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ABSTRACT The partial least squares (PLS) method has been widely used in quality-related industrial
process monitoring because of its ability to extract quality-related information. Generally, online quality
monitoring data cannot be obtained in real time, and in this case, updating the online monitoring model
is a serious challenge. In this paper, an online monitoring dynamic PLS (OMD-PLS) model that uses the
relation between time-delay process data and time-delay quality data is proposed. To accurately monitor
the quality-related and process-related fault data, we also propose an online monitoring dynamic concurrent
PLS (OMDC-PLS)model based onOMD-PLS, which has the ability to detect slight deviations. Furthermore,
an alarm-parameter alarm method based on the OMDC-PLS model is proposed and effectively reduces the
false alarm rate. Finally, numerical simulations and the Tennessee Eastman process are used to illustrate the
effectiveness of the proposed methods.

INDEX TERMS Partial least squares, quality-related, process monitoring, dynamic.

I. INTRODUCTION
It is difficult to construct physical models of complex indus-
trial processes. To solve this problem, a data-drivenmultivari-
ate statistical model method is proposed [1]. Because of the
high correlation of multiple measurements, how to capture
the rela- tions between several measurements and important
quality indices is a serious problem [2].

The partial least squares (PLS) method, which can effec-
tively provide the potential relations between output (quality)
varia- bles Y and input (process) variables X , has become a
powerful tool for quality-related fault monitoring [3]. PLS
can extract latent variables with maximum covariance from
X and Y. Li et al. [2] found that the standard PLS method
does not decompose X orthogonally. Moreover, PLS does
not extract the latent variables in descending order of the
variance in X. These facts illustrate two shortcomings of the
standard PLS model. First, the principal subspace of X con-
tains variations that are orthogonal toY, which, in some cases,
makes PLS unsuitable for quality-related fault monitoring.
Second, the X-residual of PLS usually has large variations,
which makes the use of the Q − statistic on the X-residual
inappropriate. To solve these two problems, Zhou et al. [4]

proposed the total projection to latent structures (T-PLS)
model by decomposing the X-principal and X-residual of
the PLS. Furthermore, Yin et al. [5] proposed the modified
partial least squares (M-PLS) model, which decomposes X
orthogonally and uses singular value decomposition (SVD) to
avoid iterative processes. Nevertheless, Peng et al. [6] found
that a generalized inverse calculation process exists in the
M-PLS algorithm model, which may lead to an X-residual
that still contains quality-related information. He proposed
the efficient projection to latent structures (E-PLS) algorithm
to further decompose the X-residual. The T-PLS method has
two disadvantages in fault monitoring. The first one is that
this model monitors only the predictable Y part and ignores
the unpredictable Y part. The second disadvantage is that it is
unnecessary to divide X into four subspaces. To address these
two deficiencies, Qin and Zheng [7] proposed the concurrent
projection to latent structures (C-PLS) model based on PLS,
which divided X into a prediction-related subspace and a
prediction-unrelated subspace.

Recently, scholars have found that PLS and its extension
algorithms focus on only global structure information and
cannot suitably extract the local adjacent structure informa-

59074
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-2084-7826
https://orcid.org/0000-0002-9931-977X
https://orcid.org/0000-0002-5789-2439
https://orcid.org/0000-0002-7101-9425


X. Kong et al.: Quality-Related and Process-Related Fault Monitoring With OMDC-PLS

tion from the data. The locality-preserving projections (LPP)
method can preserve local features by projecting the global
structure into an approximate linear space, but it cannot
consider the overall structure and lacks detailed analysis
and interpretation of the correlation between process and
quality variables. By combining the advantages of LPP and
PLS, Zhong et al. [8] proposed a quality-related global and
local partial least squares (QGLPLS) model. Since QGLPLS
removes the LPP constraint from the optimization objec-
tive function, the monitoring results have been seriously
affected. To pay more attention to the locality-preserving
characteristics, a new integration method called the locality-
preserving partial least squares (LPPLS) model was proposed
by Wang et al. [9]. To effectively retain global and local
characteristics and paymore attention to the correlation of the
extracted principal com- ponents, Zhou et al. [10] proposed
the global plus local projection to latent structures (GPLPLS)
model. GPLPLS, which ensures that the correlation between
the data after dimension reduction is still the largest, can accu-
rately distinguish among quality- recoverable faults, quality-
unrelated faults and minor quality- related faults.

