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ABSTRACT Multipath is one of the dominant error sources for high-precision positioning systems, such
as global navigation satellite systems. The minimum mean square error criterion is usually employed
for multipath estimation under the assumption of Gaussian noise. For non-Gaussian noise as appeared
in most practical applications, alternative solutions are required for multipath estimation. In this paper,
a multipath estimation algorithm is proposed based on the minimum error entropy (MEE) criterion under
Gaussian or non-Gaussian noises. A key advantage of using MEE is that it can minimize the randomness of
error signals; however, the shift-invariance characteristics in MEEmay lead to a bias of the estimation result.
To mitigate such a bias, an improved estimation strategy is proposed by integrating the second-order central
moment of the estimation error together with the prior information of multipath parameters as a constraint.
The multipath estimation problem is thus formulated as a constrained optimization problem. A modified
ε-constrained rank-based differential evolution (εRDE) algorithm is developed to find the optimal solution.
The effectiveness of the proposed algorithm, in terms of reducing the multipath estimation error and
minimizing the randomness in the error signal, has been examined through case studies with Gaussian and
non-Gaussian noises.

INDEX TERMS Multipath estimation, constrained optimization, mean square error (MSE), minimum error
entropy (MEE), ε- constrained rank-based differential evolution (εRDE).

I. INTRODUCTION
Multipath, the delayed replica of direct signal caused by the
reflection of buildings, hills and other obstacles, cannot be
eliminated by differential techniques due to the irrelevancy
between different instants and the uncertain occurrence along
the observation period. Thus,multipath has become one of the
dominant error sources degrading the positioning accuracy
in differential positioning systems [1]–[3]. In the presence of
multipath, the direct signal and the multipath signal contained
in the composite signal, tracked by a receiver, cannot be
distinguished from each other. As a result, an error arises,
which is known as multipath error.

Various methods have been developed to mitigate the
multipath error, such as the antenna techniques in front,
the correlator and discriminator-based methods in delay

lock loop (DLL), and the data processing methods [4]–[14].
In recent years, more interest has been put to eliminating
multipath error via data processing based methods, in which
the multipath elimination problem is converted into a param-
eter estimation problem [9]. Examples include the method
based onmaximum likelihood estimation (MLE) [6], themul-
tipath super resolution algorithm based on iterative least
squares (ILS) [11], the multipath estimation method based
on extended Kalman filter (EKF) [12]. Among these algo-
rithms, the mean square error (MSE) criterion is normally
employed for multipath estimation. With an MSE criterion,
the mean and the variance are the two parameters used to
characterize multipath estimation results. MSE is a suitable
criterion for linear systems with Gaussian noise since the
statistical property of the target state can be fully determined
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by the two parameters [13]. Other algorithms developed on
data processing, such as the multipath interference mitigation
algorithm based on WRELAX, the methods based on spatial
domain decoupled parameter estimation theory, are also used
to mitigate multipath error, and the performance of these
algorithms are comprehensively analyzed in [14]. However,
only Gaussian noises are considered in these algorithms.

For systems with non-Gaussian noise, the estimation per-
formance of the aforementioned algorithms is likely to dete-
riorate since higher order statistical properties are often
required to describe the non-Gaussian characteristics of the
target state. The estimation performance can also degrade
even for Gaussian noise if the system is non-linear because
the target state variable may not be Gaussian distributed due
to the system nonlinearity [15]. Thus, considering only the
mean and variance would be insufficient in characterizing
nonlinear and/or non-Gaussian processes.

A target state can be fully characterized by the shape of
its probability density function (PDF). In this regard, it is
beneficial to consider the entire PDF of the state rather than its
low order moments [16]. The particle filter (PF) algorithms
have been used for multipath estimation for its applications
to general noise situations [17]. Here the PF is in principle a
Bayesian estimation for a givenmeasurement sequence. It can
also be taken as a PDF estimation since a number of particles
are used to represent the distribution of the state. However,
the problems of sample degeneration and impoverishment
restrict the applications of PF algorithms [18].

The PDF-shaping control methodology has been devel-
oped and applied to control systems with non-Gaussian noise
and nonlinear dynamics [19], [20]. An alternativemeasure for
general non-Gaussian systems is the entropy, which is a scalar
quantity in information theory that quantifies the average
uncertainty involved in a random variable [21]. Entropy can
be used to depict the higher-order statistics of a distribution
since it is formulated on the PDF. The use of entropy is not
limited to Gaussian assumption. Thus, the so-called mini-
mum error entropy (MEE) criterion has been employed in
many stochastic distribution control problems [22]–[24].

