
Received August 30, 2018, accepted September 28, 2018, date of publication October 8, 2018, date of current version October 29, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2873751

CPS-Agent Oriented Construction and
Implementation For Cyber Physical Systems
YUJIAO HU AND XINGSHE ZHOU, (Member, IEEE)
School of Computer Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China

Corresponding author: Yujiao Hu (yujiao_hu@mail.nwpu.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61751208 and Grant 61502394.

ABSTRACT Cyber-physical systems (CPSs) have attracted many researchers in areas as diverse as
aerospace, manufacturing, transportation, and so on. However, modeling methodologies and tools for
autonomous objects in CPS are still lacking. In this paper, the CPS-Agent is proposed to model objects with
consideration of temporal-spatial traits and interaction with physical environment. It is formulated by a five-
tuple. Furthermore, considering that no universal methodology of coordination strategy formulation could be
used to guide researchers, we present a role-based strategy formulation to make work patterns ofCPS-Agents
more clear. In terms of network communication among CPS-Agents, a set of communicative primitives is
tailored based on the FIPA-ACL specification. Afterward, to guide engineers in designing systems according
to their application requirements in the area of CPS, we design templates and a novel visual support tool for
generating C++ files automatically corresponding to customized CPS-Agents, coordination strategies, and
coordination groups. Finally, the complete development process based on our methodologies and tool is
illustrated by an instance of a car team.

INDEX TERMS Cyber physical system, modeling, support tool, CPS-agent, code generation.

I. INTRODUCTION
Cyber physical systems (CPS) integrate computing power,
communication networks and control systems. Example are
autonomous cars, rescue robots, unmanned aerial vehicles,
etc. Objects in CPS are composed of sensors, actuators, and
computing kernels. However such composition make objects
have inherent constraints, for example, sensing distances,
accuracies of actuators, etc. Moreover, objects are active in
a dynamic physical environment, therefore conditions about
motion of objects are usually related to time and space.
Besides these, sometimes objects are expected to coordi-
nate for cooperative tasks. When deeply researching such
multi-object systems, engineers need to model objects with
consideration of all their features firstly, and build tools
to support specification, design, implementation and test-
ing/debugging for CPS.

There are three most popular modeling and tool
development methodologies in the software discipline:
component-based development (CBD) [2], service-oriented
architecture (SOA) [4], and agent-based model (ABM) [1].
CBD is a reuse-based approach to compose loosely cou-
pled independent components into systems. Components
are usually software packages or web sources. It is hard to

make physical processes into components. SOA is a kind
of software design where services are provided to the other
components by application components, through a communi-
cation protocol over a network. The service is a black box for
its customers, but it has more knowledge than customers. The
relationship between services and clients is unequal, which is
not expected for development of objects in CPS. ABM is used
to simulate the actions and interactions of autonomous agents.
Theoretically, the agent could be a model of any individual
with autonomous feature. The agent is not a software con-
ception, even though it gets a broader range of researches and
applications in the software discipline. The past decades have
witnessed contributions about the agent framework develop-
ment in the software discipline, including JADE (Java Agent
Development Framework), JIAC V (Java-based Intelligent
Agent Componentware), etc. The development platform for
ABM is usually Eclipse, and the development programming
language is JAVA.

However, while software agent development technologies
being applied into CPS development, some problems can-
not be ignored. Firstly, software agent technologies depend
on powerful computing capability, and they focus on dis-
crete processes, whereas CPS development engineers should

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

57631

https://orcid.org/0000-0002-2271-1810


Y. Hu, X. Zhou: CPS-Agent-Oriented Construction and Implementation For CPSs

care more about continuous dynamic physical processes.
Secondly, events in software agent design are more like
interrupts in operating systems, whereas events are usually
tagged with a time label and a space label during devel-
opment of CPS. In this paper, we introduce a new model
CPS-Agent, which keeps the advantages of autonomous and
social features of the agent, and complement disadvantages
of agents in modeling physical attributes and processes. The
CPS-Agent could be classified into three types according
to practical application requirements, including Reactive
CPS-Agent, Decision-making CPS-Agent and Hybrid
CPS-Agent. In addition, common software agent develop-
ment platform Eclipse and programming language JAVA are
not suitable for development of objects in CPS, because
most devices in CPS are embedded, they support C/C++
for developing software. Due to the non-applicabilities of
platform and programming language, we further design a
visual support tool where engineers are able to customize
CPS-Agents, coordination strategies and coordination
groups. The tool will generate XML files and C++ files
automatically to assist secondary development for engineers.
Moreover, the tool supports linking, compiling and running
programs. As our best knowledge, no literature has proposed
a tool like ours.

The sociality is one of the most important features for
objects in CPS, too. In other words, while performing coop-
erative tasks, objects will follow a coordination strategy to
realize tasks and exchange information by network commu-
nication. As for coordination strategies, no universal method-
ology of coordination strategy formulation could be used to
guide researchers. But an interesting phenomenon is found
that objects in CPS usually realize different sub-tasks and
their behavior interaction follows certain patterns. There-
fore we propose a role-based strategy formulation to make
the patterns more clear and simplify complexity of task
assignments. In terms of network communication, there are
two more mature agent communication specifications based
on message transmission, KQML (Knowledge Query and
Manipulation Language) and FIPA-ACL (Agent Communi-
cation Languages established by Foundation for Intelligent
Physical Agents). In this paper, based on the more promising
FIPA-ACL specification, we design a set of communication
primitives and communication message format to support
CPS-Agents communication.

The contributions of this paper lie in:
1) The CPS-Agent is introduced to model objects in CPS.
2) A role-based strategy formulation methodology is pro-

posed to direct researchers to design coordination strategies.
3) To realize inter-operability and mutual understand-

ing among CPS-Agents through network communication,
a set of communication primitives based on FIPA-ACL is
tailored.

4) Novel C++ code templates for CPS-Agent construction
and an innovative visual support tool are designed.

5) An instance of a car team is used to specifically illustrate
development processes on the tool.

