagation of global information. The basic idea of
this distributed algorithm is as follows: 1) we first approx-
imate the optimal objective via log-sum-exp function, and
then design a Markov Chain with steady-state distribution
specific to this problem. We show that the Markov chain
can be implemented in a distributed manner, which directly
yields a distributed algorithm for our TV spectrum allocation
problem. 2) We further extend the static spectrum problem
setting to a dynamic environment where the licensed user can
join or leave the system randomly.

The main contributions of this paper are as follows:
1) We first formulate the TV spectrum allocation problem

as a 0-1 integer optimization problem, and then we
use log-sum-exp function to approximate the optimal
objective. Thereafter, we construct a Markov Chain to
approach the optimal solution in a distributed manner.

2) We further extend our distributed algorithm to handle
TV spectrum spatial and temporal variations by con-
sidering a more realistic case where the PU randomly
departs or arrives at the system, which brings a greater
challenge in the algorithm implementation. To the best
of the authors’ knowledge, this case has not been fully
investigated by previous works.

3) Both the theoretical analysis and the simulation results
show that the approximation gap and the convergence
of our proposed distributed algorithm are guaranteed.

The rest of this paper is organized as follows. Some
related works are briefly reviewed in Section II. The system
model and problem formulation are given in Section III. The
proposed distributed algorithm is designed in Section IV.
A dynamic version of the TV spectrum allocation problem is
investigated in Section V. Simulation results and evaluations
are given in Section VI. Finally, Section VII concludes the
paper.

II. RELATED WORKS
Research on spectrum allocation has attracted a lot of atten-
tion in the WiFi scenario. For example, in [9], a sensing
and allocation strategy with one SU and multiple channels
is proposed, and the optimal allocation strategy is obtained
via linear programming. In [10], the spectrum allocation
problem is formulated as an oligopoly market, in which
several system parameters such as spectrum substitutability
and channel quality on the Nash equilibrium are studied.
In [11], a weighted semi-matching algorithm is proposed for
resources allocation in CRNs with the network performance

being improved by combining with removal algorithms and
power control. In [12], the spectrum allocation problem is
further investigated under a more practical scenario where
the heterogeneous characteristics of both secondary sender-
destination and primary channel are taken into consideration.
In [21], a spectrum auction mechanism for heterogeneous
secondary wireless service provisioning in CRNs is pro-
posed, where time-dependent buyer valuation information
is taken into consideration. By joint consideration of both
flexible spectrum demands and the satisfaction of SUs’
QoS expectations, a multi-unit spectrum auction in CR net-
works with power-constrained is further studied in [22].
In [23], energy-efficient maximizing resource allocation in
downlink of heterogeneous networks is investigated, where
the problem is formulated as a mixed-integer nonlinear frac-
tional programing.

Different from typical WiFi bands, TVWS are subject to
high spatial variation and temporal variation, hence spectrum
allocation is significantly harder than that in regularWiFi net-
work. Recently, spectrum allocation in TVWS has received
extensive attention. For example, in [13], an adaptive spec-
trum allocation algorithm that periodically reevaluates the
allocation based on TVWS availability is proposed. In [15],
the spectrum allocation problem is formulated as an opti-
mization problemwith the goal of distributing spectrum fairly
among all APs. In [16], the TV spectrum selection and client
assignment are considered as coupled problems, which is
significantly more complex than traditional methods. In [17],
a business model is presented by jointly taking the pricing and
admission control into consideration. In [18], an oligopoly
TVWS market has been investigated, in which several SUs
compete with one another to serve the end users. With the
consideration of fixed and variable pricing services for end
users, a TVWS database architecture is developed in [19].
Saifullah et al. [20] design a complete MAC protocol which
features a location-aware spectrum allocation for mitigat-
ing hidden terminal effects. In [24], a throughput-efficient
channel allocation framework for multi-channel cogni-
tive vehicular networks is proposed with the objective
of maximizing vehicular short-term utility. In [25], the
TVWS sharing problem is modeled as a multi-objective opti-
mization problem, and an evolutionary algorithm that shares
the TVWS among coexisting networks taking care of chan-
nel occupancy requirements is designed. Huang et al. [26]
propose a low complexity spectrum policy for the spectrum
manager which assigns fragmented white spaces for hetero-
geneous bandwidth requests in a centralized network. In [27],
a hybrid model of fuzzy rule based technique and genetic
algorithm for optimal TVWS allocation is proposed.

Our work differs from previous studies in three aspects.
• First, in this paper, we mainly focus on the TV spectrum
allocation problem by taking the spatial variation and
temporal variation into account, which has been largely
ignored in [15]–[20].

• Second, compared with [24], [26], our proposed
algorithm can be implemented in a distributed
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way based on the Markov approximation technique.
We prove that the constructed Markov chain is time-
reversible and can converge very fast to the optimal
solution.

• We further extend our distributed algorithm to a dynamic
environment where the PU can randomly depart or arrive
at the system.

III. SYSTEM MODEL AND PROBLEM FORMULATION
In this paper, we attempt to investigate the TV spectrum allo-
cation problem by taking the spatial and temporal variation
into account. In this case, different SUs may have different
available TV channels at their locations, and the available
channels may change with time due to the sudden appearance
of PU. Thus how to allocate TV channel to SUs based on
the current TVWS availability is one of the most important
problems in TV networks.