The MEE criterion is a shift-invariant measure, which
means the mean of the error can be a non-zero value
even when the entropy measure is minimized. To deal with
this problem, a constraint on zero mean of the estimation
error is added to the MEE performance index in some
algorithms [15], [25]. In our previous work, an algorithm
based on the central error entropy criterion (CEEC) is pro-
posed for multipath estimation [26], which can reduce the
mean error but appears to be sensitive to the initial states
and the initial gain matrix in the filter design. With the
MEE-based state estimation methods, it is usually assumed
that the noise PDF is known, which could be impracti-
cal for many applications [22]. Several data-driven methods
have been developed for systems with unknown noise
PDF [23], [24].

Stochastic information gradient (SIG) method is often
applied to update the filter gain in the design of

a sub-optimal estimator. The drawbacks of using SIG are
considered as follows. (1) It cannot guarantee a global opti-
mum result. (2) Partial derivative operations are required
in implementing the searching, which is not a trivial task
numerically, especially for high-dimension systems [27].

In this work, the performance index of MEE is taken
as the objective function. The second-order central moment
of the estimation error, together with the prior parameter
information, is formed as a constraint. The prior parameter
information is often used in EKF-based or PF-based methods
for generation of the initial state. In this new algorithm,
the prior information is considered in the constraints rather
than in the objective function as in [15]. As such, the multi-
path estimation is formulated as a constrained optimization
problem. An intelligent optimization algorithm, instead of a
SIG-based method, is tailored to find the global optimum.
This makes a novel contribution to multipath estimation for
general stochastic systems.

The remainder of this paper is organized as follows. The
signalmodel and the systemmodel inmultipath environments
are introduced in Section II. In Section III, the multipath
estimation problem is formulated as a constrained optimiza-
tion problem. A modified recursive ε-constrained rank-based
differential evolution (εRDE) algorithm is developed to find
the optimum solution in Section IV. Simulation studies for
single multipath and two multipaths cases with Gaussian and
non-Gaussian noises are reported in Section V. Conclusions
and the future work are discussed in Section VI.

II. PROBLEM FORMULATION
For the convenience of reading, notations used in this paper
are defined in Table 1. For a variable x, we use x̄ to represent
its prediction and x̂ to represent the estimation or the filter
result.

A. SIGNAL DESCRIPTION
In a global navigation satellite system (GNSS), the received
signal in the presence of multipath, r (i), can be described by
an (M + 1)- path model composed of a direct path signal,
rd (i), and the M reflected signals, rm (i), plus the noise
term n (i). Assume that the frequency tracking has been real-
ized by a frequency lock loop, then, the corresponding base-
band signal at an in-phase channel at instant i can be modeled
as

r (i) = α0,kc
(
i− l0,k

)
cos

(
θ0,k

)︸ ︷︷ ︸
rd(i)

+

M∑
m=1

αm,kc
(
i− l0,k − lm,k

)
cos

(
θ0,k + θm,k

)
︸ ︷︷ ︸

rm(i)

+n(i)

(1)

where α0,k and αm,k are the amplitude of the direct signal and
the amplitude of the m-th multipath reflected signal. l0,k and
lm.k are time delays of the direct signal and them-th multipath
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TABLE 1. Notations.

signal. c(i − l0,k ) and c(i − l0,k − lm,k ) are the pseudo code
with delay l0,k and (l0,k− lm,k ). θ0,k and θm,k are direct signal
phase and the m-th multipath time delay relative to the direct
signal. The signal model in (1) is a simplified version of the
model adopted in [28] and more details can be found in [29].
For the model in this work, the real part of the complex base-
band signal is obtained from the in-phase channels as in [30],
and the imaginary part can be obtained through orthogonal
channels.

Although there are some other signal models, for example,
the multipath model in urban canyon [31], which mainly
concerns the multipath caused by the motion of satellite,
we still adopt the model expressed by (1) not only because
it’s widely used but also because the multipath caused by the

FIGURE 1. Structure of signal tracking scheme.

FIGURE 2. The relationship between the i-th instant and the k-th
measurement.

motion of satellite can also be described by (1) as well as the
motion of receiver.

B. SYSTEM MODEL
The initial values of l̂0,k , l̂0,0, can be obtained from the capture
stage. The structure of signal tracking in GNSS is shown
in Fig. 1. The measurement vector, yk =

[
y1k , y

2
k , · · · , y

S
k

]T
,

can be obtained by correlating the received signal, r (i), with
the local C/A code vector over the measurement period. d
is the correlator spacing vector with d = [d1, d2, · · · , ds]T,
s = 1, 2, . . . , S, S is the correlator number. c

(
i− l̂0,k + ds

)
is the s-th local code, ds > 0 corresponds to the early code,
ds < 0 corresponds to the late code and ds = 0 refers to the
punctual code.

The multipath parameters to be estimated can be grouped
into a vector as

xk =
[
α0,k , α1,k , · · · , αM ,k , θ0,k , θ1,k ,

· · · , θM ,k , l0,k , l1,k , · · · , lM ,k
]T
.

xk can be estimated according to yk if enough corre-
lator outputs are available [28]. Then, the multipath part,
rm (k), can be reconstructed according to the estimate of xk ,
and the direct signal can be obtained by subtracting the multi-
path part from the received signal. The estimated time delay at
the next observation period, l̂0,k+1, can then be calculated so
as to tune the local code generator to synchronize the punctual
code with the received signal.