The paper is organized as follows. In the following section,
a literature review is conducted. Afterwards, in section III,
we give definition of the CPS-Agent and formulate it by
a five-tuple. Then we classify the CPS-Agent into three
categories and given architecture descriptions for them.
Section IV presents coordination support mechanisms about
coordination strategies, coordination groups and coordination
communication primitives. In section V, the design principles
and development processes of the support tool are introduced
in detail. Section VI illustrates development processes on the
tool through an instance of a car team. Finally, section VII
gathers our conclusions and open issues for future researches.

II. RELATED WORK
Researchers have presented some contributions in the domain
of CPS in recent years. Some representative literatures
include an experience report of developing applications
on CPS [21], an automatic transformation from MUML
(Modelica MechatronicUML) to Modelica [20], a Mecha-
tronicUML tool suite to support MechatronicUML modeling
and analyze tasks [6], a domain-specific model [8], a secu-
rity assessment tool [22], a multi-discipline development
process of CPS [11], security protection approaches for
underlying hardware in CPS through obfuscation-based
methodologies and loop-based high-level transformations
[23]–[25]. Papers [6], [8], [11], [20], and [21] are a series of
work researched in University of Paderborn, Germany. They
use MechatronicUML to show their models and software
of applications in papers. MechatronicUML is a tool that
Eclipse provided to visualize CPS processes. Specifically,
the paper [21] talks about practical experience of developing
cooperative CPS of the research group, and it summarizes
challenges in CPS development, including a) application
architectures getting more complex, b) the controller having
to consider information from other systems and their control
strategies, c) interaction by communication based on mes-
sages becoming more dependent on physical dynamics, d)
engineers having to consider different system parts while
developing the system, e) a discipline-spanning collaboration
being needed. Papers [6], [8], and [20] use a same scenario of
overtaking between two cars to describe their software archi-
tecture. A development process which integrate mechanical,
electrical and software parts is shown in [11]. The paper uses
a RailCab Convoy example to illustrate opinion. However,
all these results are component-based, and they usually use
JAVA on Eclipse. Moreover, they provide much research
thought, but we couldn’t find a universal available software
for developing CPS applications except their examples.

As our best knowledge, there is no contribution design-
ing a agent-based platform for CPS development. However,
issues about software agent frameworks were very hot around
the year 2000. Surveys [12], [28] give researchers some
methodologies for agent design. The paper [26] described a
framework to help evaluation the appropriate development
methodologies of agent-based systems with respect to plat-
forms. The original concept of a graphical tool for monitoring

57632 VOLUME 6, 2018



Y. Hu, X. Zhou: CPS-Agent-Oriented Construction and Implementation For CPSs

and demonstrating distributed agents was built in [27]. The
work [14] tended to build a plug-in for Eclipse, aiming to
build an independent integrated development environment,
and realize agent development process, from specification,
design, implementation to testing/debugging. In addition,
a survey of agent development platforms is given in [13].
It compare and evaluate 24 platforms in terms of proper-
ties, usability, operating ability, pragmatics, security man-
agement. Because of lack of space, we just give a detail
discussion about the most popular platform, JADE. JADE is
a fantastic platform fully implemented in JAVA, it supports
visual graphical form, distributed agents development, agent
communication using RMI (Remote Method Invocation) to
transmit messages that are encapsulated as JAVA objects.
Some researches are going on based on JADE. The work [5]
tried to design a novel agent-oriented communication lan-
guage on JADE. The paper [29]wanted to explore the security
challenge based on the JADE framework. There are still many
contributions we won’t list. Even though they have gotten
great results, they are not suitable when being applied to
development CPS for following reasons. Firstly, the JAVA
is the preferred programming language in software agent
development, but most embedded devices support C/C++
rather than JAVA. Secondly, they didn’t design an available
tool for development CPS, especially, they didn’t consider
the important issue of physical constraints in CPS. Thirdly,
even if JADE provide distributed agent development method-
ologies, the requirement of communication between agents
by RMI is not practical, due to objects in CPS communicate
with others by network protocols, such as TCP/IP, CAN, etc.
Finally, messages cannot be encapsulated as JAVA objects
and then be sent in CPS, they have to convert to transfer
formats that are required by the network protocols.

In addition, with consideration of cooperative tasks in
CPS, there are not universal methodologies of coordination
strategy formulation to guide researchers. However, some
effective strategies are given in some papers. Researchers in
different disciplines have their own opinions. In the domain
of control, [19] built mathematical model and functions to
realize local and global coverage strategies, in the scenario
of distributed dynamic coverage and avoidance control for
multiple agents with anisotropic sensing. The work [18] pro-
posed a method based on a family of two-dimensional ana-
lytical expression to solve distributed motion planning of
multiple agents in different classes. The paper [17] gave a
set of Lyapunov-like barrier functions and velocity control
functions for agents to guide them converge to pre-defined
positions while keeping connection with leader and avoiding
collision. In the computing domain, a review [9] of pop-
ular motion planning algorithms and outstanding research
groups is given. Path elongation algorithm amidst obstacles
and two task assignment algorithms are given in [10] to
realize prioritized targets and motion planning for UAVs.
Some results combined computing and control methodolo-
gies. For example, [15] and [16] proposed two-level coordi-
nation structure, the high-level planning used a prioritized A*

algorithm to compute waypoints and the low-level trajectory
generation adopted mathematical model based on Lyapunov
barrier functions.

As for communication specification, KQML and
FIPA-ACL are the more mature specifications where the
communicative acts set play the most important role. As for
KQML, communicative acts have semantic meaning, but
they are not specified strictly. KQML defines more than
41 communicative acts, and the amount could still increase.
Hence, because of uncertain amount and relax specification,
the inter-operation based on KQML between agents doesn’t
come true. FIPA-ACL requires that when an agent wants to
transmit one message with a communicative act, then it must
implement the acts corresponding to the communicative act.
FIPA-ACL have 22 communicative acts in specification [7],
and each communicative act has strict description and formal
model. They could be divided into five types, information or
data transmission, information request, negotiation, action
execution and error handling. Considerable and strict speci-
fication make FIPA-ACL be more promising.

III. MODELING AND PERSONALIZATION CATEGORIES
A. CPS-AGENT MODEL
A CPS-Agent refers to an autonomous executor. It integrates
computing, communication and control (3C) capabil-
ities, and it could adapt to changes of the physi-
cal environment and interact with physical processes
continuously.

