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ABSTRACT In radar signal processing, the detection and parameter estimation of high-speed maneuvering
targets, which often utilize a coherent pulse train signal with linear frequency modulation, have been
receiving increasing attention. Fundamentally and significantly, the Cramer–Rao lower bound (CRLB),
as a cornerstone for evaluating the estimation performance of high-order kinematic parameters, has been
derived and investigated here. In this paper, a 2-D echo signal model expressed in the fast-frequency and
slow-time domains is adopted. The scaled orthogonal Legendre polynomials are deliberately introduced
to solve the inverse problem of the Fisher information matrix, and then, a linear mapping relationship
between different polynomial parameters can be used to obtain the analytical CRLB expressions. The main
contributions included are: 1) the CRLBs, which are exact and closed form, have been extended to arbitrary
motion model orders and reference time instants; 2) the influences of the motion model order, the reference
time instant, as well as the radar parameters on the CRLBs are exploited comprehensively; and 3) some
specific cases, including four low-order motion models and two preferred reference times, are also presented
to better demonstrate the CRLB performance relationships. It highlights the fact that the reference time
instant corresponding to the middle of the pulse train is a reasonable and compromised choice for parameter
estimation, although it is not necessarily optimal for the kinematic parameters of all models and orders. The
above research results are illustrated with numerical simulations and further verified using the maximum
likelihood estimation method combined with Monte Carlo experiments.

INDEX TERMS Cramer-Rao lower bound, kinematic parameter estimation, motion model order, reference
time instant.

I. INTRODUCTION
The polynomial phase signal (PPS) parameter estimation
problem appears in various engineering applications such
as biomedicine, speech, communication, and radar signal
processing and has attracted substantial research interest in
the past few decades [1]. Based on the fundamental signal
model with constant amplitude and polynomial phase of arbi-
trary degree, numerous effective estimation algorithms have
been proposed and analyzed in the literature [2]–[9]. One
of the most popular PPS estimators, the polynomial-phase
transform (PPT) [2], also called the high-order ambiguity
function (HAF) [3], accomplishes phase order decrement-
ing via phase differentiation (PD) techniques. Subsequently,
the integrated generalized ambiguity function (IGAF) [4] and
the product high-order ambiguity function (PHAF) [5] can be
used to suppress the cross-terms of multicomponent PPSs.

In addition, time-frequency analysis [6] and time-frequency
rate analysis [7] for nonstationary signals offer alternative
solutions such as the polynomial Wigner-Ville distribu-
tion (PWVD) [6], [8], the high-order Wigner distribution
(HO-WD) [6], [9], and the high-order cubic phase function
(HO-CPF) [7], [9]. Along with the complications presented
by practical application scenarios, the signal model has even
been extended to the time-varying-amplitude case. It is often
treated as multiplicative noise, and some cyclostationary
approaches have been employed [10], [11].

To reasonably evaluate these algorithms’ performance,
the theoretical lower bound for unbiased estimators, well
known as the Cramer-Rao Lower Bound (CRLB), provides
an excellent benchmark for performance comparisons and
therefore is of great importance. Peleg and Porat [12] first
presented approximate but general CRLB expressions for
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the constant-amplitude PPS embedded in additive white
Gaussian noise. Ristic and Boashash [13] then noted in
their comment that the CRLB results also depend on
the observation interval over which the signal is defined.
Rytel-Andrianik [14] expanded on this research and investi-
gated the critical influence of changes in the measurement
interval center on the CRLBs of PPS. Legg and Gray [15]
further evaluated the bounds for polynomial phase parameter
estimation with nonuniform and random sampling schemes.
In addition, performance analyses of deterministic signals
under both additive and multiplicative noise can be found
in [16]–[18].

In the radar field, the PPS is common and usually due
to a target’s complex radial motion patterns. For example,
when we transmit a simple sinusoidal signal, a constant-
velocity motion will result in a single-tone echo signal,
a constant-acceleration motion leads to a linear frequency
modulation (LFM) or chirp signal, and a constant-jerk motion
corresponds to a quadratic frequency modulation (QFM) sig-
nal. More generally, any continuous radial motion function
on a closed time interval can be uniformly approximated by
polynomials. With increasing coherent processing interval
(CPI), more and more high-order motion models for maneu-
vering targets have been established and adopted; the relevant
estimation problems of the high-order kinematic parameters
are thus receiving increasing attention [19], [20]. The LFM
coherent pulse train is an important waveform and is widely
used in practical radar scenarios such as the long-time inte-
gration for weak target detection [21]–[23] and radar imaging
for target identification [24]–[26]. For high-speed maneu-
vering targets, there exist envelope migration effects from
pulse to pulse. Then, unlike the pure PPS case, the targets’
motion information is simultaneously coupled into the enve-
lope and phase modulations of the two-dimensional echo
signal. In addition, the instantaneous kinematic parameters
may be time-varying during the CPI, and it is necessary to
specify a reference time instant within the pulse train for the
estimation process. Correspondingly, the possible influences
of designated reference times on the estimation performance
are interesting and can be helpful for the envelope alignment
and phase focusing operations, etc.