The relationship between the i-th instant corresponding
to one sample interval Ts and the k-th measurement corre-
sponding to one measurement period To can be illustrated
in Fig. 2.

VOLUME 6, 2018 61571



L. Cheng et al.: Multipath Estimation Based on Modified εRDE With MEE

The output of the s-th correlator in Fig. 1 is

ys
k

(
A0,k , · · · ,Am,k , l0,k , · · · , lm,k

)︸ ︷︷ ︸
xk

=
1

To/Ts

kK∑
i=kK−To/Ts+1

r (i) · c
(
i− l̂0,k + ds

)

= A0,kR (γk − ds)+
M∑
m=1

Am,kR
(
γk − lm,k − ds

)
︸ ︷︷ ︸

B(xk )

+nk

(2)

where γk = l̂0,k − l0,k , A0,k = α0,k cos
(
θ0,k

)
and

Am,k = αm,k cos
(
θ0,k + θm,k

)
. K = To

/
Ts. B (·) is the

measurement matrix with the following form.

B(xk ) = A0,kR(γk − ds)+
M∑
m=1

Am,kR
(
γk − lm,k − ds

)
(3)

R (·) is the ideal autocorrelation function with the following
form.

R (γk) =
1

To/Ts

kK∑
i=kK−To/Ts+1

c
(
i− l0,k

)
· c
(
i− l̂0,k

)

≈

{
1− |γk | , |γk | ≤ 1Tc
0, otherwise

(4)

where Tc = 1/1023 ms for GPS signal, 1023 is the number
of C/A code chips in a period.

It can be seen from (2) that the parameters to be estimated
at the k-th measurement are grouped into

xk =
[
A0,k ,A1,k , · · · ,AM ,k , l0,k , l1,k , · · · , lM ,k

]T
based on the assumption that the phase delay is not changed
during the observation period, and the phase estimation can
be obtained as in [30]. Here

θ0,k = arctan
(
AQm,k

/
AIm,k

)
(5)

where AIm,k and AQm,k are the estimated amplitudes from the
in-phase channels and the quadrature channels.

Assume xk can be formulated as a first-order Markov
process, i.e.

xk = A (xk−1)+ wk (6)

yk = B (xk)+ vk (7)

where xk ∈ RD×1 denotes the state vectors, D = 2 (M + 1).
wk is assumed to be Gaussian distributed noise with zero
mean and the covariance matrixQ. yk ∈ R

S×1 is the measure-
ment vector with yk =

[
y1k , y

2
k , · · · , y

S
k

]T
and ysk is obtained

according to (2). vk is the measurement noise with zero
mean and it can be Gaussian distributed or non-Gaussian
distributed. A and B are system matrix and measurement
matrix of appropriate dimensions.

FIGURE 3. The structure of the estimator based on intelligent
optimization algorithm.

In this work, it is aimed to recursively estimate xk accord-
ing to the observation vector, yk . Here, ȳk = B (x̄k), x̄k is
the prediction result of xk that can be obtained from (6) by
setting an initial state. The prediction of yk , rather than the
filter result of yk , is used to construct the measurement error.
In this case the gain matrix appeared in traditional filter is
not required. In fact, ek = yk − ȳk , which is called innovation
in Kalman filter-based methods, is used to update the filter
result, x̂k , in the sense of the MEE and the constraint.

The main idea is to update the filter result using an
intelligent algorithm. Then, the above estimation problem
can be formulated as an optimization problem with the
MEE criterion. The prior information of multipath and
other useful information can be combined as constraints.
The structure of this estimation strategy is demonstrated
in Fig. 3.

If the range of xk is given according to the prior infor-
mation of multipath, Np individuals can be generated uni-
formly distributed in this range and they are grouped as the
initial population, p = 1, 2, · · · ,Np. ek,p = yk − ȳk,p. fp
and ϕp are the objective function and the constraint of the
p-th individual, respectively, which will be explained
in Section III in detail.

III. CONSTRAINED OPTIMIZATION PROBLEM OF
MULTIPATH ESTIMATION
In this section, the multipath estimation is formulated
as a constrained optimization problem. The objective
function, the constraint and the boundary conditions are
discussed.