While the CPS-Agent being applied in CPS development,
it will model an autonomous object. The object could be
either software or embedded hardware, and it can usually
realize some tasks independently. However, we won’t model
all such objects using the CPS-Agent. For example, a tem-
perature sensor won’t be modeled as a CPS-Agent here.
We think it is automatical rather than autonomous, because its
functions and control rules are too simple. But the CPS-Agent
model is qualified for modeling such objects. In this paper,
we consider a more complex object, such as a car, a driver-
less vehicle, etc. These objects are more autonomous than
the temperature sensor. At the same time, their multi-layer
architectures, well-designed software systems and hundreds
of physical components make them have powerful 3C capa-
bilities and promote them to become more autonomous while
interacting with physical environment and coordinating with
other individuals.

After determining the modeled object, we need to
extract some important information, including static physical
information, dynamic spatio-temporal information, shown
in Fig. 1. The static physical information depends on resource
configuration of the autonomous object, but the CPS-Agent
is more concerned with the impact of resource configura-
tion on performance than with the parameters of resource
configuration. The dynamic information will be catched at
running time, and it is usually connected with time and space.
Note that the spatio-temporal feature is an unique attribute

VOLUME 6, 2018 57633



Y. Hu, X. Zhou: CPS-Agent-Oriented Construction and Implementation For CPSs

FIGURE 1. Summary version of the CPS-Agent formulation.

for CPS development, because a) working duration of the
modeled object is usually limited by fuel storage or battery
capacity, and effective activity scope is limited by controllers;
b) the runtime condition of the object is always bind with
time and space; c) actions and decisions are tagged with
time and space. The key information extraction makes the
view of application development engineers change from an
advanced embedded device with many complex components
to a CPS-Agent (part of). Following that, engineers could
research the issue from a CPS-Agent perspective. Engineers
in other disciplines could get opportunities to join these hot
issues.

Here a five-tuple is given to formulate the CPS-Agent,
as in (1). A summary version of formulation is presented
in Fig. 1.

CPS − Agent := 〈Api,Vsp,Vdp,Vs,Gm〉 (1)

Api represents public information of the CPS-Agent, and
it has one element, i.e. CPS-Agent ID Aid . Aid is the only
identifier to distinguish CPS-Agents apparently, because it is
the only public information that the CPS-Agent publish to all
CPS-Agents. It is expressed by combinations of string and
number.
Vsp is a set, and it records static physical information

of the modeled object. The information mainly includes
performance values and static spatio-temporal information,
i.e. max working endurance, effective activity scope,
etc. Vsp is described from five aspects, as in (2). In (2),
Pmax expresses the max endurance of CPS-Agent.
Cal records parameters related with computation, such as
computation velocity. Net represents network protocols or
customized communication methods that the CPS-Agent
supports. Elist records all events that the CPS-Agent could
perceive. Ac records configuration information of actuators
and static spatio-temporal attributes, for example, fixed accel-
eration, maximum velocity.

Vsp := 〈Pmax ,Cal,Net,Elist ,Ac〉 (2)

Vdp in (1) records dynamic information of a CPS-Agent
from five aspects, too. These information is usually related

with time and space, as shown in (3). In (3), Lv samples
the location of the CPS-Agent at the current time, and the
coordinate system is selected according to the application
requirements. Vv shows traveling velocity at the current time.
Pv represent all pose angles at the current time, for example,
a UAV has pitching, yawing and roll angles; a driverless
vehicle has only orientation angle. Pre reminds engineers the
remaining working endurance. Eed saves the list of perceived
but unprocessed events so far.

Vdp := 〈Lv,Vv,Pv,Pre,Eed 〉 (3)

Vs in (1) represents status of a CPS-Agent in time. This
item is used to help manage and schedule CPS-Agents
in CPS. It is divided into five statuses, as in (4).

Vs := {Non− creation,Running,Ready,Blocking,Death}

(4)

Description for statuses in (4): Non-creation: A
CPS-Agent at this status is not created, or it has been created
but isn’t loaded into the executable CPS-Agent queue. Ready:
A CPS-Agent is ready to execute, but needs to be triggered by
sensitive events. Running: A CPS-Agent is running to achieve
its task goal. Blocking: A CPS-Agent will not run until
something it is waiting for happens.Death: A CPS-Agent has
released the resources it ever possessed and never runs again.
The detailed transition procedures are showed in Fig. 2. But
because of limitation of pages, we won’t explain in detail.

FIGURE 2. Statuses transition graph of the CPS-Agent.

Gm in (1) records teammembers, i.e. multiple CPS-Agents
are possible to form a group for cooperative tasks, then each

57634 VOLUME 6, 2018



Y. Hu, X. Zhou: CPS-Agent-Oriented Construction and Implementation For CPSs

CPS-Agent will have partners. According to coordination
strategy that the group adopt to, partners will play different
roles.Gm of the CPS-Agent will record the public information
of partners, including ID and role. Gm could be formulated
by (5). Mid is used to save Aid of partners, Mrole saves roles
of partners.

Gm := 〈Mid ,Mrole〉 (5)

B. PERSONALIZATION CATEGORIES AND ARCHITECTURE
DESIGNS FOR THE CPS-AGENT
We propose three architectures for the CPS-Agent construc-
tion, i.e. reactive CPS-Agent, decision-making CPS-Agent
and hybrid CPS-Agent respectively.

1) REACTIVE CPS-AGENT
The reactive CPS-Agent take actions according to action
library once receiving a sensitive event or signal.

FIGURE 3. The architecture of the reactive CPS-Agent. The orange lines
represent the interaction between the CPS-Agent and environment.