A. SYSTEM MODEL
We consider a TV network with two types of users operating
in the same licensed TV channel: the PU (e.g. TV receiver)
has the right to access the licensed TV channel at any time,
while the SU is permitted to access the TV channel on an
unlicensed basis. The operation of PU should be protected
whilst the SU operates on the vacant TV channel by querying
a geo-location database in advance. We assume there are N
SUs and M TV channels. We use C = {ch1, ch2, . . . , chM }
to denote the set of TV channels, and U = {u1, u2, . . . , uN }
to represent the set of SUs. Then we have |C| = M and
|U | = N . As stated in [13], TV spectrum availabil-
ity varies from one location to another. Therefore, differ-
ent SUs at different locations may have different sets of
vacant TV channels. Due to this spatial variation, the spec-
trum allocated to SU should be limited to the vacant
TV spectrum at its location. Let Cui be the set of available
TV channels at SU ui, with its cardinality |Cui | = mi.
As the temporal variation of TVWS is also expected,
TVWS availability will vary with time at a given location.
Thus, the value of mi will change as the PU is turned
on or turned off at a given location.

We model the topology of TV network as a general bipar-
tite graph G(C ∪ U , `). Vertex set C corresponds to the
TV channels in the network, and set U contains the SUs.
An edge exists between (ch, u) ∈ `, ch ∈ C and u ∈ U ,
if and only if the TV channel ch is available for SU u
at its location. As shown in Fig. 1(a), the sets of avail-
able channels for users ui, 1 ≤ i ≤ 4 are Cu1 =
{ch1, ch3, ch5}, Cu2 = {ch2, ch4}, Cu3 = {ch1, ch2, ch4},
Cu4 = {ch3, ch5}. In order to control channel congestion,
we assume that each TV channel can only serve content up
to Bc number of users simultaneously. Therefore, we con-
sider the constraint that each TV channel chj has a degree
bound Bj and we allow each channel to have a different
degree bound. Figs. 1(b)-(d) show a network configuration
with 4 users and 5 channels under a degree bound of 2 for each
TV channel.

FIGURE 1. (a)Network architecture for 4 SUs and 5 TV channels in Fig.1,
(b)-(d) three feasible TV spectrum allocation under degree bound 2 for
each channel.

B. PROBLEM FORMULATION
Let [V]N×M denote the TV spectrum allocation matrix with
its element vij defined as,

vij =

{
1 if TV channel chj is allocated to user ui
0 Otherwise

Since the SUs share the same TV spectrum resources
in both the time and frequency domains, collision may
occur between two SUs if they are within the range of
each other and trying to access the same channel. To rep-
resent this collision, we define a matrix AN×N×M as
follows:

Ai1,i2,j =

{
1 if SUs ui1 and ui2 collide on channel chj
0 Otherwise

The meaning of Ai1,i2,j = 1 is that SU ui1 and SU ui2
collide with each other on TV channel chj. Thus channel
chj cannot be allocated to SU ui1 and SU ui2 simultaneously
for communication. Therefore, the TV spectrum allocation
should satisfy the multi-user channel access condition, that
is

Ai1,i2,j = 1⇒ vi1jvi2j = 0, 1 ≤ i1, i2 ≤ N , 1 ≤ j ≤ M

(1)

In addition, a channel accessed by a massive number of
users may cause heavy congestion. Therefore, the number of
SUs can be served by a channel simultaneously is limited.
This constraint can be represented as∑

i

vij ≤ Bj, 1 ≤ j ≤ M (2)

Further, we assume that once a TV channel is allo-
cated to a SU, a transmission rate can be achieved. Let
xij denote the transmission rate of user ui transmitting on
TV channel chj. Finally, with the objective of maximizing
the achievable transmission rate, the TV spectrum allocation
problem can be formulated as the following optimization
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problem:

CUP− I : max
∑
i

∑
j

vijxij (3)

s.t.
∑
i

vij ≤ Bj, 1 ≤ j ≤ M (4)

vi1jvi2j = 0, ifAi1,i2,j = 1,

1 ≤ i1, i2 ≤ N , 1 ≤ j ≤ M (5)

vij ∈ {0, 1}, 1 ≤ i ≤ N , 1 ≤ j ≤ M (6)

Let F be the set of all feasible configurations that satisfy
all the constraints for the TV spectrum allocation problem.
For a configuration f ∈ F , we use xf to denote the objective
function under configuration f . Then, theCUP-I problem can
be formulated as follows:

max
f ∈F

xf (7)

It is obviously that the formulated problem is a combinato-
rial optimization problem and the complexity to find the opti-
mal solution will grow exponentially as the number of SUs
and TV channels increases. In the next section, we propose a
distributed algorithm to obtain a close-to-optimal solution.

IV. THE DISTRIBUTED ALGORITHM
Due to the combinatorial feature, it seems very challeng-
ing to solve this problem in polynomial time. In [28],
a Markov approximation technique in designing distributed
algorithms for solving combinatorial problems approxi-
mately is proposed. Benefiting from this framework, in this
paper, we can leverage on the Markov approximation to con-
struct a distributed algorithm for solving our combinatorial
problem defined in CUP-I approximately. In the following,
we describe in detail the two steps in the design of the dis-
tributed algorithm: log-sum-exp approximation and Markov
Chain implementation.

A. LOG-SUM-EXP APPROXIMATION
We first use log-sum-exp function to approximate the maxi-
mum objective function in (7), that is

max
f ∈F

xf ≈
1
ξ
log(

∑
f ∈F

exp(ξxf )) (8)

where ξ is a positive constant. Let |F | be the size of F , then
the approximation gap is upper-bounded by 1

ξ
log |F | [28].

Thus, as ξ →∞, the approximation gap goes to zero.
To provide a better understanding, we associate each con-

figuration f with a probability pf , resulting in the following
equivalent problem

CUP− II : max
P≥0

∑
f ∈F

pf xf (9)

s.t.
∑
f ∈F

pf = 1 (10)

where P = [pf ]f ∈F is the associated probability for all
configurations. We can easily observe that the optimal value

of CUP-II is the same as (7) and can be obtained by setting
the probability of the optimal configuration to be 1, and the
other configurations to be 0.