The maximum likelihood estimation (MLE) is one of
the effective methods for the joint parameter estimation of
LFM pulse train signals, and many fast implementations
have been developed for low-order motion models [27]–[30].
Herein, we are concerned with the theoretical performance
analysis and not a particular estimation algorithm. Abat-
zoglou and Gheen [27] already presented the CRLBs of
range, radial velocity and acceleration using an LFM pulse
train. Xu et al. [19] obtained the approximate CRLBs
of higher order motion parameters based on the results
in [12], with the reference time instant fixed at the starting
pulse. Deng et al. [28] derived the CRLBs of some low-order
motion parameters under a more accurate high-speed echo
model. Pan et al. [31] further considered the estimation per-
formance of a two-order motion model using a frequency

modulation coded LFM pulse train. However, the last two
studies did not obtain intuitive CRLB expressions. As we
can see, exact and closed-form CRLBs for high-order motion
models remain absent in the literature, and the influence of the
reference time instant within the pulse train is rarely consid-
ered. Motivated by these facts, we will derive the analytical
CRLB expressions for the high-order kinematic parameters
estimation using the LFM coherent pulse train signal. Com-
pared with current results, the performance bounds will be
extended to arbitrary motion model orders and reference time
instants, so they are more general and extensive.

The remainder of this paper is organized as follows.
In Section 2, the echo model of an LFM coherent pulse
train signal is established. The two-dimensional signal is
then expressed in the fast-frequency and slow-time domains,
with which the concerned estimation problem is stated.
In Section 3, the scaled orthogonal Legendre polynomials
are introduced to derive the Fisher information matrix. Since
this matrix is close to diagonal, the exact CRLBs can be
easily obtained by matrix inversion and linear mapping.
In Section 4, the CRLB performance relationships are further
analyzed and compared through some specific cases with
different motion model orders and reference time instants.
In Section 5, some numerical simulations are performed. The
factor influences on the CRLBs of the kinematic parame-
ters are illustrated, and the theoretical values are compared
with the MLE results via Monte Carlo experiments. Finally,
we conclude this paper and provide some future work in
Section 6.

II. SIGNAL MODELING AND PROBLEM STATEMENT
A. ECHO SIGNAL MODEL
The coherent pulse train signal transmitted by a radar can be
expressed as

st (t) =
∑
m

pt (t − mTr ) exp(j2π fct)

=

∑
m

pt (t̃) exp(j2π fct) (1)

where t is the full time, tm = mTr represents the slow-time
domain, t̃ = t − tm indicates the fast-time domain, Tr is
the pulse repetition period, m is the pulse index, with a total
pulse number of (2M + 1), and the dwell time is TD =
(2M + 1)Tr . Moreover, fc is the signal carrier frequency, and
pt (t̃) is the LFM waveform, with a form of

pt (t̃) =
1√
Tp

rect
(
t̃
Tp

)
exp(jπγ t̃2) (2)

where rect (u) =
{
1, |u| ≤ 1/2
0, |u| > 1/2

, Tp expresses the pulse

width, γ is the signal chirp rate, and the signal bandwidth
B is equal to γTp.
Without loss of generality, the observed moving target is

treated as a point target, and its echo delay is denoted as τ .
During the dwell time, τ is time varying with respect to
the target’s radial kinematic parameters. Consider that Tp is
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rather small relative to Tr for a typical pulse-Doppler radar,
and the effect of inter-pulse modulation is more pronounced
than that of intra-pulse modulation; thus, only the inter-pulse
motion is considered here. Moreover, the Doppler shift and
pulse spread effects caused by a high-speed target are also
ignored [28]. Then, the echo delay τ from pulse m can be
further simplified as

τm ≈
2r(tm)
c
=

2
I∑
i=0

ai
i! (tm − tm0 )

i

c
(3)

where r (tm) is the target’s radial motion trajectory over
a finite measurement window and c is the speed of light.
Although the measurement window can be set arbitrarily
like [14], for convenience, we assume that it is symmetric
with m ∈ {−M , · · · , 0, · · · ,M}. tm0 = m0 Tr is introduced
to indicate the reference time instant within the pulse train
for the high-order kinematic parameters estimation, andm0 is
used to mark the corresponding pulse index (not necessarily
an integer). ai is the relevant kinematic parameter, and the
maximum motion model order is I .
According to (1)∼(3), the m-th baseband signal after pulse

compression is modeled as follows

sr (t̃, tm) ≈ Ar
√
Bsinc

[
B(t̃ − τm)

]
× exp [−j(2π fcτm + ϕ)]

(4)

where sinc (u) = sin(πu)
πu and Ar and ϕ represent the target’s

scattering amplitude and initial phase, respectively. We fur-
ther assume that both Ar and ϕ are constant during the dwell
time. To facilitate the following derivations, the signal is
expressed in the fast-frequency and slow-time domains [27],
which gives

S(f̃ , tm) ≈
Ar
√
B
rect

(
f̃
B

)
× exp

{
−j
[
ϕ + 2π (fc + f̃ )τm

]}
.

(5)

In particular, if the radar bandwidth is relatively narrow
and the moving target’s range migration during the dwell
time is not so obvious, the envelope can not provide effective
constraint information, and then the above echo signal model
will degenerate into a pure PPS case. Equation (5) becomes
Ar√
B
rect

(
f̃
B

)
exp {−j (ϕ + 2π fcτm)}.