The reactive CPS-Agent is a class of simple CPS-Agents
with fast response. An example is a service robot that moves
around a black rounded rectangle. The robot will stop imme-
diately when sensors perceive obstructions. When the robot
perceive obstructions leaving, it will move again. Overall,
the solution process of the reactive CPS-Agent is similar to
neural arc reflex behavior. The architecture of the reactive
CPS-Agent is shown in the Fig. 3. The orange lines represent
the interaction between the CPS-Agent and environment. The
module of Sensing Internal Execution Condition is responsi-
ble for getting internal parameters and status from Vsp, Vdp,
Vs and Gm. The module of Sensing Physical Environment
will get information from sensors that monitor environ-
ment changes. The Action Library is related to domain and

configuration of the object that is modeled by the
CPS-Agent. It could evolve with the development of tech-
nologies. The Action Decision module decides which action
should be taken, then transfer the action command to Actua-
tors Execution. TheActuators Executionwill firstly covert the
command to understanding parameters for kinetics systems,
and affect Physical Environment.

2) DECISION-MAKING CPS-AGENT
The decision-making CPS-Agent is a kind of intelligent CPS-
Agents. It could infer, plan and make decisions, according to
existing view and knowledge.

FIGURE 4. The architecture of the decision-making CPS-Agent. The red
lines represent feedback and optimization processes.

The architecture is shown in the Fig. 4. Modules Sensing
Internal Execution Condition and Sensing Physical Envi-
ronment are similar to the reactive CPS-Agent, hence we
won’t describe again. Knowledge Library and Rules Library
provide the basis for reasoning. The module Make Solutions
makes reasoning according to all available information, and
gets solutions. The Publish Solutions module interacts with
Physical Environment. After solutions affect environment,
the module Learning and Optimizing will a) gather data
from the Sensing Physical Environment, b) use a learning
algorithm to train data, c) optimize the Knowledge Library
and Rules Library using trained results. In the Fig. 4, the red
lines represent feedback and optimization processes.

3) HYBRID CPS-AGENT
The hybrid CPS-Agent combines the advantages of reactive
and decision-making CPS-Agents. It is an intelligent and
agile CPS-Agent.

The architecture of the hybrid CPS-Agent is presented
in the Fig. 5. Modules of the reactive CPS-Agent and
decision-making CPS-Agent are logically connected together
to realize an intelligent and agile hybrid CPS-Agent. In the
Fig. 5, the yellow lines show an optional process to deal
with emergencies, aiming to have fast response; the red lines

VOLUME 6, 2018 57635



Y. Hu, X. Zhou: CPS-Agent-Oriented Construction and Implementation For CPSs

TABLE 1. Communicative acts description.

FIGURE 5. The architecture of the hybrid CPS-Agent. The red lines
represent feedback and optimization processes. The yellow lines
show an optional process to deal with emergencies.

represent feedback and optimization processes. The common
processes are presented by blue lines.

As technologies are developing, development of the hybrid
CPS-Agent is a dominant trend. Objects in CPS are usu-
ally advanced embedded systems. To model such objects,
the CPS-Agent is required to have decision-making capa-
bility to deal with complex conditions. But as for emer-
gencies, long-time thinking will badly impact on courses of
events. Therefore reacting quickly is also required for the
CPS-Agent. Some hot topics are to get trade-off between
thinking precisely and reacting quickly.

As for these three kinds of CPS-Agents, we provide three
different templates to generate codes automatically in our
tool.

IV. COORDINATION SUPPORT FOR
MULTIPLE CPS-AGENTS SYSTEMS
The CPS-Agents will coordinate for cooperative tasks. The
complete processes involve the CPS-Agent personalization

construction, multiple CPS-Agents coordination strate-
gies establishment, communication primitives among CPS-
Agents, and CPS-Agent coordination groups creation.
A detailed explanation about the CPS-Agent construction has
been given in section III. Therefore, we describe specifica-
tions of other three parts in the following.

A. COMMUNICATION PRIMITIVES AMONG CPS-AGENTS
The network communication is the basis of coordination.
For practical CPS applications, the communication among
CPS-Agents depends on the network protocols that they sup-
port. Based on that, in order to increase inter-understanding
and inter-operation among CPS-Agents, we a) propose a set
of communicative acts; b) standardize format of communica-
tion primitives.

1) COMMUNICATIVE ACTS
The communicative act is the most important mandatory
item in once communication. We refer to the FIPA-ACL
(FIPA-Compliant Communicative Act) communication
specification [7], select and extend a part of communicative
acts from FIPA-ACL. The detailed descriptions of these
communicative acts are shown in the Table 1.

2) FORMAT OF COMMUNICATION PRIMITIVES
Table 2 shows the standard format of communication primi-
tives. XX is a mandatory field while communicating, whereas
(XX) is non-mandatory. communicative act is explained in
section IV-A. Every piece of message must contain a com-
municative act. :sender is Aid of a CPS-Agent who sends this
message. :receiver is Aid of a CPS-Agent who is expected to
receive this message. :sender and :receiver are in the same
group. :strategy is promissory coordination strategy for the
group. :strategy is transmitted to cope with the situation that
one CPS-Agent implements multiple strategies (it is possible
because one CPS-Agent could perform different tasks and
work with different CPS-Agents in multiple physical envi-
ronments). The content of :time and :space are encapsulated
as class _Time object and class _Space object respectively.

57636 VOLUME 6, 2018



Y. Hu, X. Zhou: CPS-Agent-Oriented Construction and Implementation For CPSs

TABLE 2. Standard format of communication primitives.

TABLE 3. Members of class _time to describe the content of :time.

TABLE 4. Members of class _space to describe the content of :space.

The class members and detail explanations of class _Time
and class _Space are shown in Table 3 and Table 4 respec-
tively. Note that we use class member variables to present
some general spatio-temporary requirements, but some vari-
ables can be default. :content expresses specific requirements
related to the scenario. :language is the pre-defined layout for
:content. Engineers are able to customize :language, or use
common layouts, such as RDF, OWL, KIF, etc. :ontology
shows the source of terminologies used in :content. :ontology
is designed to avoid ambiguity.

B. ROLE-BASED MULTIPLE CPS-AGENTS
COORDINATION STRATEGIES
We cannot put forward a definite certain coordination strat-
egy to support various specific CPS applications, because
coordination strategy researching for CPS is an open and
hot topic, and it is always related to more specific scenar-
ios. Here, we propose a role-based methodology to design
a coordination strategy. Specifically, we have read a lot of
papers, and we find an interesting phenomenon that in a
coordination scenario, multiple CPS-Agents usually have
clear-cut assignments, therefore they play different roles and
take autonomous approaches on task realizing. According
to such phenomenon, we believe that designing a coordi-
nation strategy framework based on roles play is a feasible
methodology, i.e. The engineers are suggested to develop a
strategy where multiple roles are partitioned according to the

requirements of the scenario, and then behavior patterns of
the roles during coordination are designed.