A. OBJECTIVE FUNCTION DESIGN
Entropy is an index to measure uncertainty and randomness
of a general stochastic variable. The MEE estimation aims
to minimize the entropy of the estimation error, and hence
decrease the uncertainty in estimation. Assume a random
variable e has PDF f (e), the second-order Renyi’s entropy
is defined by [32]

H2 (e) = − log
∫
f 2 (e)de (8)

For a vector ewith S dimension, the kernel density estimation
(KDE) can be used to estimate its PDF. Given a set of inde-
pendent and identically distributed (i.i.d.) data, {ei}Ni=1, drawn
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from a distribution, the KDE of the PDF is

f̂ (e) =
1
N

N∑
i=1

G6 (e− ei) (9)

with N being the number of samples and 6 the kernel
parameter matrix. G6 (e− ei) is a multi-dimensional
Gaussian function with the form as follows.

G6 (e− ei) =
1√

(2π)S det (6)

× exp
(
−
1
2
(e− ei)T 6−1 (e− ei)

)
(10)

6 is assumed to be a diagonal matrix with the s-th diagonal
element being the variance δ2s for es in e. 6−1 is the inverse
matrix of 6. A large number of experiments show that once
δ2s is larger than a certain value it has little influence on the
estimation results.

Using KDE, the Renyi’s quadratic entropy can be formu-
lated as follows.

H2 (e)

= − log
∫ (

1
N

N∑
i=1

G6 (e− ei)

)2

de

= − log
1
N 2

∫  N∑
i=1

N∑
j=1

G6 (e− ei)G6

(
e− ej

)de
= − log

1
N 2

 N∑
i=1

N∑
j=1

∫
G6 (e− ei)G6

(
e− ej

)
de


= − log

1
N 2

 N∑
i=1

N∑
j=1

G√26
(
ei − ej

)
= − logV (e) (11)

where

V (e) =
1
N 2

 N∑
i=1

N∑
j=1

G62

(
ei − ej

) (12)

is called the information potential (IP) of e and 62 =
√
26.

Thus, minimizing the Renyi’s entropy,H2 (e), is equivalent to
maximizing the IP, V (e), because of the monotonic property
of the log (·) function. In order to reduce the calculation
complexity, the instantaneous information potential, Vk (e),
instead of V (e), is used, i.e.,

Vk (e) =
1
N

(
N∑
i=1

G62 (ek − ei)

)
(13)

The calculation of Vk (e) can be further simplified with the
Parzen windowing technique as

Vk (e) =
1
W

 k∑
i=k−W+1

G62 (ek − ei)

 (14)

where W is the length of the Parzen window.

Given that e1, e2, · · · eS are independent of each other,
Vk (e) can be written as

Vk (e) =
1
W

k∑
i=k−W+1

G62 (ek − ei)

=
1
W

k∑
i=k−W+1

S∏
s=1

κδ2,s
(
esk − e

s
i
)

(15)

where κδ (e) =
(
1
/√

2πδ
)
exp

(
e2
/
2δ2

)
is a Gaussian

kernel function. Thus,Vk (e) needs to be maximized in order
to minimize the randomness of the estimation error. Then,
the maximization problem can be transformed into a mini-
mization problem by taking the following objective function.

Jk (e) = −Vk (e) (16)

The objective function in (16) is used for multipath
estimation.

B. CONSTRAINTS
Due to the shift-variant property of MEE, the following con-
straint is considered to minimize the mean error.

min E
(
eT e

)
(17)

Here E(·) is the expectation function. In order to reduce the
calculation complexity,E

(
eT e

)
is calculated by the following

statistical information

E
(
eT e

)
=

1
W

k∑
i=k−W+1

(
eTi ei

)
(18)

where W is the same window length as in (15).
In order to control the estimation accuracy, a threshold is

introduced to convert (18) into an equality constraint.

1
W

k∑
i=k−W+1

(
eTi ei

)
= threshold (19)

where the threshold is a small positive number, such
asthreshold=10−5.
Remark 1: W samples are required for calculations in (18).

The estimation results from the (k − W + 1)-th iteration to
the k-th iteration need to be saved for further processing in
the recursive procedure.

The multipath signal is normally weaker than the direct
signal since some signal power is lost due to reflection. This
means the multipath amplitude is smaller than the direct
signal amplitude, i.e.

αm,k < α0,k (20)

with m = 1, 2, · · · ,M .
Without loss of generality, the following assumption is

made. The first multipath has the smallest relative time delay,
the second multipath has a longer time delay compared to the
first one, and so on, that is,

lm,k < lm+1,k (21)
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with m + 1 ≤ M . Then, the constraints known as the
prior information are listed by (19), (20) and (21), which is
consistent with that in [10].