As we know, the slow-time domain is naturally discretized
with an interval of Tr , yet the fast-frequency domain is dis-
cretized as f̃ = k1f , where 1f is the frequency interval and
the frequency index k ∈ {−K , · · · , 0, · · · ,K }. Obviously,
B ≈ (2K + 1)1f . Then, the discretization signal with noise
yields

Z (n)

= S(k,m)+W (k,m)

= A exp

{
−j

[
ϕ +

4π (fc + k1f )
c

I∑
i=0

ai(m− m0)iT ir
i!

]}
+W (k,m) (6)

where A = Ar√
B
is the new amplitude defined in the frequency

domain. n corresponds to the unique (k,m) pair, where−K ≤
k ≤ K and −M ≤ m ≤ M .

The equivalent vector form of (6) is Z = S +W , where S
is the above-mentioned deterministic signal, and it can be
treated as a variant of the constant-amplitude PPS. W is the
additive complex Gaussian noise with zero mean and known
covariance. In this situation, the total number of sampled data
points is N = (2M + 1) (2K + 1), and the parameters to be
estimated are θ = {A, ϕ, a0, a1, · · · , aI }.

B. MAXIMUM LIKELIHOOD ESTIMATION
Based on the above echo signal model, the multidimensional
joint probability density function (PDF) of Z is written as

pdf(Z; θ ) =
1

πNdet(Cw)

× exp
[
−(Z− S)HCw−1(Z− S)

]
(7)

where Cw is the covariance matrix ofW , ‘‘det’’ is the matrix
determinant, and the superscript ‘‘H’’ means conjugate trans-
pose. Equation (7) can also be considered as a likelihood
function of θ , and hence, the corresponding log-likelihood
function is

3(θ;Z) = ln {pdf(Z; θ )}

≈ −(Z− S)HCw−1(Z− S)− ln [det(Cw)]. (8)

The classical MLE method determines the unknown
parameters by maximizing the function in (8), which means

θ̂ = argmax
θ

3(θ;Z). (9)

It is well known that the MLE method is asymptoti-
cally effective, and evidently, its estimation performance
can achieve the ideal CRLBs when the signal-to-noise
ratio (SNR) is high enough. However, this method suf-
fers from a serious computational problem because it often
requires a multidimensional search over an unknown parame-
ter space; the time consumption becomes unacceptable when
the search dimension is large. Therefore, continued efforts
are being made to improve the algorithm efficiency such as
with the generalized Radon-Fourier transform (GRFT) [19]
and the fast two-step search techniques combining the Hough
transform (HT) and Newton’s method [27], [28]. Moreover,
researchers are also seeking suboptimal but more efficient
algorithms [20], [23], [26]. Next, based on the echo signal
model Z expressed in the fast-frequency and slow-time
domains, as well as the given log-likelihood function
3(θ;Z), we continue to derive the exact and closed-form
CRLB expressions.

III. DERIVATION OF THE ANALYTICAL CRLBS
A. FISHER INFORMATION MATRIX AND ITS INVERSION
In statistical signal processing, the Fisher information pro-
vides a way of measuring the amount of information that
an observable random variable carries about an unknown

VOLUME 6, 2018 57449



S. Ding et al.: Exact and Closed-Form CRLBS for High-Order Kinematic Parameters Estimation

parameter, and the Fisher information matrix (FIM) is gener-
ally used to calculate the covariance matrices associated with
MLE. By definition, the FIM can be written as

J(θ ) = E
{
∂3(θ;Z)
∂θ

∂3(θ;Z)

∂θT

}
= −E

{
∂23(θ;Z)

∂θ∂θT

}
(10)

where ‘‘E{}’’ represents the mathematical expectation and
the superscript ‘‘T’’ denotes the matrix transpose operation.

In this paper, the CRLB results under the white Gaussian
noise (WGN) condition are mainly considered, and hence,
Cw = σ 2I , where σ 2 is the known noise variance and I is
an identity matrix. Then, the FIM elements in (10) can be
simplified as

Jθi,θj = 2Re

{
∂SH

∂θi
Cw−1

∂S
∂θj

}

=
2
σ 2Re

{
∂SH

∂θi

∂S
∂θj

}
(11)

where ‘‘Re{}’’ is to obtain the real part of a complex value,
and θi, θj ∈ θ . Moreover, the information matrix is symmet-
rical, and Jθi,θj = Jθj,θi .

For writing simplicity, we preliminarily define S0 = S
A ,

Tn,i =
4π (fc+k1f )

c
1
i!T

i
r (m − m0)i, and a new matrix spanned

by Tn,i with respect to different n, which is

Di = diag
{[
Tn1,i,Tn2,i, · · · ,TnN ,i

]T} (12)

where ‘‘diag{}’’ expresses a vector diagonalization opera-
tion. More intuitively, when it is specific to each estimated
parameter of θ in (11), we have

JA,A =
2Re

{
SH0 S0

}
σ 2 =

2 N
σ 2 (13)

Jϕ,ϕ =
2Re

{
SHS

}
σ 2 =

2 NA2

σ 2 (14)

Jai1 ,ai2 =
2Re

{
SHDi1Di2S

}
σ 2

=
2A2

σ 2

∑
n

T 2
n,i1+i2 (15)

JA,ϕ =
2Re

{
jSH0 S

}
σ 2 = 0 (16)

JA,ai =
2Re

{
jSH0 DiS

}
σ 2 = 0 (17)

Jϕ,ai =
2Re

{
SHDiS

}
σ 2 =

2A2

σ 2

∑
n

Tn,i (18)

where the operation ‘‘
∑
n
’’ means a two-dimensional summa-

tion ‘‘
K∑

k=−K

M∑
m=−M

’’ here.