Moreover, besides roles design, we select a subset of
communication primitives to help realize missions of roles,
since primitives have strict semantic definition. In summary,
there are three phases for role-based strategy establishment:
naming, roles design, primitive selection. Afterwards, engi-
neers should add strategy details into function modules of the
CPS-Agents, which are mentioned in section III-B.

C. MULTIPLE CPS-AGENTS COORDINATION GROUPS
There are usually some cooperative tasks that requiremultiple
CPS-Agents to work together. Hence these CPS-Agents form
a group where they use a promissory and approved coordi-
nation strategy for realizing tasks and improving efficiency,
and they use communication primitives corresponding to the
coordination strategy for inter-communication.

Forming a coordination group has four phases: naming,
members selection, strategy selection, roles playing. Specif-
ically, engineers need to give a name to the group firstly,
and then select members of the group from the established
CPS-Agents for coordination tasks, afterwards engineers
select a strategy to guide behaviors of the group, finally
according to the role-based strategy, engineers assign roles
to CPS-Agents, requiring CPS-Agents to work based on the
behavior pattern of roles.

V. DESIGN PRINCIPLES AND PROCESSES OF
THE SUPPORT TOOL FOR CPS-AGENTS
The support tool is a platform-independent software that
aims at helping engineers reduce modeling complexity and
simplify development processes for CPS applications. In this
part, we focus on the design principles and processes of the
support tool. As depicted in the Fig. 6, the tool is based on the
CPS-Agent model and coordination support protocols, and it
consists of three major design and development steps. The
result of this process is the support tool, which will output a
set of C++ files corresponding to customized CPS-Agents,
coordination strategies and groups by engineers.

In the following we explain the design and development
processes for the tool in detail.

A. GRAPHICAL USER INTERFACE DESIGN
The support tool is a novel visual platform.We design graphi-
cal user interface (GUI) for the tool based on requirements of
the CPS-Agent model, role-based strategies and coordination
groups. The Fig. 7 shows a screen-shot of the support tool.
The menu bar includes File, CPS-Agent, Co-Strategy and
Co-Group. The File menu has only a function of exiting
the tool. The other three menus correspond to the detailed
explanation in section III-A, IV-B, IV-C respectively. Each
menu option has a drop-down menu that usually includes
establish and delete, which represent creation of a new item
and the deletion of an established item, respectively.

The view of the left hand column in the Fig. 7 includes
three important spaces: CPS-Agent Space, Coordination

VOLUME 6, 2018 57637



Y. Hu, X. Zhou: CPS-Agent-Oriented Construction and Implementation For CPSs

FIGURE 6. The design processes of the support tool.

FIGURE 7. The graphical interface of establishing a new CPS-Agent.

Strategies and Coordination Groups. Each space has subdi-
rectories where some established items are displayed. Every
subdirectory saves all files related to the item, usually includ-
ing a XML description file and a set of C++ code files.
The contents of a file can be displayed in the right window
by selecting the file on the left. The XML file cannot be
edited. It helps engineers understand features and attributes
of established CPS-Agents, strategies and group. C++ files
are able to be edited, compiled and executed. They are inde-
pendent executables with powerful expansibility. Engineers
could design secondary development based on the C++ files,
for example, they are able to complement control algorithms
or optimization algorithms to the C++ files.
At the same time, Fig. 7 presents the first graphical inter-

face design about how to customize a new CPS-Agent.
As depicted in the Fig. 8, the user interface (UI) of making a
role-based coordination strategy is shown. The UI design of
establishing a coordination group for multiple CPS-Agents is
presented in the Fig. 9.

B. STRUCTURE ANALYSIS OF THE C++ TEMPLATES
The next step is to design C++ templates,including parts
of CPS-Agent construction and coordinate support. Here,
we use DotLiquid to help generate C++ files automati-
cally. DotLiquid [3] is a templating system ported to the .net
framework. All C++ templates are designed to conform to
DotLiquid syntax.

Then we focus on analyzing structures of the code tem-
plates, We have three templates to coping with the Reactive
CPS-Agent, the Decision-making CPS-Agent and the Hybrid
CPS-Agent respectively.

FIGURE 8. The graphical interface of making role-based coordination
strategies.

FIGURE 9. The graphical interface of establishing coordination groups.

To be specific, Class action includes functions of
receiving events and coping with events. Class think
have function decide():void, where engineers could design
reasoning and decision-making algorithms. Besides that,
Class Action_CPSAgent, Class Think_CPSAgent and Class
Hybrid_CPSAgent include parameters definition of the cus-
tomized CPS-Agent, overloading functions of the parent
Classes, and peculiar functions. These significant Classes are
designed to assist construction of the customized CPS-Agent
and generation of corresponding C++ files of Reac-
tive CPS-Agents, Decision-making CPS-Agents and Hybrid
CPS-Agents automatically. Usually, Class action is inher-
ited by Reactive CPS-Agents. Class think is inherited by
Decision-making CPS-Agents. Hybrid CPS-Agents have the
advantages of Reactive CPS-Agents and Decision-making
CPS-Agents, hence the template inherits Class action and
Class think.

57638 VOLUME 6, 2018



Y. Hu, X. Zhou: CPS-Agent-Oriented Construction and Implementation For CPSs

FIGURE 10. A UML class diagram of automatically generated C++ code
files of the CPS-Agent testCar.

To support coordination for CPS-Agents, Class Team-
CPSAgent is designed. It makes information translate to a
string with a predefined format through the function for-
mulateMessage(information):void. It could parse the string
to information using the function getInformation(string
message):information. Details of the information are able
to be parsed through functions getAct(string message),
getContent(string message), getLanguage(string message),
etc. Functions of transferring information with specific
semantics are provided by Agree(string receiver, infor-
mation infor), Cfp(string receiver, information infor), etc.
At the same time, members setting and judgement are real-
ized through setTeam(string message): void and isTeam-
Mate(string name):bool respectively. Class TeamCPSAgent is
inherited by Class Action_CPSAgent, Class Think_CPSAgent
and Class Hybrid_CPSAgent.