The above models consider only the static relation between
X and Y. However, in real industrial processes, there is a
dynamic relation between X and Y. A static model cannot
fully describe the dynamic processes. To solve this issue,
two PLS dynamic expansion methods have been proposed
[11], [12]. The first one is the data preprocessing method.
By constructing an augmented X consisting of large num-
bers of time-lagged values, the dynamic characteristics of
the system are considered, and then the existing linear PLS
algorithm is used tomodel them. In the second one, a dynamic
PLS model is obtained by modifying the inner and outer
PLS models.

At present, there are two data preprocessing methods. The
first one [13] uses the matrix format of the finite impulse
response (FIR) model, which adds a large amount of time-
delay process data intoX. The second one [14] uses thematrix
format of the autoregressive exogenous (ARX) model, which
adds the time-delay process data and the time-delay quality
data to X simultaneously. Ricker [11] proposed an FIR-PLS
dynamic model using the FIR matrix format. Qin proposed
a dynamic neural network partial least squares (D-NNPLS)
model by introducing the ARX matrix format into a neural
net PLS (NNPLS) [15].

The two abovementioned methods are easy to expand and
have been widely used in many industrial process mon-
itoring applications [16]–[22]. However, the data prepro-
cessing method has some time-lagged data, which cause
an increase in the computation time. In the static outer
model between a filtered input and the output developed
by Kaspar and Ray [12], the dynamic part of the input is
removed using a dynamic filter that pro- cesses the dynamic
data without augmenting the input matrix. The dynamic rela-
tion between the input and output latent varia- bles, which
is considered in the inner model, is developed by designing
a feedback controller. Instead of dynamically filtering the

input data, Lakshminarayanan proposed a new dynamic PLS
model [23] that modifies the inner PLS model to describe the
relation between measured disturbances and the controlled
outputs.

The above research focuses on only the inner model with-
out modifying the outer PLS model. Li et al. [24] proposed
an objective function to obtain a new dynamic outer model,
where in a dynamic inner model was constructed using
weighted input and output latent variables, and extended it
to the dynamic T-PLS (D-TPLS) model. Based on a similar
situation, Li et al. [25] improved dynamic PCA (DPCA) to
the dynamic latent-variable (DLV) model. Dong and Qin [26]
found that the inner model proposed by Li et al. [24] is not
explicit and is dificult to interpret. Using the ARX model to
describe the dynamic relation between process and quality
latent vari- ables, Dong presented a dynamic PLS (Di-PLS)
model. Inspired by Di-PLS, Dong and Qin [27] improved
DPCA to the dynamic-inner PCA (DiPCA) model. Recently,
Dong and Qin [28] also introduced dynamic latent variable
methods for the modeling of multidimensional time series
data for prediction to the essence and objectives of latent
variable analytics.

In industrial processes, the process variables are more
frequently sampled than the quality variables [7]. Therefore,
the quality data of the current time period cannot be obtained,
which means the sample numbers of new data Xnew and Ynew
are different. In this situation, how to update the model using
the data becomes a new problem. As far as we know, little has
been reported in the literature about this specific issue. In this
study, we established an online monitoring dynamic PLS
(OMD-PLS) model using the relation between the time-delay
process data and the time-delay quality data. Based on OMD-
PLS, an online monitoring dynamic C-PLS (OMDC-PLS)
model, which has the ability to detect slight deviations, is pro-
posed to monitor quality-related and process-related faults.
Furthermore, we propose an alarm-parameter alarm method,
which can effectively reduce the false alarm rate, in the
dynamic process monitoring provided by OMDC-PLS.

The remainder of this paper is organized as follows.
In Section II, the D-PLS model proposed by Li is reviewed,
and the OMD-PLS and the OMDC-PLS models are pro-
posed. In Section III, the process monitoring technology for
OMDC-PLS is developed. In Section IV, the effectiveness of
the proposed methods is illustrated with numerical simula-
tions and the Tennessee Eastman process (TEP). In the last
section, conclusions are presented.