Thereafter, the general FIM can be summarized as (19), as
shown at the top of the next page.

By inverting the information matrix in (19), the covariance
matrix of the estimated parameters θ̂ can be deduced. Then,
the CRLB of the i-th parameter is the i-th element on the
diagonal of that covariance matrix. We further obtain

var(θ̂i) ≥ CRLB(θ̂i) =
(
J−1

)
i,i
. (20)

It is not difficult to find that the estimation performance
with respect to the signal amplitude is independent of that
with respect to the phase parameters. As a result, the CRLB
of the parameter Â can simply be written as var(Â) ≥ σ 2

2N ,
and this parameter is no longer discussed here. However,
for those polynomial phase parameters, the direct inversion
of their partial FIM seems to be mathematically intractable.
In this situation, although accurate CRLB results can still be
obtained by numerical evaluation, the parameter dependency
relationships are not so intuitive. Considering that the partial
FIM is extremely ill conditioned, some authors [12], [19]
have resorted to approximations. However, the derived CRLB
results are tightly based on the inverse form of the Hilbert
matrix, and not surprisingly, they are valid only for the start-
ing position of the sampled signal sequence. In this research,
the arbitrariness of the reference time tm0 makes the matrix
inversion problem more complex, and thus, we need to seek
new solutions.

B. ORTHOGONAL LEGENDRE POLYNOMIALS
AND THE CRLBS
To derive the exact and closed-form CRLBs, we introduce
orthogonal polynomials, such as the Legendre polynomials
[14], [32] or the Chebyschev polynomials [33], [34], to rep-
resent the PPS of large order. According to the properties
of these polynomials, the information matrix can be reduced
to an approximately diagonal form and it is much easier to
find the matrix inversion. Furthermore, using the linear map-
ping relationship between different polynomial parameters,
the required CRLBs for the high-order kinematic parameters
can be obtained.

The standard, i-th Legendre polynomials Pi(x) are orthog-
onal on x ∈ [−1, 1]. The polynomials satisfy∫ 1

−1
Pi(x)Pj(x)dx =

0, i 6= j
2

2i+ 1
, i = j

(21)

and
∫ 1
−1 Pi(x)dx can also be calculated through (21) when we

assume Pj(x) = P0(x) = 1. On this basis, we define the

scaled Legendre polynomials over the interval
[
−
TD
2 ,

TD
2

]
:

Pi(t;TD) =

√
2
TD

Pi

(
2t
TD

)
. (22)

The slow-time trajectory r(tm) can be represented simulta-
neously with two types of polynomial forms as

r(tm) =
I∑
i=0

ai
i!
(tm − tm0 )

i
=

I∑
i=0

αiPi(tm;TD) (23)
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J =
2A2

σ 2



N
A2

0 0 · · · 0 · · · 0 · · · 0

0 N
∑
n
Tn,0 · · ·

∑
n
Tn,i1 · · ·

∑
n
Tn,i2 · · ·

∑
n
Tn,I

0
∑
n
Tn,0

∑
n
T 2
n,0 · · ·

∑
n
T 2
n,i1

· · ·
∑
n
T 2
n,i2

· · ·
∑
n
T 2
n,I

...
...

...
. . .

0
∑
n
Tn,i1

∑
n
T 2
n,i1

∑
n
T 2
n,2i1

∑
n
T 2
n,i1+i2

∑
n
T 2
n,i1+I

...
...

...
. . .

0
∑
n
Tn,i2

∑
n
T 2
n,i2

∑
n
T 2
n,i1+i2

∑
n
T 2
n,2i2

∑
n
T 2
n,i2+I

...
...

...
. . .

0
∑
n
Tn,I

∑
n
T 2
n,I

∑
n
T 2
n,i1+I

∑
n
T 2
n,i2+I

∑
n
T 2
n,2I



. (19)

J′ =
2A2

σ 2



N β1
Tr

√
2TD · · · 0 · · · 0 · · · 0

β1
Tr

√
2TD

β2
Tr
2 · · · 0 · · · 0 · · · 0

...
...

. . .

0 0 β2
Tr

2
2i1+1

0 0

...
...

. . .

0 0 0 β2
Tr

2
2i2+1

0

...
...

. . .