According to Theorem 1 in [28], we can rewrite CUP-II
problem in the following approximated form, that is

CUP− III : max
P≥0

∑
f ∈F

pf xf −
1
ξ

∑
f ∈F

pf log(pf ) (11)

s.t.
∑
f ∈F

pf = 1 (12)

By solving the Karush-Kuhn-Tucker(KKT) conditions on
the CUP-III problem [29], we can come to the following
conclusion in Theorem 1, that is
Theorem 1: The optimal solution and optimal value of the

CUP-III problem are given by

p∗f (x) =
exp(ξxf )∑

f ′∈F exp(ξxf ′ )
, ∀f ∈ F (13)

and

1
ξ
log[

∑
f ∈F

exp(ξxf )] ≈ max
f ∈F

xf (14)

Since the optimal value of CUP-III is 1
ξ
log(

∑
f ∈F

exp(ξxf )), then the original problem in (7) is implicitly
solved by computing an approximated version of the prob-
lem CUP-II, off by an entropy term 1

ξ

∑
f ∈F pf log(pf ) with

approximation gap bounded by 1
ξ
log |F |. Therefore, if we

can construct a Markov Chain with steady-state distribution
according to (13) in a distributed manner, the system will
time share among all the feasible configurations, when this
Markov Chain converges.

B. MARKOV CHAIN ALGORITHM DESIGN
We use Cu to denote the set of vacant channels for user
u ∈ U . Let C f

u be the set of in-use TV channels for user u
under configuration f . The set of not-in-used channels is
given by Cu/C

f
u . Further, we denote Cf = {{u, ch},∀u ∈

U , ch ∈ C f
u } as the set of all user-channel association

under the configuration f . An example is shown in Fig. 1(b),
Cf = {{u1, ch1}, {u1, ch3}, {u2, ch2}, {u3, ch2}, {u3, ch4},
{u4, ch5}}. In order to construct our Markov Chain, we only
allow direct transition between two adjacent configurations f
and f ′ if such transition corresponds to a user u selecting a
channel from Cu/C

f
u to use or removing a channel from C f

u ,
which means that the transition rate qf ,f ′ is set to zero unless
|Cf /Cf ′ | = 1 or |Cf ′/Cf | = 1. Under such assumption,
the transition between configuration f in Fig. 1(b) to config-
uration f ′ in Fig. 1(c) is feasible, while the direct transition
from the configuration in Fig. 1(c) to that in Fig. 1(d) is not
permitted.

In order to make the designed Markov Chain time-
reversible, the choice of transition rate has to satisfy the
following detailed balance equation

p∗f (x)qf ,f ′ = p∗f ′ (x)qf ′,f , ∀f , f
′
∈ F (15)
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In our paper, we design the transition rates qf ,f ′ and
qf ′,f as

qf ,f ′ =
1
2

1
exp(τ )

exp(ξxf ′ )

exp(ξxf )+ exp(ξxf ′ )
(16)

qf ′,f =
1
2

1
exp(τ )

exp(ξxf )
exp(ξxf )+ exp(ξxf ′ )

(17)

where τ is a constant. We can easily verify that the detailed
balance equation holds. It can be noted that with such design,
the system seems to favor configuration with a larger trans-
mission rate.

Next, we design the distributed implementation of Markov
Chain as follows:
• Initially: Each user u ∈ U randomly selects TV chan-
nels from Cu under the degree bound and multi-user
channel access condition, and uses these channels for
transmission.

• Step 1: Each user u ∈ U generates a timer which
is independent and exponential with mean 2 exp(τ )

|Cu|
and

starts to count down.
• Step 2: When the timer expires, user u measures its
received transmission rate to estimate xf . User u will go

to Step 3a with probability |C
f
u |
|Cu|

and go to Step 3b with

probability |Cu|−|C
f
u |

|Cu|
.

– Step 3a: User u randomly selects a in-use channel
from C f

u to remove, and then estimates rate x ′f .

– Step 3b: User u randomly selects a channel from
not-in-use Cu/C

f
u to transmit, and then estimates

rate x ′f .
• Step 4: With the estimates of xf and x ′f , user u
switches to the new configuration f ′ with probability

exp(ξxf ′ )
exp(ξxf )+exp(ξxf ′ )

, and back to configuration f with prob-

ability 1−
exp(ξxf ′ )

exp(ξxf )+exp(ξxf ′ )
. Then repeat Step 1.

The proposed implemented algorithm for the Markov
Chain is further illustrated in detail in Algorithm 1.

From the above algorithm, we can note that the generation
of count-down timer does not require the global informa-
tion of the system. We use the user’s received transmission
rate to estimate xf ′ . Thus the algorithm can be implemented
in a distributed manner and runs on each individual user
independently.
Theorem 2: The proposed Algorithm 1 realizes a time-

reversible Markov Chain and its stationary distribution p∗f (x)
is given by (13), ∀f ∈ F .

The proof of Theorem 2 is relegated to Appendix-A.

C. CONVERGENCE ANALYSIS
In the following subsection, we will analyze the convergence
of our designed algorithm. In our Markov Chain, the estimate
of xf may be inaccurate, which will lead to the algorithm not
converging to the stationary distribution p∗f (x).

For each feasible configuration f ∈ F , let φf denote the
inaccuracy bound, then [−φf , φf ] is the bounded region of the

Algorithm 1 Implemented Algorithm for Markov Chain
Require: U : User set;

Cui : Available TV channels set for user ui, ∀ui ∈ U .
Initialization: Each user ui ∈ U randomly selects channels
from Cui under the degree bound and multi-user channel
access condition for use.