Here we illustrate the structure of code templates through
automatically generated C++ codes of testCar, whichwill be
instanced as a Hybrid CPS-Agent with coordination require-
ments in section VI. The Fig. 10 shows a UML class diagram
of code files to present the inheritance relationship between
Classes.

In order to analyze deeply of the relationship between
C++ files, a code map is presented in the Fig. 11. We illus-
trate association relationships among Classes, Structs and
Functions that are represented by gray lines in the Fig. 11.
Function main is responsible for concrete operations and it
creates a thread function monitor, which is responsible for
monitoring incoming messages. Class information standards
format and members of messages, its content is described in
the Table 2. Class hybrid_CPSAgent is not associated with
think, because the former overrides function decision():void
of the latter, even if the former inherits the latter. As for class

FIGURE 11. The code map of automatically generated C++ code files of
CPS-Agent testCar. Gray lines represent association relationship.

Event and struct _Event, engineers could redefine elements
that are need to pay attention. Other classes and structs are
ancillary, including class CalPar, class _Time, class _Space,
struct _CalPar.

C. INTEGRATE GUI & C++ TEMPLATES & DOTLIQUID
After designing and developing GUI for the tool, we need to
connectDotLiquid to the tool, so that the tool has the powerful
capability to generate C++ files automatically. Afterwards,
C++ templates are integrated to the tool, too. Following
the integration process, a visual support tool is available for
engineers.

VI. DEVELOPMENT PROCESSES ON
THE TOOL FOR ENGINEERS
In this part, we will present how engineers customize
CPS-Agent, coordination strategy and groups based on
requirements of CPS applications by an instance of a car
team, and show the customized results.

A. INSTANCE BACKGROUND
A car team is responsible for loading and transporting goods.
In general, the car drivers make decisions to cope emer-
gencies based on their experience on the roads, with taking
into account the performance indicators of the car. During
the mission, car drivers must keep attention focused. It is
expected to customize an unmanned system to carry out such
tired tasks. For the best intention, the first step is to model
the car.

Specifically, modeling the car is necessary, i.e. It is nec-
essary to abstract the important attributes and characteristics
of the car into objects that engineers can understand, so that
engineers can participate in the development of CPS without
complex control and dynamics knowledge.

B. DEVELOPMENT PROCESSES
This paper tries to finish the first step of developing an
unmanned system, which is a classic cyber physical system.
We first extract requirements of the CPS applications as the
input, and then model cars using the CPS-Agent methodol-
ogy. For cooperative tasks of the car team, we design a coor-
dination strategy using the role-based strategy establishment

VOLUME 6, 2018 57639



Y. Hu, X. Zhou: CPS-Agent-Oriented Construction and Implementation For CPSs

FIGURE 12. A summary of the development process for engineers.

methodology. Afterwards, a coordination group is established
to support interaction of the car team. Finally, XML and
C++ files are outputted to assist secondary development for
engineers. A summary of the development process is depicted
in the Fig. 12.

We will present development process in detail for CPS on
the tool in the following.

1) CUSTOMIZE MULTIPLE CPS-AGENTS
Engineers would like to customize a new CPS-Agent, and
they will extract some important information related to per-
formance of the car. After that, they fill the items in the
establishment window of CPS-Agent, shown in the Fig. 7.
Following that, the tool will present a XML file correspond-
ing to the CPS-Agent automatically in the right window of the
tool, and a pop-up reminds engineers of successful creation
of a CPS-Agent, as shown in the Fig. 13. At the same time,
the Fig. 13 also presents that the left window of the tool
will add a new subdirectory named testCar in the CPS-Agent
Space. All files related to testCar are enumerated in this
subdirectory.

FIGURE 13. The XML file of the customized CPS-Agent.

Note that information about performance of the modeled
object is more suitable to represent the features of the object
and is easier to be understood by engineers than more con-
crete configuration conditions of the object. A classical exam-
ple is to depictAc (Actuators Configuration) inVsp.We depict
significant information related to performance of the car,
including values related to velocities and rotate speed, instead
of describing brands and versions of components, such as
radar, gun, apron wheel, etc.

In this phase, we have depicted two elements,Api and Vsp,
in the five-tuple of the CPS-Agent. The other two elements,
Vdp and Vs, are changing as system running, hence we need
to get information in real time. The remaining element Gm

will be described in the following. We use the code template
of the Hybrid CPS-Agent to model the car.

2) MAKE A ROLE-BASED COORDINATION STRATEGY
Repeating the process of establishing a CPS-Agent, engineers
could model all cars in the car team. Then in this step, we will
make a role-based coordination strategy. As depicted in the
Fig. 8, three steps are required: naming, roles design, primi-
tive selection. Here, we make a strategy named TestStrategy,
and then we designs two special roles for the strategy, leader
and sub-leader, to overtake different tasks. In step three,
seven communicative acts are selected to assist multiple
CPS-Agent with semantic communication.

After the button Establish being clicked, a XML file will
be presented in the right window, and all files related to the
strategy are listed in the subdirectory in the Coordination
Strategies too. In this step, there is only one non-editable
XML file being generated. The result is shown in the Fig. 14.

FIGURE 14. The XML file of the customized role-based coordination
strategy.

3) ESTABLISH A COORDINATION GROUP
Following that, we will establish a coordination group for
realizing cooperative application tasks. As depicted in the
Fig. 9, there are four parts for the group establishment:
naming, members selection, strategy selection, roles playing.
No part can be default. For example, we establish a group
named TestGroup, and select three CPS-Agents from estab-
lished CPS-Agents as group members. Afterwards, the strat-
egy TestStrategy is selected from existing strategies. Finally,
as for roles that are designed in TestStrategy, we assign them
to two group members respectively.