II. ONLINE MONITORING DYNAMIC CONCURRENT
PLS (OMDC-PLS) MODEL
The PLS was proposed by Wold et al. in 1983 [29].
PLS has been widely used in industrial process monitoring
due to its comprehensive functions [30]. In this section,
the main contents of the standard PLS and D-PLS are briefly
reviewed. Then, the OMD-PLS is proposed for the online
quality monitoring data that cannot be obtained in real time.
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Finally, to accurately monitor the quality-related and process-
related fault data, the OMDC-PLS algorithm is proposed.

A. DYNAMIC PARITIAL LEAST SQUARES (DPLS) MODEL
The standard PLS algorithm extracts the latent variables from
X to interpret Y and builds a linear algebraic relation between
the input scores t = Xw and the output scores u = Yc. The
selection of latent variables should satisfy two principles [31].
First, t and u should carry as much variation information
as possible for X and Y , respectively. Second, the degree
of correlation between t and u should be maximized. The
input matrix X = [x1, x2, · · · , xn]T ∈ Rn×m is composed
of m process variables with n sample numbers. The output
matrix Y =

[
y1, y2, · · · , yn

]T
∈ Rn×p is composed of

p quality variables with n sample numbers. On the basis of the
two principles, the objective function of PLS is as follows:{

maxwTXTYc
s.t. ‖w‖ = ‖c‖ = 1.

(1)

The above function, which cannot extract the dynamic
variations and relation between X and Y , describes only the
static relation between X and Y . To describes a dynamic
process, Li proposed the following outer model objective
function [24]:

max
w,c,β(j)

(
wTXT

(0)β(0) + · · · + w
TXT

(d−1)β(d−1)

)
Yc

s.t. ‖w‖ = ‖c‖ = 1
β2(0) + β

2
(1) + · · · + β

2
(d−1) = 1,

(2)

where X (j) =
[
xd−j, xd+1−j, · · · , xd+N−j

]T
∈ R(N+1)×m

is the input data with j time delay, j = 0, · · · , d − 1, β(j)
is the weight coefficient for X (j)w, X (j) can be obtained by
splitting X into d parts, and the number of samples in each
part is N + 1. N , n and d satisfy N = n − d . Function (2)
maxi- mizes the dynamic linear relation of X and Y by
searching for a direction vector w and a coefficient vector
β =

[
β(0), · · · , β(d−1)

]T . To simplify the expression, some
define- tions are given as follows:

Xg =
[
X (0),X (1), · · · ,X (d−1)

]
∈ R(N+1)×md , (3)

Y (0) =
[
yd , yd+1, · · · , yd+N

]T
∈ R(N+1)×p, (4)

βT ⊗ wT = (β ⊗ w)T =
[
β(0)wT , · · · , β(d−1)wT

]
∈R1×md ,

(5)

where⊗ represents theKronecker product. Then, function (2)
can be rephrased as follows:max

w,c,β
(β ⊗ w)T XT

g Y (0)c

s.t. ‖w‖ = ‖c‖ = ‖β‖ = 1.
(6)

When d = 1, function (6) is the standard PLS objective
function. The dynamic model contains at least one piece of
time-delay data; therefore, d ≥ 2. In this study, we are
primarily concerned with the dynamic model, i.e., d ≥ 2.
Suppose that q represents the time-delay model parameter,

i.e., q = d − 1. Then, it follows that N + 1 = n− (d − 1) =
n− q.

B. ONLINE MONITORING DYNAMIC PLS (OMD-PLS)
MODEL
In actual industrial processes, the measurement frequency
of the process variable is higher than that of the qual-
ity variable. Thus, we assume that the quality data of the
t ∈ (0, d) time period

[
yd+N+1−t · · · yd+N

]T cannot be
obtained at Y (0). In addition, there is a correlation between
the time-delay process data and the time-delay quality data.
Therefore, Y (0) in the D-PLS objective function is modified
to Yg =

[
Y (t),Y (t+1), · · · ,Y (d−1)

]
∈ R(n−q)×(d−t)p, where

Y (j) is the time-delay quality data corresponding to X (j). This
modification achieves two goals: (1) During online monitor-
ing, current process data can be used to update the model,
even though the quality data is not provided during the time
period t , which improves the dynamic update capability of the
model. (2) From the introduction of time- delay quality data,
the quality-related fault detection capability of the model is
improved. Herein, we denote the modified objective function
as the OMD-PLS objective function,max

w,c,β
(β ⊗ w)T XT

g Ygc

s.t. ‖w‖ = ‖c‖ = ‖β‖ = 1,
(7)