C. BOUNDARY CONDITIONS
The boundary conditions are given according to the physical
characteristics of multipath. Firstly, the direct signal ampli-
tude and the multipath amplitude, α0,k and αm,k , are between
0 and 1 since they are normalized in the pre-processing stage.
Secondly, the estimation error in acquisition process is usu-
ally less than 0.5Tc [28], which yields−0.5Tc ≤ γk ≤ 0.5Tc.
Thirdly, the multipath signal arrives after the direct signal
because it must travel a longer distance over the propagation
path, so the multipath time delay is longer than the direct
signal time delay, i.e. lm ≥ 0. Only the short multipath
with time delay of 0 ≤ lm ≤ 2Tc is considered since the
multipath with longer time delay can be ignored owing to the
autocorrelation properties of C/A code [30]. Accordingly, the
boundary considerations can be given as

0 < α0,k ≤ 1 (22)

0 < αm,k ≤ 1 (23)

−0.5Tc ≤ γk ≤ 0.5Tc (24)

0 ≤ lm ≤ 2Tc (25)

In this way, the multipath estimation problem is converted
into a constrained optimization problem with the objective
function (18), the constrained conditions in (19) ∼ (21),
and the boundary conditions in (22) ∼ (25). In this
optimization problem, the state dimension is 2 (M + 1),
the number of the equality constraint condition is one,
and the number of the non-equality constraint conditions
is 2M .

In a two-stage estimation algorithm based on variable
projection (VP) method, a constraint is used to improve
the multipath mitigation performance [33], in which the
VP method is designed to correct the pseudo-range error
caused by multipath and the constraint is imposed on the
multipath-caused range error. Our algorithm in this work is
proposed to estimate multipath parameters (multipath ampli-
tude, multipath time delay and multipath phase delay) and
the constraints are directly imposed on these parameters.
In addition, the VP method is employed to suppress the
multipath error after the initial pseudo range is obtained,
therefore the proposed algorithm is able to eliminate the
multipath error before the multipath influences the pseudo
range.

IV. MULTIPATH ESTIMATION BASED ON MODIFIED ε

RDE ALGORITHM
The εRDE algorithm was initially proposed in [10] to solve
constrained optimization problems with equality constraints.
In this work, a modified εRDE algorithm is developed to
solve the constrained optimization problem for multipath
estimation.

A. CONSTRAINED OPTIMIZATION PROBLEM
A typical constrained optimization problem can be described
as follows [10].

Minimize (J (x))

Subject to


gj (x) ≤ 0, j = 1, · · · , n
hj (x) = 0, j = n+ 1, · · · , Jc
Lt ≤ xt ≤ Ut , t = 1, · · · ,D

(26)

where x = (x1, x2, · · · , xD) is a D-dimension vector. J (x) is
an objective function. gi (x) ≤ 0 and hj (x) = 0 are q inequal-
ity constraints and Jc − n equality constraints, respectively.
J (·), gj (·), hj (·) are linear or nonlinear real-valued functions.
Lt and Ut are the lower and upper bounds of xt . Lt and Ut
are chosen according to the prior information of a particular
problem. In this paper, Lt and Ut are set according to the
boundary condition in (22) ∼ (25). The feasible solution
space in which every point can meet all constraints is denoted
by f , and the searching space defined by the upper and lower
bounds is denoted by Ş. Apparently, f ⊆Ş.
In the ε-constrainedmethod, the constraint violation, ϕ (x),

can be given by the following formula [10].

ϕ (x) =
∑
i

|max {0, gi(x)}|q +
∑
j

∥∥hj (x)∥∥q (27)

where q is a positive integer, q = 1 is chosen in this paper
for the simplification of calculation, which is also the choice
in [10]. |·| means the absolute operation, ‖·‖ denotes the
2-norm operation. The main idea of the ε-constrained method
is to sort the individuals according to a ε-level comparison
strategy. The ε-level comparison defines a rank for a given
individual by comparing the pair (J (x) , ϕ (x)) of the given
individual and that of other individuals. The rank Rb of the
base individual used for the evolution of the p-th individual is
adopted to calculate the corresponding scale factor, Fp, and
the crossover rate, CRp, which will be used in the process of
differential evolution. More details can be found in [10].
Remark 2: The ε-level comparison is a hierarchical

sequence comparison method, in which the sorting is per-
formed firstly according to ϕ (x) rather than J (x) because
it is more important to make x be feasible than to
minimize J (x).

B. MODIFIED εRDE ALGORITHM
The εRDE algorithm was designed for constrained optimiza-
tion problems that do not include noise signals, which can-
not be applied to the recursive multipath estimation directly.
In view of this, a modified εRDE is developed, the principle
of which can be described as follows. In the initiation stage,
a larger constraint violation level is allowed. The individuals
after evolution will approach the global optimum but not
converge exactly to the same point. The purpose of this is to
prevent individuals from converging to local optima.With the
iteration going on, a smaller constraint violationwill be taken.
Eventually, the constraint violation will approach to zero to
ensure the individuals converge to the global optimum. This is
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because sufficient measurement information can be obtained
to describe the statistical property of the estimation error as
time goes on. This idea can be realized by adaptively setting
the violation level, ε (k), as follows.