0 0 0 0 β2
Tr

2
2I+1



(24)

where αi,0≤i≤I are the relevant coefficients of the new scaled
Legendre polynomials. Note that the discrete Legendre poly-
nomials in (23) can maintain their orthogonality with respect
to tm if the number of sampling points in the slow-time
domain is sufficiently large. Then, we can repeat the previous
calculation steps, and a reconstructed information matrix J′

for the phase parameters θ ′ = {ϕ, α0, · · · , αI } is written as
(24), as shown at the top of this page, where the auxiliary
factors β1 and β2 are defined as follows:

β1 =

K∑
k=−K

4π (fc + k1f )
c

=
4π fc
c

(2K + 1) (25)

and

β2 =

K∑
k=−K

[
4π (fc + k1f )

c

]2
=

16π2(2K + 1)
c2

[
f 2c +

K (K + 1)
3

1f 2
]
. (26)

Inverting the near-diagonal information matrix in (24),

we can subsequently obtain

var(ϕ̂) ≥
σ 2

2A2
β2

(2M + 1)
[
(2K + 1)β2 − β21

]
=

σ 2

2NA2
f 2c + K (K + 1)1f 2/3
K (K + 1)1f 2/3

(27)

and

var(α̂0) ≥
σ 2

4A2
(2K + 1)Tr[

(2K + 1)β2 − β21
]

=
σ 2

2NA2
TD
32π2

c2

K (K + 1)1f 2/3
(28)

var(α̂i) ≥
σ 2

4A2
Tr
β2
=

σ 2

2NA2
TD
32π2 (2i+ 1)

×
c2

f 2c + K (K + 1)1f 2/3
, 1 ≤ i ≤ I . (29)

Notice that the estimation performance of the initial phase
ϕ̂ is coupled with that of the range-related parameter α̂0.
Despite having the same order 0, their identifiability is based
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on the fact that ϕ̂ is determined only by the phase information,
but α̂0 is constrained by both the envelope information and the
phase information. For 1 ≤ i ≤ I , the estimation performance
of the parameter α̂i is independent of each other, and its CRLB
is a linear function of the order i.
According to (23), there exists a linear mapping relation-

ship between the two types of polynomial coefficients:

a = P · α (30)

where a = {a0, a1, · · · , aI }T and α = {α0, α1, · · · , αI }
T .

P is an upper triangular matrix with the element pij (j ≥ i) in
row i and column j.

The standard Legendre polynomials can also be expanded

as Pj(x) =
bj/2c∑
l=0

(−1)l (2j−2l)!
2jl!(j−l)!(j−2l)!x

j−2l , where ‘‘bc’’ denotes

the integer floor function. Substituting it into the above for-
mulas, we can obtain the specific expression of pij. It shows
that

pij =

√
2
TD

1

T iD

b(j−i)/2c∑
l=0

(−1)l

22l

×
(2j− 2l)!

l!(j− l)!(j− i− 2l)!

(
tm0

TD

)j−i−2l
. (31)

Consequently, the estimation covariance of â can be trans-
formed from that of α̂ with the above affine matrix P, which
means

C â = P · C α̂ · P
T . (32)

Finally, with (28)∼(32), the exact and closed-form
CRLBs for estimating the high-order kinematic parameters
(1 ≤ i ≤ I ) are expressed as

CRLB(âi)

=

I∑
j=i

p2ij · CRLB(α̂j)

=
λ2a

32π2SNRNT 2i
D

I∑
j=i

(2j+ 1)

×

b(j−i)/2c∑
l=0

(−1)l

22l
(2j− 2l)!

l!(j− l)!(j− i− 2l)!
ηj−i−2l

2

(33)

where SNRN = NA2

σ 2
is the accumulated SNR, η =

tm0
TD
=

m0
2M+1 is a normalization reference time factor of the reference
time instant tm0 relative to the accumulated time TD, and λa =

c√
f 2c +K (K+1)1f 2/3

is defined as an equivalent wavelength,

constituted by the actual signal wavelength λc = c
fc
, as well as

its root mean square (RMS) wavelength λb = c√
K (K+1)1f 2/3

.

Herein, we have 1
λ2a
=

1
λ2b
+

1
λ2c

and λb ≈ c
B/
√
12
. The

above CRLBs are related to both the signal frequency fc and
the signal bandwidth B. Similarly, the CRLBs for the pure
PPS case can also be derived, and the multiplicative factor λa

in (33) will be replaced by λc which is only connected with
the signal frequency fc.
For the special case of the range parameter â0, because the

CRLB of α̂0 in (28) does not conform to the general form
of α̂i in (29), we need to make someminor corrections in (33).
Specifically,

CRLB′(â0) = CRLB(â0)+
λ2b − λ

2
a

32π2SNRN
(34)

where the additional quantity is denoted 1â0 here. Since
1â0 > 0, the actual estimation performance of â0 degrades
due to the negative influence of the unknown initial phase ϕ.
For a typical narrowband radar, B � fc, λb � λa, and thus,
1â0 plays a major role in (34). Moreover,1â0 also decreases
with increasing SNRN . While for the pure PPS, the range
parameter a0 can not be distinguished from the initial phase
parameter ϕ by the phase information.

In general, (33) and (34) provide more extensive
performance bounds for the high-order kinematic parameters
estimation. All the relevant factors have clear physical mean-
ings, and their relationships with the CRLBs can be studied
analytically and quantitatively. Preliminarily, the derived
analytical expressions reveal some useful properties of
the CRLBs:

• The CRLBs of high-order kinematic parameters are
independent of the parameter values themselves.

• The large model order I normally increases the CRLBs
of the kinematic parameters, which implies that the esti-
mation performance is degraded. This is easy to under-
stand because the number of unknown parameters to be
estimated increases.

• Except for the highest order parameter âI , the CRLBs
of other order kinematic parameters âi are always
2 (I − i)-order polynomial functions of the reference
time factor η, and these functions are also even
symmetrical.

• The CRLBs are inversely proportional to the accumu-
lated SNR, and the i-th parameter is inversely propor-
tional to the 2i power of the accumulated time TD.