Lagrange multipliers are used to solve this optimiza-
tion (7). We define the following:

max J = (β ⊗ w)T XT
g Ygc+

1
2
λw

(
1− wTw

)
+

1
2
λc

(
1− cT c

)
+

1
2
λβ

(
1− βTβ

)
, (8)

Taking derivatives with respect to w, c and β and setting
the results to zero simplify the equation as follows:{

Swβ = λβλcβ
Sβw = λwλcw,

(9)

where

Sw ≡ (Id ⊗ w)T XT
g YgY

T
gXg (Id ⊗ w) ∈ Rd×d , (10)

Sβ ≡ (β ⊗ Im)T XT
g YgY

T
gXg (β ⊗ Im) ∈ Rm×m, (11)

and λβλc and λwλc are the maximum objective function val-
ues from (8). Therefore, β is the maximum eigenvector of Sw,
and w is the maximum eigenvector of Sβ . It should be noted
that w and β cannot be calculated directly using (9) because
Sw and Sβ depend on w and β, respectively. We can initialize
w and use (9) to calculatew and β iteratively, according to the
method introduced in the literature [24]. The detailed OMD-
PLS algorithm process is shown in TABLE 1.

In TABLE 1, d = q + 1. The parameters A and q are
determined by two-dimensional cross-validation, as summa-
rized in the Appendix. The OMD-PLS algorithm then has the
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TABLE 1. OMD-PLS algorithm.

following parameters:

B =
[
β1, · · · ,βA

]
∈ Rd×A

W = [w1, · · · ,wA] ∈ Rm×A

Tg =
[
tg,1, · · · , tg,A

]
∈ R(n−q)×A

Q =
[
q1, · · · , qA

]
∈ R(d−t)p×A

P(j) =
[
p(j),1, · · · , p(j),A

]
∈ Rm×A.

(12)

where i = 1, · · · ,A and j = 0, · · · , d − 1. To directly
calculate the dynamic scores Tg from Xg, a weight matrix
Rg is defined as follows:

R(j) = W
(
PT(j)W

)−1
RB(j) =

[
B(j),1R(j),1, · · · ,B(j),AR(j),A

]
Rg =

[
RB(1); · · · ;RB(d−1)

]
,

(13)

where B(j),i is the element in the jth row and the ith column
of B. The formulae show that Tg = XgRg.

The OMD-PLS model can be presented as follows:{
X (j) = X̂ (j) + X̃ (j) = T (j)PT(j) + X̃ (j)
Yg = Ŷg + Ỹg = TgQT + Ỹg.

(14)

C. ONLINE MONITORING DYNAMIC CONCURRENT
PLS (OMDC-PLS) MODEL
The D-PLS algorithm extracts Tg to maximize the covariance
between Xg and Y (0). The dynamic scores Tg relate only
to the predictable portion of Y (0) [7]. Based on D-PLS,
D-TPLS monitors Tg only and neglects the information

in Y (0), which is not predicted by Xg. To achieve a more
reliable monitoring method of the dynamic process opera-
tion data and the dynamic quality data, we extend the static
C-PLS model to the OMDC-PLS model. Three objectives are
achieved: (1) The dynamic scores Ugc, which compose the
covariation subspace (CVS) and are directly related to Ŷg,
are extracted by OMDC-PLS; (2) The unpredictable output
of Ỹgc is decom- posed by PCA into the output-principal
subspace (OPS) and the output-residual subspace (ORS);
and (3) The direct relation between Xg and Ugc is Ugc =

XgRgc. The predict- table output-unrelated but input-related
subspace X̃gc is obtained by projecting Xg onto span

{
Rgc

}⊥.
Then, X̃gc can be further decomposed by PCA into the input-
principal subspace (IPS) and the input-residual subspace
(IRS). The OMDC-PLS procedure is shown in TABLE 2.

TABLE 2. OMDC-PLS algorithm.