After being established, a XML file will be shown auto-
matically, and all files will be saved in the subdirectory in
Coordination Groups. The C++ files related to TestGroup

57640 VOLUME 6, 2018



Y. Hu, X. Zhou: CPS-Agent-Oriented Construction and Implementation For CPSs

FIGURE 15. Presentation of automatically generated C++ files related to
the coordination group.

could be edited, compiled and executed, as shown in
the Fig. 15.

C. WORK OF ENGINEERS
Our tool has modeled cars successfully and generate C++
files automatically. But engineers should complement the
remaining functions of modules of CPS-Agents in the sec-
ondary development. Works of engineers include a) design-
ing functions of communication interface connection with
other CPS-Agents and sensors with consideration of practical
applications; b) providing domain-related action libraries,
knowledge libraries, rules libraries; c) customizing learning
optimized algorithms for the Decision-making CPS-Agents
and Hybrid CPS-Agents; d) designing strategy details and
programming to implement the details when CPS-Agents
coordinate based on a role-based strategy for cooperative
tasks.

VII. CONCLUSIONS AND OUTLOOK
In this paper, we introduced an innovative CPS-Agent
methodology to model complex objects in CPS, and then we
designed a support tool for generating a XML description
file and C++ code files automatically corresponding to the
CPS-Agent. An instance of a car team is used to illustrate the
correctness and efficiency of our methodology and tool.

As for the CPS-Agent methodology, we a) presented a
five-tuple to describe features and performance of objects in
CPS, with consideration of spatio-temporary features, inter-
action with physical processes and physical environment;
b) extracted important information of objects as elements in
the five-tuple. Following that, to serve coordination require-
ments, we propose a role-based strategy formulation method-
ology. Afterwards, A set of communication primitives are
defined to achieve inter-understanding and inter-operation
among CPS-Agents. The strategy is bind with a subset of
primitives. In the end, a coordination group is established
for cooperative tasks. The group is related to the established
CPS-Agents set and strategies set. Moreover, the support tool
provides visual interfaces to assist development for engineers.

Future works will further evaluate our general approach on
other complex applications. Moreover, we will further perfect

the CPS-Agent templates, so that they can help engineers
reduce development workload and difficulties. After that,
we will focus on security problems that are crucial in CPS,
including protecting CPS-Agent and the support tool against
Trojans, securing underlying hardware related to CPS-Agent
against security risks due to piracy threats, etc.

REFERENCES
[1] Agent-BasedModelWikipedia. Accessed: Jul. 5, 2018. [Online]. Available:

https://en.wikipedia.org/wiki/Agent-based_model
[2] Component-Based Development Wikipedia. Accessed: Aug. 18, 2018.

[Online]. Available: https://en.wikipedia.org/wiki/Component-based_
software_engineering

[3] DotLiquid Homepage. [Online]. Available: http://dotliquidmarkup.org
[4] Service-Oriented Architecture Wikipedia. Accessed: Jul. 9, 2018. [Online].

Available: https://en.wikipedia.org/wiki/Service-oriented_architecture
[5] F. Bergenti, E. Iotti, S. Monica, and A. Poggi, ‘‘Agent-oriented

model-driven development for JADE with the JADEL programming lan-
guage,’’ Comput. Lang. Syst. Struct., vol. 50, pp. 142–158, Dec. 2017.

[6] S. Dziwok, C. Gerking, S. Becker, S. Thiele, C. Heinzemann, and
U. Pohlmann, ‘‘A tool suite for the model-driven software engineering of
cyber-physical systems,’’ in Proc. 22nd ACM SIGSOFT Int. Symp. Found.
Softw. Eng., 2014, pp. 715–718.

[7] Communicative Act Library Specification, document SC00037J, FIPA,
2002.

[8] C. Gerking, W. Schäfer, S. Dziwok, and C. Heinzemann, ‘‘Domain-
specific model checking for cyber-physical systems,’’ in Proc. Workshop
Model-Driven Eng., 2015, pp. 18–27.

[9] D. González, J. Pérez, V. Milanés, and F. Nashashibi, ‘‘A review of motion
planning techniques for automated vehicles,’’ IEEE Trans. Intell. Transp.
Syst., vol. 17, no. 4, pp. 1135–1145, Apr. 2016.

[10] Y. Gottlieb and T. Shima, ‘‘UAVs task and motion planning in the
presence of obstacles and prioritized targets,’’ Sensors, vol. 15, no. 11,
pp. 29734–29764, 2015.

[11] C. Heinzemann, O. Sudmann, W. Schäfer, and M. Tichy, ‘‘A
discipline-spanning development process for self-adaptive mechatronic
systems,’’ in Proc. Int. Conf. Softw. Syst. Process, 2013, pp. 36–45.

[12] C. A. Iglesias, M. Garijo, and J. C. González, ‘‘A survey of agent-oriented
methodologies,’’ in Proc. Int. Workshop Agent Theories, Archit., Lang.,
1998, pp. 317–330.

[13] K. Kravari and N. Bassiliades, ‘‘A survey of agent platforms,’’ J. Artif.
Societies Social Simul., vol. 18, no. 1, p. 11, 2015.

[14] P. Lin, J. Thangarajah, and M. Winikoff, ‘‘Tool support for agent develop-
ment using the prometheus methodology,’’ in Proc. Int. Conf. Qual. Softw.,
Sep. 2005, pp. 383–388.

[15] X. Ma, Z. Jiao, Z. Wang, and D. Panagou, ‘‘Decentralized prioritized
motion planning for multiple autonomous UAVs in 3D polygonal obstacle
environments,’’ in Proc. Int. Conf. Unmanned Aircr. Syst., Jun. 2016,
pp. 292–300.

[16] X. Ma, Z. Jiao, Z. Wang, and D. Panagou, ‘‘3-D decentralized priori-
tized motion planning and coordination for high-density operations of
micro aerial vehicles,’’ IEEE Trans. Control Syst. Technol., vol. 26, no. 3,
pp. 939–953, May 2018.

[17] D. Panagou, D. M. Stipanović, and P. G. Voulgaris, ‘‘Distributed coor-
dination control for multi-robot networks using Lyapunov-like barrier
functions,’’ IEEE Trans. Autom. Control, vol. 61, no. 3, pp. 617–632,
Mar. 2016.