ε (k) =

ε (1)
(
1−

k − 1
Tcon

)cp
, 1 < k ≤ Tcon

0, k > Tcon
(28)

with ε (1) being the sum of the constraint violation degree of
the top a-th individuals. a = 0.2Np is chosen in this paper.
Tcon and cp are constants used to control the convergence
speed.
Remark 3:The iteration index k in (28) is used to update the

violation level, ε (k), instead of the evolution number in [10].
This change is made for recursive estimation in this work
that needs to consider noise. The violation level will decrease
gradually towards zero as the iteration goes on.

Denote ϕ1 and ϕ2 as the constraint violations for two dif-
ferent individuals x1 and x2. In order to reduce the complexity
of the εRDE algorithm, the case of ϕ1 = ϕ2 is not taken
into consideration since it is unlikely to have ϕ1 = ϕ2 in
practical applications. As a result, the ε-level comparison
defined in [10] can be simplified as follows.

(J1, ϕ1) < (J2, ϕ2)⇔

{
J1 < J2, ϕ1, ϕ2 ≤ ε

ϕ1 < ϕ2 otherwise
(29)

(J1, ϕ1) ≤ (J2, ϕ2)⇔

{
J1 ≤ J2, ϕ1, ϕ2 ≤ ε

ϕ1 ≤ ϕ2 otherwise
(30)

The pseudo code of the proposed multipath estimation
algorithm is given in Table 2. Herein the best individual of a
population is chosen as the filter output, x̂k , at each iteration.
The pseudo code of the modified εRDE algorithm at the k-th
iteration is shown in Table 3, where k = 1, 2, · · · ,N , N is
the iteration number.
Remark 4: It is noted that in (16) and (19),W error samples,

ei (i = k−W +1, k−W +2, · · · , k), are needed to compute
the objective function, Jk (e), at time k . However, there are
not enough samples that can be used to calculate Jk (e) when
k ≤ W . Thus, the following formulas are used to replace (16)
and (19).

Jk (e) = −
1
t

k∑
i=k−t+1

Vk (e) (31)

1
t

k∑
i=k−t+1

(
eTi ei

)
< threshold (32)

where t =
{
k k ≤ W
W k > W

. In the implementation of the pro-

posed algorithm, each individual’s W samples are stored for
computing the individual’s objective function in the receding
horizon process.

V. SIMULATION STUDIES
In this section, the case studies with Gaussian noise and non-
Gaussian noise are conducted. Without loss of generality,

TABLE 2. Pseudo code of multipath estimation based on εRDE algorithm.

we assume that the frequency tracking has been realized by
a frequency lock loop. Then, the baseband signal of GPS
in (1) is generated for the following two scenarios: (a) a
direct signal and single multipath, and (b) a direct signal
and two multipath. The multipath is considered to be in-
phase, i.e. θm,k = 0, which is the worst possible case [30].
Am,k = αm,k is set according to the definition in Section II.
The multipath parameters are supposed to be unchanged
during the observation period, which means the system
matrix A(·) equals to an identify matrix. This a common
scenario that a receiver stays still for geodetic surveying.
In this case, the satellite dynamic can also be ignored since
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FIGURE 4. The estimation results in single multipath environment with Gaussian noise.

FIGURE 5. The error PDF for the proposed multipath estimation algorithm in single multipath environment with Gaussian noise. (a) The error
PDF of the direct signal amplitude. (b) The error PDF of the direct signal time delay. (c) The error PDF of the multipath signal amplitude. (d) The
error PDF of the multipath signal relative time delay.

the observation period is less than 1 second which is a very
short time compared to the time that the satellite dynamic
would influence the estimation results. The system noise is
assumed to be zero-mean Gaussian noise with the covari-
ance matrix Q = diag (0.001 ∗ ones (1, 2 (M + 1))), c =
ones (a, b) is an identity vector with a rows and b columns.
diag (c) is a matrix with the diagonal elements being elements
in c.

The correlator number should be larger than or equal to the
state dimension number, i.e. S ≥ D.
For the scenario with a direct signal and single multipath:

S = 7, A0 = 0.9, A1 = 0.4, γ0 = 0.2Tc, l0 = 10Tc,
l1 = 0.5Tc, ds = [0.5Tc, 0.3Tc, 0.1Tc, 0, −0.1Tc,
−0.3Tc, −0.5Tc].
For the scenario with a direct signal and two multipath,

S = 9, A0 = 0.9, A1 = 0.7, A2 = 0.4, γ0 = 0.2Tc,
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TABLE 3. Pseudo code of the modified εRDE algorithm.

FIGURE 6. The constraint violation degree profile of the filter result in
single multipath environment with Gaussian noise.

l0 = 10Tc, l1 = 0.3Tc, l2 = 0.6Tc, ds = [0.7Tc, 0.5Tc,
0.3Tc, 0.1Tc, 0,−0.1Tc,−0.3Tc,−0.5Tc,−0.7Tc].