After processing by Algorithm 2, the OMDC-PLS model
can be presented as follows:{

Xg = UgcR
†
gc + TgxPTgx + X̃gr

Yg = UgcQTgc + TgyP
T
gy + Ỹgr ,

(18)

where Ugc are the dynamic scores directly related to
predictable- output. Tgx are the principal input scores, which
are unrelated to the predictable output. Tgy are unpredictable-
output principal scores.Qgc, R

†
gc, Pgx and Pgy are the loading

matrices. X̃gr and Ỹgr are the residuals of Xg and Yg, respec-
tively. And uTgc, t

T
gx , t

T
gy, x

T
g , x̃

T
gr , y

T
g and ỹTgr denote specific
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rows of Ugc, Tgx , Tgy, Xg, X̃gr , Yg and Ỹgr , respectively.
These single samples are related as follows:

ugc = RTgcxg
tgx = PTgx x̃gc
tgy = PTgyỹgc
x̃gr =

(
I − PgxPTgx

)
x̃gc

ỹgr =
(
I − PgyPTgy

)
ỹgc,

(19)

where x̃gc = xg − R
†T
gc ugc, and ỹgc = yg − Qgcugc.

III. DYNAMIC PROCESS MONITORING TECHNOLOGY
After modeling with OMDC-PLS, Ugc, Tgx , X̃gr X̃gr , Tgy
and Ỹgr , which represent covariation in the corresponding
subspaces, can be monitored with the appropriate statistical
technique.

A. PROCESS MONITORING INDICATORS IN OMDC-PLS
BecauseUgc is an orthogonalmatrix, the elements of ugc have
a zero mean with variance 1

/
(n− 1). The T 2 statistic then

provides more reasonable monitoring as follows:

T 2
c = (n− 1)uTgcugc. (20)

According to PCA process monitoring technology [32],
Tgx and X̃gr can be monitored using the T 2 statistic and the
Q statistic as follows:

T 2
x = tTgx3

−1
x tgx , (21)

Qx =
∥∥x̃gr∥∥2 , (22)

where 3x = TTgxTgx
/
(n− 1).

Similarly, Tgy and Ỹgr can be monitored by the T 2 statistic
and the Q statistic as follows:

T 2
y = tTgy3

−1
y tgy, (23)

Qy =
∥∥ỹgr∥∥2 , (24)

where 3y = TTgyTgy
/
(n− 1).

To monitor the dynamic process based on the statistical
methods described above, we calculate the control limits from
the statistics of the modeling data. The C-PLS algorithm pro-
posed by Qin and Zheng [7], the OSC-MPLS algorithm pro-
posed by Wang and Yin [33] and the OMDC-PLS algorithm
proposed herein all use SVD to orthogonalize the modeling
scores. If n is sufficiently large, the T 2 and Q indices approx-
imately follow χ2 distributions [34]. Therefore, the control
limits of the T 2 statistic and of the Q statistic are calculated
as follows: {

Jth,T 2 = χ2
l,α

Jth,Q = gχ2
h,α,

(25)

where l is the number of the principal component; 1 − α
represents the confidence; and g = b/2a and h = 2a2/b,
where a and b are the mean and the variance, respectively,
of the Q statistic.

There are always some differences caused by noise and
minor faults that do not affect normal operating conditions
between the variations in the model data and the online
detection data under normal conditions. Noise and minor
faults usually exist in the process data as subcomponents.
In OMDC-PLS model process monitoring, these subcom-
ponents are introduced in X̃grd times, resulting in control
limits of the online normal data (Ĵth,Qx ) that are Ti times the
control limits of the modeling data (Jth,Qx ). That is, Ĵth,Qx =
Ti Jth,Qx = Ti gxχ2

hx ,α . We have thus found the following
relation between the multiple Ti and parameter d through the
experiments described in section 4.2.3:

Ti = 1.281+ 0.1358d − 0.0018d2, 2 ≤ d ≤ 40; (26)

therefore, the Qx statistic has two control limits,
Jth,Qx and Ĵth,Qx . While Jth,Qx can detect noise and minor
faults, Ĵth,Qx can detect more serious faults.