1: Procedure Selection (ui)
2: Each user ui generates a timer which follows an expo-

nential distribution with a mean of 2 exp(τ )
|Cui |

;
3: End Procedure
4: while the timer expires do

5: With probability
|C fui |
|Cui |

,
6: User ui randomly removes a in-use TV channel
7: from C f

ui , and estimates xf ′ for configuration f ′;

8: f → f ′ with probability
exp(ξxf ′ )

exp(ξxf )+exp(ξxf ′ )
;

9: With probability 1−
|C fui |
|Cui |

,
10: User ui randomly chooses a channel from
11: Cui/C

f
ui , and estimates transmission rate xf ′ ;

12: f → f ′ with probability
exp(ξxf ′ )

exp(ξxf )+exp(ξxf ′ )
;

13: refresh the timer and begin counting down.
14: end while
15: return rules

inaccurate rate [30]. Furthermore, we quantify the observed
rate to 2kf + 1 discrete values:

[xf − φf , . . . , xf −
1
kf
φf , xf , xf +

1
kf
φf , . . . , xf + φf ]

Let πfj be the probability that the observed rate takes value

xf +
j
kf
φf , ∀j ∈ {−kf , . . . , kf } and

∑kf
j=−kf πfj = 1. Given a

configuration f ∈ F and its estimated rate xf in the original
Markov Chain, the system transits to a new configuration f ′

with probability
exp(ξxf ′ )

exp(ξxf )+exp(ξxf ′ )
, and stays in configuration f

with probability 1 −
exp(ξxf ′ )

exp(ξxf )+exp(ξxf ′ )
. However, due to the

inaccurate observed rate, there are extra 2kf + 1 states for
configuration f : (f , xf +

j
kf
φf ), j ∈ {−kf , . . . , kf }. In this

case, the system in state (f , xf +
j
kf
φf ) will switch to new

a configuration f ′ with probability

exp(ξ (xf ′ +
j
kf ′
φf ′ ))

exp(ξ (xf +
j
kf
φf ))+ exp(ξ (xf ′ +

j
kf ′
φf ′ ))

and stay in configuration f with probability

1−
exp(ξ (xf ′ +

j
kf ′
φf ′ ))

exp(ξ (xf +
j
kf
φf ))+ exp(ξ (xf ′ +

j
kf ′
φf ′ ))

For ease of expression, in the following, we use fj and f ′j to

represent the states (f , xf +
j
kf
φf ) and (f ′, xf ′+

j
kf ′
φf ′ ), for all

f , f ′ ∈ F , j ∈ {−kf , . . . , kf }. Similar to (16), the transition
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rate from state (f , xf +
j
kf
φf ) to state (f ′, xf ′+

j
kf ′
φf ′ ) is given

by

q∗fj,f ′j
=

exp(ξ (xf ′ +
j
kf ′

)φf ′ )

exp(ξ (xf ′ +
j
kf ′

)φf ′ )+ exp(ξ (xf +
j
kf
)φf )

·

πf ′j

2 exp(τ )
(18)

and we also have

q∗f ′j ,fj
=

exp(ξ (xf +
j
kf
)φf )

exp(ξ (xf ′ +
j
kf ′

)φf ′ )+ exp(ξ (xf +
j
kf
)φf )

·
πfj

2 exp(τ )
(19)

where
∑kf

j=−kf πfj = 1 and
∑kf ′

j=−kf ′
πf ′j
= 1. We refer to

such new Markov Chain as an extended version of the orig-
inal one proposed in the previous subsection. The extended
Markov Chain has a finite number of states, and any two
states are reachable from each other. Therefore, this extended
Markov Chain is irreducible and a unique stationary distribu-
tion exists.

Let p̄f ,xf+ j
kf
φf

denote the stationary distribution under the

configuration f ∈ F with observed rate xf +
j
kf
φf , then we

have

P̄ = [p̄f ,xf+ j
kf
φf
, j ∈ {−kf , . . . , kf }, f ∈ F ] (20)

As there are 2kf +1 states under configuration f in the new
Markov Chain, the stationary distribution of configuration f
is given by

p̃f (x) =
kf∑

j=−kf

p̄f ,xf+ j
kf
, ∀f ∈ F (21)

Thus, the stationary distribution of the new Markov Chain
is denoted by P̃ = [p̃f (x), f ∈ F ].

After the extended Markov Chain has been designed,
we can study the impact of the inaccurate transmission rate.
To provide a convergence analysis, the total variance distance
is used to quantify the difference between P∗ and P̃ [31],
which is defined as

dTV (P∗, P̃) =

∑
f ∈F |p

∗
− p̃|

2
(22)

where P∗ = [p∗f (x),∀f ∈ F ] is the stationary distribution of
the original Markov Chain. Then we come to the conclusion
in following theorem 3.
Theorem 3: The bound of dTV (P∗, P̃) is given by :

0 ≤ dTV (P∗, P̃) ≤ 1− exp(−2ξφmax) (23)

where φmax = maxf ∈F φf . Moreover, let xmax = maxf ∈F xf ,
then the optimality gap in transmission rate |P∗xT − P̃xT | is
bounded by

|P∗xT − P̃xT | ≤ 2xmax(1− exp(−2ξφmax)) (24)
The proof of Theorem 3 is relegated to Appendix-B.