• The CRLBs are also related to the signal frequency fc
and its bandwidth B, and increasing them helps to
achieve better estimation performance.

In the following section, we will further analyze the CRLB
performance relationships through some more specific cases.
The CRLB results with respect to different motion model
orders and reference time instants are demonstrated and com-
pared.

IV. CRLB ANALYSIS AND COMPARISONS THROUGH
SOME SPECIFIC CASES
A. WITH DIFFERENT MOTION MODEL ORDERS
Considering the radar observation scenarios most frequently
encountered in practical applications, we mainly present here
the analytical CRLB expressions of different order kinematic
parameters with I = 1, 2, 3, 4.
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I = 1 corresponds to a constant-velocity motion scenario.
Then, the CRLBs of the radial range â1,0 and velocity â1,1 are
simplified as

CRLB′
(
â1,0

)
=

λ2a

32π2SNRN
(1+ 12η2)+1â0

CRLB
(
â1,1

)
=

3λ2a
8π2SNRNT 2

D

(35)

Obviously, only the CRLB of â1,0 is related to the reference
time factor η, and it obtains the minimum CRLB value at
η = 0. For convenience, the optimal reference time factor
is denoted ηopt here.
I = 2 corresponds to a constant-acceleration motion sce-

nario. The CRLBs of the radial range â2,0, velocity â2,1, and
acceleration â2,2 are

CRLB′
(
â2,0

)
=

9λ2a
128π2SNRN

(1−8η2+80η4)+1â0

CRLB
(
â2,1

)
=

3λ2a
8π2SNRNT 2

D

(1+ 60η2)

CRLB
(
â2,2

)
=

45λ2a
2π2SNRNT 4

D

(36)

Now, the CRLBs of â2,0 and â2,1 are related to η, and
the optimal reference time factors for the radial range and
velocity estimation are ηopt = ± 1

2
√
5
, 0. It is not difficult to

find that the CRLBs derived in [27] are special cases of the
above formulas when η = 0.
I = 3 represents what has recently become a relatively

popular constant-jerk motionmodel. The CRLBs of the radial
range â3,0, velocity â3,1, acceleration â3,2, and jerk â3,3 are
written as

CRLB′
(
â3,0

)
=

9λ2a
128π2SNRN

× (1+ 20η2 −
880
3
η4 +

11200
9

η6)+1â0

CRLB
(
â3,1

)
=

75λ2a
32π2SNRNT 2

D

(1− 24η2 + 336η4)

CRLB
(
â3,2

)
=

45λ2a
2π2SNRNT 4

D

(1+ 140η2)

CRLB
(
â3,3

)
=

3150λ2a
π2SNRNT 6

D

(37)

Under this model, the optimal reference time factors for
estimating the radial range, velocity, and acceleration become
ηopt = 0, ± 1

2
√
7
, and 0.

I = 4 represents a more dynamic maneuvering model.
Correspondingly, the CRLBs of the radial range â4,0,

velocity â4,1, acceleration â4,2, jerk â4,3, and snap â4,4 are

CRLB′
(
â4,0

)
=

225λ2a
2048π2SNRN

(1− 16η2 +
1568
3
η4

−
41216
9

η6 + 12544η8)+1â0

CRLB
(
â4,1

)
=

75λ2a
32π2SNRNT 2

D

× (1+ 84η2 − 1680η4 + 9408η6)

CRLB
(
â4,2

)
=

2205λ2a
8π2SNRNT 4

D

(1− 40η2 + 720η4)

CRLB
(
â4,3

)
=

3150λ2a
π2SNRNT 6

D

(1+ 252η2)

CRLB
(
â4,4

)
=

793800λ2a
π2SNRNT 8

D
(38)

Similarly, we can also find that the CRLBs of â4,0, â4,1,
â4,2, and â4,3 in (38) obtain their respective minimum values

at ηopt = ± 1
2

√
7−2
√
7

21 , 0, ± 1
6 , and 0.

According to the above analysis, it can be observed that the
optimal reference time instants are remarkably inconsistent
for different order kinematic parameters even at the same
motion model. Especially, as for the parameter aI ,i(i 6= I ),
if the order (I − i) is odd, ηopt is always 0; if the order (I − i)
is even, ηopt approaches the vicinity of 0 with the increase
in I .

B. WITH DIFFERENT REFERENCE TIME INSTANTS
In practice, the starting andmiddle pulse positions are the two
most preferred reference time instants to align the pulse train
envelope and to estimate the relevant kinematic parameters.
For the starting pulse case, we know that m0 = −M , and the
reference time factor η = − M

2M+1 . It approximates to − 1
2 if

M � 1; for the middle pulse case, we know thatm0 = 0, and
the reference time factor η = 0. Then, with the results in [14],
the simplified CRLB expressions at η = − 1

2 and η = 0 can
be easily written.

Substituting η = − 1
2 into (33), we can obtain

CRLB(âi) =
λ2a

32π2SNRNT 2i
D

(i!)2

2i+ 1

×

[
(I + i+ 1)

(
I + i
i

)(
I
i

)]2
(39)

where the combination number
(n
m

)
=

n!
m!(n−m)! .