[18] D. Panagou, ‘‘A distributed feedbackmotion planning protocol for multiple
unicycle agents of different classes,’’ IEEE Trans. Autom. Control, vol. 62,
no. 3, pp. 1178–1193, Mar. 2017.

[19] D. Panagou, D. M. Stipanović, and P. G. Voulgaris, ‘‘Distributed dynamic
coverage and avoidance control under anisotropic sensing,’’ IEEE Trans.
Control Netw. Syst., vol. 4, no. 4, pp. 850–862, Dec. 2017.

[20] U. Pohlmann, J. Holtmann, M. Meyer, and C. Gerking, ‘‘Generating
modelica models from software specifications for the simulation of
cyber-physical systems,’’ in Proc. 40th EUROMICRO Conf. Softw. Eng.
Adv. Appl., Aug. 2014, pp. 191–198.

[21] U. Pohlmann, H. Trsek, L. Dürkop, S. Dziwok, and F. Oestersötebier,
‘‘Application of an intelligent network architecture on a cooperative
cyber-physical system: An experience report,’’ in Proc. IEEE Emerg.
Technol. Factory Autom., Sep. 2014, pp. 1–6.

VOLUME 6, 2018 57641



Y. Hu, X. Zhou: CPS-Agent-Oriented Construction and Implementation For CPSs

[22] N. Saxena, V. Chukwuka, L. Xiong, and S. Grijalva, ‘‘CPSA: A
cyber-physical security assessment tool for situational awareness in
smart grid,’’ in Proc. Workshop Cyber-Phys. Syst. Secur. Privacy, 2017,
pp. 69–79.

[23] A. Sengupta and S. Kundu, ‘‘Guest editorial securing IoT hardware:
Threat models and reliable, low-power design solutions,’’ IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 12, pp. 3265–3267,
Dec. 2017.

[24] A. Sengupta, D. Roy, S. P. Mohanty, and P. Corcoran, ‘‘DSP design pro-
tection in CE through algorithmic transformation based structural obfus-
cation,’’ IEEE Trans. Consum. Electron., vol. 63, no. 4, pp. 467–476,
Nov. 2017.

[25] A. Sengupta, D. Roy, S. P. Mohanty, and P. Corcoran, ‘‘Low-cost obfus-
cated JPEG codec IP core for secure CE hardware,’’ IEEE Trans. Consum.
Electron., vol. 64, no. 3, pp. 365–374, Aug. 2018.

[26] J. Sudeikat, L. Braubach, A. Pokahr, and W. Lamersdorf, ‘‘Evaluation of
agent–oriented software methodologies–examination of the gap between
modeling and platform,’’ in Proc. Int. Workshop Agent-Oriented Softw.
Eng., 2004, pp. 126–141.

[27] J. Tonn and S. Kaiser, ‘‘ASGARD—A graphical monitoring tool
for distributed agent infrastructures,’’ in Proc. Adv. Practical Appl.
Agents Multiagent Syst. (PAAMS), Salamanca, Spain, Apr. 2010,
pp. 163–173.

[28] A. Tveit, ‘‘A survey of agent-oriented software engineering,’’ in Proc. 1st
NTNU CSGSC, vol. 1, May 2001.

[29] X. Vila, A. Schuster, and A. Riera, ‘‘Security for a multi-agent sys-
tem based on JADE,’’ Comput. Secur., vol. 26, no. 5, pp. 391–400,
2007.

YUJIAO HU was born in Yulin, China, in 1993.
She received the B.E. degree in computer sci-
ence and technology from Northwestern Poly-
technical University, Xi’an, China, in 2016,
where she is currently pursuing the Ph.D. degree
with the School of Computer Science and
Engineering.

Her current research interests include multi-
agent planning, coordination, and distributed con-
trol of complex systems, with application in

unmanned aerial systems and cyber-physical environment.

XINGSHE ZHOU (M’04) received the B.S. and
M.S. degrees from the School of Computer
Science, Northwestern Polytechnical University,
Xi’an, China.

He is currently a Doctoral Mentor of the School
of Computer Science, Northwestern Polytechnical
University, the Director of the Shaanxi Embed-
ded System Key Laboratory, the Director of the
Shaanxi Cloud Computing Technology Engineer-
ing Research Center, and the Director of the Center

for High-Performance Computing. He has authored two books and nearly
200 articles. His research interests include planning and coordination of
complex distributed systems in the cyber-physical environment.

57642 VOLUME 6, 2018


	INTRODUCTION
	RELATED WORK
	MODELING AND PERSONALIZATION CATEGORIES
	CPS-AGENT MODEL
	PERSONALIZATION CATEGORIES AND ARCHITECTURE DESIGNS FOR THE CPS-AGENT
	REACTIVE CPS-AGENT
	DECISION-MAKING CPS-AGENT
	HYBRID CPS-AGENT


	COORDINATION SUPPORT FOR MULTIPLE CPS-AGENTS SYSTEMS
	COMMUNICATION PRIMITIVES AMONG CPS-AGENTS
	COMMUNICATIVE ACTS
	FORMAT OF COMMUNICATION PRIMITIVES

	ROLE-BASED MULTIPLE CPS-AGENTS COORDINATION STRATEGIES
	MULTIPLE CPS-AGENTS COORDINATION GROUPS

	DESIGN PRINCIPLES AND PROCESSES OF THE SUPPORT TOOL FOR CPS-AGENTS
	GRAPHICAL USER INTERFACE DESIGN
	STRUCTURE ANALYSIS OF THE C++ TEMPLATES
	INTEGRATE GUI & C++ TEMPLATES & DOTLIQUID

	DEVELOPMENT PROCESSES ON THE TOOL FOR ENGINEERS
	INSTANCE BACKGROUND
	DEVELOPMENT PROCESSES
	CUSTOMIZE MULTIPLE CPS-AGENTS
	MAKE A ROLE-BASED COORDINATION STRATEGY
	ESTABLISH A COORDINATION GROUP

	WORK OF ENGINEERS

	CONCLUSIONS AND OUTLOOK
	REFERENCES
	Biographies
	YUJIAO HU
	XINGSHE ZHOU