V. DYNAMIC MARKOV CHAIN
In this section, we extend the above static problem setting to a
dynamic environment, which will bring about new significant
challenges. As observed in [13], the behaviors of PUs are
highly unpredictable as they can become active at any time
without any warning. In this case, the SU needs to promptly
vacate the occupied TV channel in order not to interfere with
the PUs. Due to this temporal variation of TVWS, when a
PU arrives, the dedicated channel must be vacated to serve
the PU. When a PU departs, the channel will be released
and reused by the SUs. Therefore the number of vacant
TV channels for each SU varies with time.

To model such temporal variation, we assume that the
PUs arrive in the system according to a Poisson process
with parameter λ, and stay for a time that is exponentially
distributed with parameter µ. Thus, the TV channel becomes
vacant at a rate of µ and unavailable at a rate of λ. Under this
setting, the number of TV channels in the system will obey a
M/M/m queue [33]. Let ϕ = µ

λ
, the stationary distribution

is given by:

9m =
ϕme−ϕ

m!
(25)

Furthermore, we can get the following steady-state
equation

9mµ = 9m+1(m+ 1)λ (26)

Let Fm denote the set of all feasible configurations where
there are m TV channels available, and xmfm be the system
objective function for a given fm ∈ Fm. Then we have the
optimal performance for m channels as follows

xmmax = max
fm∈Fm

xmfm (27)

Meanwhile, the long-term averaged system performance
can be denoted as:

ϒ∗ =

∞∑
m=0

9mxmmax (28)

A. LOG-SUM-EXP APPROXIMATION
Likewise,we have the following function by using the Log-
Sum-Exp approximation:

xmmax ≈
1
ξ
log[

∑
fm∈Fm

exp(ξxmfm )] (29)

Combining (28) and(29), the long-term averaged system
performance can be rewritten as

ϒ∗ ≈

∞∑
m=0

9m
1
ξ
log[

∑
fm∈Fm

exp(ξxmfm )] (30)

Next, we use pfm to denote the percentage of time associ-
ated with configuration fm ∈ Fm. Using similar argument as
in the previous section, we get the following theorem
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Theorem 4: The optimal value of the following optimiza-
tion problem

max
P≥0

∞∑
m=0

∑
fm∈Fm

pfmx
m
fm −

1
ξ

∞∑
m=0

∑
fm∈Fm

pfm log(pfm ) (31)

s.t.
∑

fm∈Fm

pfm = 9m, ∀fm ∈ Fm, m = 0, 1, 2, . . . (32)

is (30), and the optimal solution is given by

p∗fm=9m
exp(ξxmfm )∑

f ′m∈Fm
exp(ξxmf ′m )

, ∀fm ∈ Fm, m=0, 1, 2, . . .

(33)

B. MARKOV CHAIN ALGORITHM DESIGN
Now, we design a Markov Chain with stationary
distribution p∗fm . We only allow transitions between two states
when a PU arrives or departs. Suppose there are m TV
channels in the system. When a PU departs, a TV channel
occupied by the PU will be released and the system will leave
state fm and enter into statefm+1.When a PU arrives, one of the
vacant TV channels will be removed from the system and the
state will transit from fm+1 to fm. We use qfm→fm+1 to denote
the transition rate from state fm to fm+1, which is defined as
follows

qfm→fm+1 = µ
exp(ξxm+1fm+1

)∑
s′∈S ,fm+1=fm∪s′ exp(ξx

m+1
fm+1

)
(34)

where S is the set of local configurations that are available
for the new channel, and fm+1 = fm ∪ {s}.

When a PU arrives, one of TV channels will be vacated,
and the system will transit from state fm+1 to state fm with
rate qfm+1→fm given by

qfm+1→fm = λ(m+ 1)

∑
fm+1∈Fm+1

exp(ξxm+1fm+1
)∑

fm∈Fm
exp(ξxmfm )

×
exp(ξxmfm )∑

s′∈S ,f ′m+1=fm∪s
′ exp(ξxm+1f ′m+1

)
(35)

Next, we illustrate the implemented algorithm for the
Markov Chain, which should be time-reversible, and satisfy
the following detailed balance function

p∗fmqfm→fm+1 = p∗fm+1qfm+1→fm (36)

• Step 1: Let fm be the current configuration, when a
PU departs, the system will leave state fm and transit to
state fm+1 = fm ∪ s.

• Step 2: The new channel will be associated to local
configuration s ∈ S with a probability of

exp(ξxm+1fm+1
)∑

s′∈S,fm+1=fm∪s′ exp(ξx
m+1
fm+1

)

FIGURE 2. The achieved transmission rate with N = 5 and M = 5.

• Step 3:When a PU arrives, one of the TV channels will
be removed from use with a probability∑

fm+1∈Fm+1
exp(ξxm+1fm+1

)∑
fm∈Fm

exp(ξxmfm )
·

exp(ξxmfm )∑
s′∈S ,f ′m+1=fm∪s

′ exp(ξxm+1f ′m+1
)

and the system will enter state fm.
Theorem 5: The implementation of Algorithm 2 real-

izes a time-reversible Markov Chain with stationary
distribution p∗fm .

The proof of Theorem 5 is relegated to Appendix-C.

VI. SIMULATION RESULTS
In this section, we use simulations to evaluate our proposed
distributed algorithms. We set ξ = 2 and τ = 6. In order
to model the random characteristic of SUs, the transmission
rates xij are randomly generated between 1 and 4. We let
the number of SUs and TV channels vary from 5 to 25.
We run the simulations 1000 times to obtain the average
system performance.

A. EVALUATION OF ALGORITHM 1
In this subsection, we evaluate our proposed distributed algo-
rithm by checking the following two aspects:

1) Does the algorithm converge to the optimal solution as
expected from the theoretical analysis?