On the one hand, (39) is quite similar in form to the fre-
quently cited CRLB results in [12], but the derived analytical
expressions are exact, making it superior. On the other hand,
as preliminarily discussed in [19], it is noted that the perfor-
mance differences between the LFM coherent pulse train sig-
nal and the pure PPS are mainly reflected in their multiplica-
tive coefficients (related to λ2a and λ

2
c , respectively, here). It is
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TABLE 1. CRLB comparisons of the high-order kinematic parameters.

known that λ2a = λ2c

(
1− λ2c

λ2b+λ
2
c

)
, and thus, λ2a < λ2c . This

means that the estimation performance based on the LFM
coherent pulse train signal is better since it introduces extra
envelope constraints into the phase information. Furthermore,
the large signal bandwidth also facilities better estimation
results. As expected, a larger bandwidth B implies a higher
range resolution c

2B such that the target’s migration effect is
more obvious, and then, the envelope information provides
more benefits to the parameter estimation. The above analysis
can be easily generalized to other η as well.
Substituting η = 0 into (33), we also have

CRLB(âi) =
λ2a

32π2SNRNT 2i
D

(i!)2

2i+ 1

×

[
2s+ 2i+ 1

22s

(
2s+ 2i

i

)(
2s+ i
s

)]2
(40)

where s = b I−i2 c.
Unlike the former case, the CRLBs in (40) are associ-

ated with the motion model order I through an indirect
relationship b I−i2 c. This indicates that the estimation perfor-
mance of the same parameter âi remains unchanged when
the order (I − i) increases from even to odd. Moreover, with
(39) and (40), it can be observed that the CRLB results
obtained at η = 0 are relatively close to optimality, which
are generally much smaller than those obtained at η = − 1

2 .
For example, under a constant-jerk motion model (I = 3),
the CRLB of the radial velocity â3,1 with respect to η = − 1

2
is 16 times that with respect to η = 0.In contrast, the latter is
only 1.75 times that with respect to ηopt. More detailed CRLB
comparisons with respect to different motion model orders
and reference time factors are summarized in Tab. 1. Com-
bined with the previous discussions, it is recommended to use

FIGURE 1. CRLBs vs reference time factor. (a) velocity estimation
performance under different motion models (I = 1 ∼ 5). (b) CRLBs of
different order kinematic parameters under the same motion model
(I = 4).

the reference time instant corresponding to the middle of the
pulse train (η = 0) for the parameter estimation, although it
is not necessarily optimal for the kinematic parameters of all
models and orders.

With regard to potential applications, the above CRLB
results can provide a quantitative aid in determining the
radar operating parameters, such as the signal frequency,
the signal bandwidth and the accumulated time. As a per-
formance benchmark, the analytical CRLBs can also be used
to define the asymptotic relative efficiency (ARE) for evalu-
ating the estimation performance of various algorithms [3].
And a smaller ARE denotes a better parameter estimation
performance. At high SNR, if ARE is equal to 1, then the
estimation performance achieves the CRLB, which means
that the estimation method is asymptotically effective, just
like the MLE method.
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FIGURE 2. CRLBs vs motion model order. (a) reference time factor
η = − 1

2 . (b) reference time factor η = 0.

In addition, the estimation performance of the highest order
kinematic parameter âI is constant and independent of the
reference time factor η, and thus, its CRLB can be written
as λ2a(2I+1)

32π2SNRNT 2I
D

(2I
I

)2
. In practical processing, the maximum

order I may be unknown as well. Through the parame-
ter estimation and comparisons with this theoretical result,
a reasonable motion model order can be determined similar
to [2].

V. NUMERICAL SIMULATIONS
In this section, we further verify the above theoretical results
with some numerical simulations. The influences of relevant
factors on the CRLBs for estimating the high-order kinematic
parameters are illustrated and discussed. Then, the derived
CRLBs under four motion models are also confirmed by

FIGURE 3. CRLBs vs accumulated time and signal bandwidth. (a)
reference time factor η = − 1

2 . (b) reference time factor η = 0.

comparing with the Monte Carlo experiment results of the
MLE method.

First, we will illustrate the main influences of the reference
time factor η on the parameter estimation performance. Two
specific situations are highlighted here: the same parameter
estimation results under different order motion models and
the estimation results of different parameters under the same
motion model. In this simulation, we suppose that the signal
carrier frequency fc = 1 GHz, its bandwidth B = 5 MHz,
the accumulated time is 1.5 s, and the accumulated SNR is
15 dB. η ranges from− 1

2 to 1
2 . Fig. 1 (a) presents the CRLBs

of the radial velocity (i = 1) versus η when the model order
I is equal to 1, 2, 3, 4 and 5. Fig. 1 (b) shows the respective
CRLBs of the radial range, velocity, acceleration, jerk and
snap versus η when the model order I = 4. The simulation

VOLUME 6, 2018 57455



S. Ding et al.: Exact and Closed-Form CRLBS for High-Order Kinematic Parameters Estimation

FIGURE 4. Comparisons of the MLE estimation performance and the CRLBs under a first-order motion model. (a) reference time factor
η = − 1

2 . (b) reference time factor η = 0.

FIGURE 5. Comparisons of the MLE estimation performance and the CRLBs under a second-order motion model. (a) reference time factor
η = − 1

2 . (b) reference time factor η = 0.

results clearly reveal the existing inconsistency of the opti-
mal η for the parameter estimation with respect to different i
and I . And the CRLBs at η = 0 are relatively close to those
at ηopt, usually no more than twice. Comprehensively, η = 0
is a more reasonable and suitable choice for the LFM pulse
train signal processing.