The average operation, ymk =
[
(k − 1) ymk−1 + yk

]/
k ,

is used to improve the algorithm performance since the mul-
tipath parameters are assumed to be unchanged during the
observation period, where ymk is the mean of observation

FIGURE 7. The objective function profile for the joint measurement
output error, single multipath with Gaussian noise.

TABLE 4. Simulation settings with Gaussian noise for single multipath.

outputs at the k-th observation period. ymk is also used as
the observation outputs in the comparison algorithm. The
sampling interval is Ts = Tc

/
10 and the measurement period

is To = 1ms. It should be noted that the integer sampling is
adopted for simplicity and the non-integer sampling can be
used to improve the estimation accuracy.

Our goal is to estimate x = [A0,A1, l0, l1]T for the single
multipath case and x = [A0,A1,A2, l0, l1, l2]T the two-
multipath case. The observation period is 300ms for the single
multipath case and 500ms for the two multipath case. In the
following simulations, the root -mean-square error (RMSE)
averaged over 100 Monte Carlo simulations and the error
PDFs are shown to assess the estimation accuracy and ran-
domness of the estimation results of multipath parameters for
each case.

A. THE GAUSSIAN NOISE CASE
In [30] and [34], the carrier-to-noise ratio, C

/
N0 =

45 dB-Hz, is considered which corresponds to a signal-to-
noise SNR=−18dB in base-band signal when the bandwidth
of the front is B=2MHz. In this work, a worse environment is
considered for the base-band signal, i.e. SNR=−30 dB, since
weak signal tracking is usually encountered in practice. The
simulation parameters are set up as shown in Table 4. The
parameters of CRmin, CRmax, Fmin, Fmax, cp and threshold
are set according to the recommendation values in [10].

For single multipath, M = 1, D = 2 (M + 1) = 4.
The particle number Np is usually recommended to be
10 times larger than D for the DE algorithm. Therefore,
Np = 10D = 40 is set in this simulation. The bound range
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FIGURE 8. The estimation results in two-multipath environment with Gaussian noise. (a) The RMSE of the direct signal amplitude.
(b) The RMSE of the direct signal time delay. (c) The RMSE of the 1-st multipath signal amplitude. (d) The RMSE of the 1-st multipath
signal relative time delay. (e) The RMSE of the 2-nd multipath signal amplitude. (f) The RMSE of the 2-nd multipath signal relative
time delay.

FIGURE 9. The estimation results in single multipath environment with non-Gaussian noise.

of A0,A1, γ and l1 are set according to the characteristics of
the direct signal and the multipath described in Section III.
EFmax, Tcon, W and δ2s are set based on the recommendation
in [10].

The value of EFmax should not be too large, otherwise
the algorithm may converge too soon to a local optimum
and the calculation complexity will be increased signifi-
cantly. W should be chosen carefully to guarantee a fast
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FIGURE 10. The error PDF for the proposed algorithm with non-Gaussian Noise.

FIGURE 11. The constraint violation degree profile of the filter result in
single multipath environment with non-Gaussian noise.

convergence speed. W also has influence on computational
time, which means the larger theW , the higher the time cost.
It is a proper choice to set Tcon = W for a large number of
simulations. δ2s is a free parameter relevant to the strength of
noise and its setting can refer to [35].

The proposed algorithm is compared with EKF, and the
estimation results are shown in Fig. 4. In this simulation
EKF setting is given as follows. The initial state of x is the true
value x0 = [0.9, 0.4, 10, 0.5]T, the system noise covariance
matrix and the initial filter covariance matrix P0 are set as
Q=P0 = diag(0.001∗ ones(1, D)), and the measurement
noise covariance matrix is set as R=diag(0.01∗ones(1, D)).
We can observe that the proposed algorithm has similar per-
formance as that of EKF.

To further inspect the performance of the proposed algo-
rithm, the error PDFs at three observation instants are shown
in Fig. 5, from which it can be observed that the shape of
the error PDF, for the proposed algorithm, turns out to be

FIGURE 12. The objective function profile for the joint measurement
output error, single multipath with non-Gaussian noise.

narrower and sharper over the iteration process, which means
the randomness of the estimation error becomes smaller.
However, there is still a visible steady-state estimation error
in terms of the multipath time delay. This might be caused
by measurement noise. The proposed algorithm can always
converge exactly to the true value when there is no noise in
the system.

The constraint violation degree and the objective function
of the proposed algorithm along the iterations are illustrated
in Fig. 6 and Fig. 7. The same objective function is used for
the proposed algorithm and the EKF. Here the same sliding
window with size W is used to calculate the entropy of the
estimation results at each iteration. The randomness curve of
the EKF estimation is also shown in Fig. 7 (The result is given
in logarithm). We can see that for the proposed algorithm the
constraint violation degree decreases to zero eventually and
the objective function converges to a near-zero point. The pro-
posed algorithm outperforms EKF in respect of randomness
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FIGURE 13. The estimation results in two-multipath environment with non-Gaussian noise.

because EKF does not take randomness into consideration
during its iteration. The nonlinearity inmeasurement function
along with the truncated error in the process of linearizing
also cause a larger randomness for EKF.