2) How fast does it converge?
We randomly choose a feasible configuration and run our

algorithm over it. The results are displayed in Figs. 2-4. From
these three figures, we can see that the transmission rate
increases with the iterations, which means that our algorithm
is likely to make the system transit to a configuration with
better performance until it converges. This can be achieved
within 80 iterations for a small network with N = 5 and
M = 5 in Fig. 2, 149 iterations for a medium network with
N = 10 and M = 15 in Fig. 3, and 420 iterations for a
relatively large network with N = 25 and M = 25 in Fig. 4.
These results illustrate that the number of iterations needed
for convergence increases as the network size increases. Fur-
thermore, we can observe that the transmission rate achieved
is very close to the optimal value obtained by using the
exhaustive method. The approximation gap is 1 for small and
medium networks as shown in Figs. 2-3, and 3 for a large
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FIGURE 3. The achieved transmission rate with N = 10 and M = 15.

FIGURE 4. The achieved transmission rate with N = 25 and M = 25.

FIGURE 5. Computational complexity for original NP hard problem and
our proposed algorithm.

network as shown in Fig. 4. This is consistent with the com-
puted theoretical result of 1

ξ
log |F | = 2.39. Therefore, from

Figs. 2-4, we can verify that our algorithm converges very fast
to the optimal solution, and can achieve a close-to optimal
performance.

Next, we will study the performance of complexity over
the number of channels. As illustrated in Fig.5, our proposed
algorithm is much simpler than the original NP hard problem
where the optimal value is obtained using exhaustive search,
especially for a large number of channels. Thus the designed
distributed algorithm can achieve a close-to-optimal solution
with less complexity.

B. PERFORMANCE COMPARISON
Next, we compare our distributed algorithm with the fol-
lowing two methods when the number of channels M varies
from 5 to 25.

FIGURE 6. Comparison between our algorithm, Optimum, NNSM
and RSM.

FIGURE 7. Collision graph settings for simulation.

1) Nearest Neighbor Selection Method (NNSM): Each
user transmits on the channel that is closest to it.

2) RandomSelectionMethod (RSM): Each user randomly
chooses one vacant channel to use.

The simulation result is illustrated in Fig. 6. As a com-
parison, the transmission rate achieved by our distributed
algorithm is also shown. From Fig. 6, we can see that
Algorithm 1 outperforms RSM and NNSM in transmission
rate, and is closest to the optimal value. Furthermore, this
improvement becomes larger and larger as the number of
TV channels increases. The reason is that our proposed dis-
tributed algorithm can make the system transit to a better
configuration, and stay on the best configuration for most of
time, while for NNSM and RSM, each user only considers
its own preference as the system is unable to reach the global
optimum. From Fig. 6, it can also be noted that the transmis-
sion rate increases as the number of TV channels increases.

C. EFFECT OF COLLISION GRAPH
In order to better understand how our proposed algorithm
performs, we run our algorithm under the following three
collision graph cases:
• Case I: As shown in Fig. 7(a), all the SUs collide with
one another, which means that any two users cannot be
allocated with the same TV channel.

• Case II: As shown in Fig. 7(b), any SU only collides
with two adjacent users, thus TV channels re-utilization
is possible in some cases.

• Case III: The collision graph is randomly generated.
From Fig. 8, we can see that the achieved transmission

rate increases as the number of TV channels increases.
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FIGURE 8. Transmission rates for different collision graph settings.

FIGURE 9. Transmission rate for µ = 6, λ = 3.

Furthermore, we note that Case II can provide optimal
performance in terms of transmission rate. The reason is
obvious since for Case II, the same TV channel can be
allocated to different non-conflicting SUs, which increases
the achievable transmission rate. While for Case I, all the
SUs conflict with one another, thus no TV channel can be
re-utilized.

D. EVALUATION OF THE ALGORITHM IN DYNAMIC
SCENARIO
In this subsection, we evaluate our algorithm in a dynamic
scenario where the PUs randomly arrive and depart. The
unit time is set as 30, and is divided into 30 slots of equal
length. We then evaluate our algorithm for the following two
settings.
• Setting I: µ = 6, λ = 3, which means that there
are 3 PUs arriving and 6 PUs departing per unit
time.

• Setting II: µ = 3, λ = 5, which means that
there are 5 PUs arriving and 3 PUs departing per unit
time.

Figs. 9 and 10 depict the achievable transmission rate as a
function of the number of TV channels for different values
of N = {10, 15, 20} under setting I and setting II. From
Fig. 9, we can observe that the achievable transmission rate
increases at time point t = {5, 15, 25} due to the departure
of PU, and keeps invariant at time point t = {10, 20, 30}
because the arrival and departure of PUs both happen at these
points. From Fig. 10, we can see that the transmission rate
decreases at time point t = {6, 12, 18, 24}. The reason is

FIGURE 10. Transmission rate for µ = 10, λ = 3.

that there are PU arrivals and but no PU departure at these
point, which requires the PUs to occupy the TV channel being
used by SUs. Therefore, for the case of µ = 3 and λ = 5,
the achievable transmission rate decreases as time goes on
because that more PUs join the system.

VII. CONCLUSION
In this paper, we focus on the TV spectrum allocation prob-
lem by taking the spatial and temporal variations of TVWS
into consideration. This has always been ignored in most of
the literatures. With the objective to maximize the transmis-
sion rate, we formulate the TV spectrum allocation problem
as a 0-1 integer optimization problem, which is a com-
binatorial optimization problem. We propose a distributed
algorithm to approach the optimal solution by Markov
approximation method. Furthermore, we extend our dis-
tributed algorithm to a more realistic case where the
PU randomly departs or arrives at the system. Evaluation
results demonstrate that our proposed distributed algorithm
can converge very fast to the optimal solution.