Second, we also exploit the influences of the order i and I
on the parameter estimation performance. Two representative
reference time instants, the starting pulse case (η = − 1

2 )
and the middle pulse case (η = 0), are mainly considered
and compared here. Similarly, the signal frequency is set

to 1 GHz, the signal bandwidth is 5 MHz, the accumulated
time is 1.5 s, and the accumulated SNR is 15 dB. The param-
eter order i varies from 0 to 4, and the model order I ranges
from 1 to 10 with a step size of 1. Fig. 2 (a) and (b) present
the CRLBs of the parameter âi versus I at η = − 1

2 and
η = 0, respectively. It can be observed that, for the same i,
the CRLB values of âi generally increase with the motion
order I . In particular, there is a value jump phenomenon
(stage change) in the case of η = 0, which agrees with the
results obtained from (38). In most situations, the estimation
performance of the high-order kinematic parameters at η = 0

57456 VOLUME 6, 2018



S. Ding et al.: Exact and Closed-Form CRLBS for High-Order Kinematic Parameters Estimation

FIGURE 6. Comparisons of the MLE estimation performance and the CRLBs under a third-order motion model. (a) reference time factor
η = − 1

2 . (b) reference time factor η = 0.

FIGURE 7. Comparisons of the MLE estimation performance and the CRLBs under a fourth-order motion model. (a) reference time factor
η = − 1

2 . (b) reference time factor η = 0.

is better than that at η = − 1
2 , even over several orders of

magnitude.
Third, we further investigate the comprehensive influences

of the accumulated time TD and the signal bandwidth B on
the parameter estimation performance. In this simulation,
the signal frequency is also set to 1 GHz and the accumulated
SNR is 15 dB. A fourth order motion model (I = 4) is con-
sidered and the optional bandwidth B = 5, 10, 50, 100 MHz.
TD ranges from 0.1 s to 1.5 s with a step size of 0.2 s. The
corresponding CRLB results versus TD and B are illustrated
in Fig. 3. It can be observed that the signal bandwidth B has a

more significant impact on improving the range estimation
performance. In contrast, the signal time length TD has a
more significant impact on improving the estimation perfor-
mance of other high-order kinematic parameters. As men-
tioned before, due to the interference of the initial phase ϕ,
the estimation performance of the radial range â0 is very
different from that of other order kinematic parameters. This
is also why the curve change trend of â0 is not as obvious
in Fig. 1 and Fig. 2, although it is a polynomial function of η.

Finally, the MLE method is used to estimate the tar-
get’s motion parameters at different SNR levels. It is
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implemented with a ‘‘coarse’’ search followed by a ‘‘fine’’
search. We assume that the radar carrier frequency fc =
1 GHz, the transmitting LFM waveform has a bandwidth
B = 5 MHz, the coherent accumulated time TD = 1 s, and
the number of data points M = K = 16. Then, we have
N = 1089. Four low-order motion models (I = 1, 2, 3, 4)
are investigated separately. Under all the motion models,
we choose a0 = 10km, a1 = 100m/s, a2 = 20m/s2, a3 =
15m/s3, and a4 = 8m/s4 as required. The signal amplitude
and its initial phase A = 1 and ϕ = π

4 . The accumulated SNR
varies from −5 dB to 30 dB with a step size of 3 dB. The
number of Monte Carlo simulations for each experiment is
500. Then, the average mean square error (MSE) of the MLE
is calculated and compared with the corresponding CRLB,
as illustrated from Fig. 4 to Fig. 7. It can be observed that the
simulation results are quite consistent with the theoretical val-
ues for the kinematic parameters of all models and orders at
high SNR. As the number of estimated parameters increases,
a higher SNR threshold may be required.

VI. CONCLUSION
In this paper, Legendre polynomials and a linear mapping are
effectively combined to derive the general CRLB expressions
for jointly estimating the high-order kinematic parameters
of maneuvering targets using an LFM coherent pulse train
signal. And then, the CRLB performance relationships with
relevant influencing factors, such as the motion model order,
the reference time instant and the radar parameters, can
be investigated analytically and quantitatively. The research
shows that the derived CRLB results for the LFM pulse
train signal differ from the pure PPS case in terms of the
multiplicative factor and the initial phase. More importantly,
it reveals the existing inconsistency of the optimal refer-
ence time instants for estimating the kinematic parameters
of different models and orders. The reference time instant
corresponding to the middle of the pulse train can be taken as
a compromise choice, and in this situation, the CRLB of the
same kinematic parameter experiences a stage change with
the increasing of model order. As a result, the above exact
and closed-form performance bounds can offer considerable
potential in many applications.

We will conduct our future research from the following
perspectives: The time-varying-amplitude case needs to be
investigated due to the actual echo fluctuation of the target
between pulses. The possible influences of other sampling
schemes, such as nonuniform and random sampling, on the
above CRLB results deserve in-depth and careful analysis.
A more accurate echo signal model may be required, espe-
cially considering the Doppler shift and pulse spread effects
caused by the target’s high-speed motion. Moreover, this
research can be further extended to other signal waveforms
and some new application scenarios.
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