For two-multipath, M = 2, D = 2 (M + 1) = 6, Np =
10D = 60, Tcon = W = 60. The other parameters are set as
in Table 3. In this case, Tcon is set larger than that of the single
multipath case because more parameters need to be estimated
for twomultipath andmore iterations are expected to decrease
the constraint violation level to the threshold level.

The estimation results are shown in Fig. 8. Similar results
as that of Fig. 6 -Fig. 7 on the constraint violation and
the objective function are obtained for the two multipath
scenario, which are not shown here due to page limitation.
In this simulation EKF setting is given as follows. The initial
state of x is the true value x0 = [0.9, 0.7, 0.4, 10, 0.3, 0.6]T,
the system noise covariance matrix and the initial filter
covariance matrix are set asQ=P0 = diag(0.001∗ones(1,D)),
and the measurement noise covariance matrix is set as
R = diag(0.01∗ones(1,D)). We can observe that the proposed
algorithm achieves similar performance as EKF even when
the true value is set as the initial state of EKF and the random
values generated from a prior distribution are set as the initial
state. In fact, the estimation result of EKF may converge to
a wrong value when the initial state of EKF is set randomly

from the prior distribution. In this sense, the proposed algo-
rithm is less sensitive to the initial state.

B. The NON-GAUSSIAN NOISE CASE
In this section, a non-Gaussian noise is constructed with
the mixture of Gaussian PDFs, i.e. f = λ1N

(
µ1, σ

2
1

)
+

λ2N
(
µ2, σ

2
2

)
, where N

(
µ, σ 2

)
is a Gaussian distribution

with mean µ and variance σ 2. λ1 and λ2 are the weights cor-
responding to the first and the second Gaussian individuals,
respectively, and λ1 + λ2 = 1. The parameters are set as
follows: λ1 = 0.9, λ2 = 0.1, µ1 = µ2 = 0, σ 2

1 = 10 and
σ 2
2 = 100. The simulation parameters are given in Table 5.

Other parameters are set as the same as that in the Gaussian
noise case in Section V.A.

The proposed algorithm is compared with a standard
PF algorithm and the results are shown in Fig. 9. In the
PF algorithm, the prior density function is chosen as the
importance density function. The particle number and the
initial population of PF are set to be the same as in the pro-
posed algorithm. It can be observed that the proposed algo-
rithm clearly outperforms PFwith higher estimation accuracy
and smaller randomness. The error PDFs of the proposed
algorithm are shown in Fig. 10, in which the error PDFs
become more and more concentrated around zero mean as
the iteration proceeds.
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TABLE 5. Simulation setting with non-Gaussian noise for single
multipath.

For the single path case with non-Gaussian noise, the con-
straint violation and the objective function of the proposed
algorithm along iterations are shown in Fig. 11 and Fig. 12.
Again, the same objective function is adopted to measure the
randomness of estimation result for both PF and the proposed
algorithm. The randomness curve of the estimation result of
PF is also shown in Fig. 12 (in logarithm scale). The proposed
algorithm shows less fluctuations in the objective function
than that of PF. This is because although PF is more suitable
for non-Gaussian noise case than for Gaussian case, it still
does not take into account the randomness of its estimation
result in the filter design.

For the two-multipath case with non-Gaussian noise,
D = 6, Np = 10D = 60, Tcon = W = 100. The other
parameters are set as in Table 4. The estimation results of two-
multipath using the proposed algorithm and the PF algorithm
are shown in Fig. 13. When the same particles are used,
the estimation results indicate that the proposed algorithm has
higher estimation accuracy and smaller randomness than the
PF algorithm in non-Gaussian noise environment.

VI. CONCLUSIONS
In this paper, a new estimation algorithm is proposed for
multipath estimation with Gaussian noise and non-Gaussian
noise. The MEE criterion is used as the objective function.
The second-order statistical information of the error as well as
the prior information of the multipath parameters are taken as
a set of constraints. A modified εRDE algorithm is developed
to solve this constrained optimization problem to find a global
solution. The simulation results demonstrate the effectiveness
of the proposed algorithm formultipath estimation under both
Gaussian and non-Gaussian noise environment.

Compared with previous works on multipath estimation,
the contributions of this work are four folds: (1) the multipath
estimation problem is formulated as a constrained optimiza-
tion problem; (2) an entropy criterion is adopted to reduce
randomness of the estimation, and the prior information of
multipath are also considered to constrain the solution space;
(3) a modified εRDE algorithm is developed to solve the
constrained optimization problem for a global optimal solu-
tion; (4) two multipath cases are examined. At the present
stage, only the static multipath is considered and the proposed
algorithm appears to be rather time consuming compared

with EKF and PF. These numerical problems need to be
tackled in the future work.
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