APPENDIX
A. PROOF OF THEOREM 2

Proof: We only allow direct transitions between two
configurations f and f ′ if |Cf /Cf ′ | = 1 or |Cf ′/Cf | = 1 in
our Markov Chain design. In other words, we allow a user to
remove a channel fromC f

u or add a new channel fromCu/C
f
u .

Let Pr{f → f ′} denote the probability that the process will
enter state f ′ while leaving state f when the timer expires,
which contains the following two cases:
Case I: |Cf /Cf ′ | = 1, which means that user u removes a

channel from C f
u , the probability is

Pr(f → f ′) =
|C f

u |

|Cu|
·

1

|C f
u |
·

exp(ξxf ′ )

exp(ξxf )+ exp(ξxf ′ )

·

|Cu|
2 exp(τ )∑
v∈U

|Cv|
2 exp(τ )

=
1∑

u∈U |Cu|
·

exp(ξxf ′ )

exp(ξxf )+ exp(ξxf ′ )
(37)
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Case II: |Cf ′/Cf | = 1, which means that user u adds a new
channel from Cu/C

f
u , the probability is

Pr(f → f ′) =
|Cu| − |C

f
u |

|Cu|
·

1

|Cu| − |C
f
u |

·
exp(ξxf ′ )

exp(ξxf )+ exp(ξxf ′ )
·

|Cu|
2 exp(τ )∑
v∈U

|Cv|
2 exp(τ )

=
1∑

u∈U |Cu|
·

exp(ξxf ′ )

exp(ξxf )+ exp(ξxf ′ )
(38)

Each user u counts down at a rate given by

|Cu|
2

exp−1(τ ) (39)

Therefore, the process leaves state f at a rate of∑
u∈U

|Cu|
2

exp−1(τ ) (40)

By combining (37), (38) and (40), we can calculate the
transition rate from f to f ′ as:

qf ,f ′ =
1∑

u∈U |Cu|
·

exp(ξxf ′ )

exp(ξxf )+ exp(ξxf ′ )

·

∑
u∈U

|Cu|
2

exp−1(τ )

=
1

2 exp(τ )
·

exp(ξxf ′ )

exp(ξxf )+ exp(ξxf ′ )
(41)

Together with (13), we can easily verify that the balance
equation satisfies between any two adjacent states f and f ′.
Thus the constructed Markov Chain is time-reversible and its
stationary distribution is (13) according to Theorem 1.3 and
Theorem 1.4 in [32].

This completes the proof. �

B. PROOF OF THEOREM 3
Proof: LetM be the original Markov Chain, andM ′ be

the extendedMarkov Chain. Suppose there exist direct transi-
tions between configurations f and f ′ in the original Markov
Chain M , then there are direct transitions between states fj
and f ′l in the extended Markov chain M ′. The transition rates
are given by

qfj,f ′l =
exp(ξ (xf ′ + l

kf ′
φf ′ ))

exp(ξ (xf +
j
kf
φf ))+ exp(ξ (xf ′ + l

kf ′
φf ′ ))

·

πf ′l

2 exp(τ )
(42)

and

qf ′l ,fj =
exp(ξ (xf +

j
kf
φf ))

exp(ξ (xf +
j
kf
φf ))+ exp(ξ (xf ′ + l

kf ′
φf ′ ))

·
πfj

2 exp(τ )
(43)

where
∑kf

j=−kf πfj = 1 and
∑kf ′

l=−kf ′
πf ′l
= 1

According to the detailed balance equation pfjqfj,f ′l =
pf ′l qf ′l ,fj , ∀j ∈ {−kf , . . . , kf }, l ∈ {−kf ′ , . . . , kf ′}, we have

pfj
πfj exp(ξ (xf +

j
kf
φf ))
=

pf ′l
πf ′l

exp ξ (xf ′ + l
kf ′
φf ′ )

(44)

When j = l = 0, we have

pf0
πf0 · exp(ξxf )

=

pf ′0
πf ′0

exp(ξxf ′ )
(45)

Combining (44) and (45), we have
pf ′l
pf ′0
=

πf ′l

πf ′0

· exp(ξ
l
kf ′
φf ′ ), ∀l ∈ {−kf ′ , . . . , kf ′} (46)

For an arbitrary state f̂0 ∈ F in M ′, and f̂0 6= f , f ′,
since the extended Markov Chain M ′ is irreducible, state f̂0
is able to reach state f0 through a series of adjacent states
f̄ (1)0, . . . , f̄ (H )0. Then we have

pf̂0
pf0
=

H−1∏
h=1

pf̄ (h+1)0
pf̄ (h)0

(47)

Using (45), we have
pf̄ (h+1)0

πf̄ (h+1)0 · exp(ξxf̄ (h+1))
=

pf̄ (h)0
πf̄ (h)0 exp(ξxf̄ (h))

(48)

and
pf̂0

πf̂0
· exp(ξxf̂ )

=
pf0

πf0 · exp (ξxf )
(49)

Combining (43) and (46), we have

pfj
pf0
=
πfj

πf0
· exp(ξ

j
kf
φf ), ∀j ∈ {−kf , . . . , kf } (50)

and
pf0

πf0 · exp(ξxf )
is a constant, ∀f ∈ F (51)

Recall that for all f ∈ F , and j ∈ {−kf , . . . , kf }, we have

∑
f ∈F

kf∑
j=−kf

pfj = 1 (52)

Now, the combination of (50), (51) and (52) yields the
stationary distribution of the extended Markov Chain M ′,
that is

p̄fj =
πfj · exp(ξ (xf +

j
kf
φf ))∑

f ′∈F
∑kf ′

l=−kf ′
πf ′l
· exp(ξ (xf ′ + l

kf ′
φf ′ ))

(53)

for all f ∈ F , and j ∈ {−kf , . . . , kf }.
Since there are 2kf + 1 states for configuration f in the

extended Markov Chain M ′, the stationary distribution is
given by

p̃f =
kf∑

j=−kf

p̄fj , ∀f ∈ F (54)

VOLUME 6, 2018 59325



Z. Chen et al.: Distributed Decisions on TV Spectrum Allocation Considering Spatial and Temporal Variation

Then we have

p̃f =
%f exp(ξxf )∑

f ∈F %f ′ exp(ξxf ′ )
, ∀f ∈ F (55)

where

%f =

kf∑
j=−kf

πfj · exp(ξ
j
kf
φf ),∀f ∈ F (56)

Recall that the stationary distribution of the original
Markov Chain M is given by

p∗f =
exp(ξxf )∑

f ′∈F exp(ξxf ′ )
(57)

By (55), (56) and (57), we can get

p̃f
p∗f
=
%∗

%f
(58)

where

%∗ =

∑
f ′∈F %f ′ exp(ξxf ′ )∑
f ′∈F exp(ξxf ′ )

(59)

Let � = {f ∈ F : p∗f ≥ p̃f }, then the total variation
distance is given by

dTV (P∗, P̃) =

∑
f ∈F |p

∗
f − p̃f |

2
=

∑
f ∈�

(p∗f − p̃f ) (60)

Furthermore, we can get

p∗f − p̃f =
exp(ξxf )∑

f ′∈F exp(ξxf ′ )
−

%f exp(ξxf )∑
f ′∈F %f ′ exp(ξxf ′ )

=
exp(ξxf )∑

f ′∈F exp(ξxf ′ )
[1−

%f

%∗
] (61)

Next, we give an upper bound of 1 − %f
%∗
. For all f ∈ F ,

and j ∈ {−kf , . . . , kf }, we have

exp(ξ
j
kf
φf ) ≥ exp(−ξφf ) ≥ exp(−ξφmax) (62)

and

exp(ξ
j
kf
φf ) ≤ exp(ξφf ) ≤ exp(ξφmax) (63)

where φmax = maxf ∈F φf . Thus we get that

%f =

kf∑
j=−kf

πfj · exp(ξ
j
kf
φf ) (64)

≥

kf∑
j=−kf

πfj · exp(−ξφmax)

= exp(−ξφmax)

and

%f =

kf∑
j=−kf

πfj · exp(ξ
j
kf
φf ) (65)

≤

kf∑
j=−kf

πfj · exp(ξφmax)

= exp(ξφmax)

By (59) and (65), we can also have

%∗f =

∑
f ′∈F %f ′ exp(ξxf ′ )∑
f ′∈F exp(ξxf ′ )

(66)

≤

∑
f ′∈F exp(ξφmax) exp(ξxf ′ )∑

f ′∈F exp(ξxf ′ )
= exp(ξφmax)

Combining (64), (65) and (66), ∀f ∈ � ∈ F , we have the
upper bound of 1− %f

%∗

1−
%f

%∗
≤ 1−

exp(−ξφmax)
exp(ξφmax)

= 1− exp(−2ξφmax) (67)

Therefore, we have

p∗f − p̃f ≤
exp(ξxf )∑

f ′∈F exp(ξxf ′ )
[1− exp(−2ξφmax)] (68)

So, by (68), we can get

dTV (P∗, P̃) =
∑
f ∈�

(pf − p∗f )

≤

∑
f ∈�

exp(ξxf )∑
f ′∈F exp(ξxf ′ )

[1− exp(−2ξφmax)]

≤

∑
f ∈F

exp(ξxf )∑
f ′∈F exp(ξxf ′ )

[1− exp(−2ξφmax)]

= [1− exp(−2ξφmax)] (69)

Finally, the optimality gap in transmission rate is bounded
by

|P∗xT − P̃xT | = |
∑
f ∈F

(p∗f − p̃f )xf |

≤ xmax|(pf − p∗f )|

= 2xmaxdTV (P∗, P̃)

≤ 2xmax(1− exp(−2ξφmax)) (70)

This completes the proof. �

C. PROOF OF THEOREM 5
Proof: We denote Pr(fm→ fm+1) as the probability that

the system enters state fm+1 after leaving state fm when the PU
departs, then we have

Pr(fm→ fm+1) =
exp(ξxm+1fm+1

)∑
s′∈S ,fm+1=fm∪s′ exp(ξx

m+1
fm+1

)
(71)
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Furthermore, the PU departs at a rate of µ, so the system
leaves state fm at rate µ. Thus the transition rate qfm→fm+1 can
be calculated as

qfm→fm+1 = µ
exp(ξxm+1fm+1

)∑
s′∈S ,fm+1=fm∪s′ exp(ξx

m+1
fm+1

)
(72)

On the other hand, the PU arrives at a rate of λ. Thus the
TV channel becomes unavailable at a rate of λ. As there is a
total of m + 1 TV channels in the system, the system leaves
statefm+1 at a rate of (m + 1)λ. Thus we can calculate the
transition rate qfm+1 → fm as

qfm+1→fm = λ(m+ 1)

∑
fm+1∈Fm+1

exp(ξxm+1fm+1
)∑

fm∈Fm
exp(ξxmfm )

×
exp(ξxmfm )∑

s′∈S ,f ′m+1=fm∪s
′ exp(ξxm+1f ′m+1

)
(73)

Together with (33), we can see that the balance equation
holds. Thus the constructed Markov Chain is time-reversible
and its stationary distribution is (33).

This completes the proof. �
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