When using online monitoring, we need a process data
matrix Xnew =

[
xnew,1, xnew,2, · · · , xnew,d

]T
∈ Rd×m to

build the dynamic process data xgnew =
[
xTnew,d, · · · , x

T
new,1

]
,

where xnew,d is the current process data and xnew,1,
xnew,2, · · · , xnew,(d−1) is the time-delay process data.
Similarly, a quality data matrix Ynew =

[
ynew,1, ynew,2, · · · ,

ynew,(d−t)
]T
∈ R(d−t)×p is needed to build the dynamic

quality data ygnew =

[
yTnew,(d−t), · · · , y

T
new,1

]
, where

ynew,(d−t) is the current measurable quality data and
ynew,1, ynew,2, · · · , ynew,(d−t-1) is the time-delay quality
data. New scores and residuals are then constructed as fol-
lows: 

ugcnew = RTgcxgnew
tgxnew = PTgx x̃gcnew
tgynew = PTgyỹgcnew
x̃grnew =

(
I − PgxPTgx

)
x̃gcnew

ỹgrnew =
(
I − PgyPTgy

)
ỹgcnew,

(27)

where x̃gcnew = xgnew − R†T
gc ugcnew and ỹgcnew = ygnew −

Qgcugcnew. We then calculate the new statistics T 2
cnew, T

2
xnew,

Qxnew, T 2
ynew and Qynew, which are compared with the corre-

sponding control limits to monitor the process as follows:
1. If T 2

cnew > Jth,T 2
c
= χ2

lgc,α , a predictable-quality-related
fault is detected in xgnew,
2. If T 2

xnew > Jth,T 2
x
= χ2

lgx ,α or Qxnew > Ĵth,Qx =
Ti gxχ2

hx ,α , a predict- table quality-unrelated but process-
related fault is detected in xgnew,
3. If only Qxnew > Jth,Qx = gxχ2

hx ,α , noise or minor faults
are detected in x̃grnew,
4. If Qxnew > Ĵth,Qx and T

2
ynew > Jth,T 2

y
= χ2

lgy,α or else if

Qxnew > Ĵth,Qx and Qynew > Jth,Qy = gyχ2
hy,α , a potentially

unpredictable quality- related fault is detected in x̃grnew,
5. If T 2

ynew > Jth,T 2
y
= χ2

lgy,α or Qynew > Jth,Qy = gyχ2
hy,α ,

an unpredic- table quality-related fault is detected.
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B. DYNAMIC PROCESS MONITORING TECHNOLOGY
FOR OMDC-PLS
In this section, the proposed set of dynamic process moni-
toring technologies are described for OMDC-PLS that aim
to achieve two objectives: (1) NumT 2

c
, NumT 2

x
, NumT 2

y
and

NumQy are defined as the alarm parameters of T 2
cnew, T

2
xnew,

T 2
ynew and Qynew, respectively, and NumQx ,J and NumQx ,Ĵ

are defined as the alarm parameters of Qxnew. If the statistics
exceed the corresponding control limits, the corresponding
alarm parameters will advance by one. If not, the correspond-
ing alarm parameters will be set to zero. The fault alarm
will not be triggered until the alarm parameters exceed the
parameter limit (PL). ThePL should initialize the appropriate
values, and the appropriate values can effectively reduce the
FAR. Excessive value of PL will affect the process monitor-
ing results. (2) MU is defined as the model update param-
eter to implement the model update function. The number
of stored data samples exceeds MU will trigger the model
update function. The dynamic process monitoring technology
is presented in TABLE 3. To describe in more detail the
implementation procedure in TABLE 3, Fig. 1 is given.

IV. DYNAMIC PROCESS MONITORING TECHNOLOGY
In this section, three experiments are performed. First, we use
synthetic simulations to emulate some representative faults
to illustrate the effectiveness of OMDC-PLS in detecting
quality-related and process-related faults. Second, the TEP is
used to verify the quality-related dynamic process modeling
and monitoring. Third, the relations between multiple Ti and
the parameter d are obtained through experiments based on
the TEP.

A. SIMULATIONS OF QUALITY-RELATED AND
PROCESS-RELATED FAULT MONITORING
1) NUMERICAL SIMULATION MODEL AND FAULT-ADDING
METHOD
The initial input and output data are generated as follows:

tk−2 = t0k−2 + [10; 10; 10]
xk−2 = Ptk−2 + ek−2
yk−2 = Cxk−2 + vk−2
tk−1 = α1tk−2 + t0k−1 + [10; 10; 10]
xk−1 = Ptk−1 + ek−1
yk−1 = Cxk−1 + C2xk−2 + β1yk−2 + vk−1,

(28)

The inputs and outputs are generated by the following
dynamic model [24]:

tk = α1tk−1 + α2tk−2 + t∗k
xk = Ptk + ek
yk = Cxk + C2xk−1 + β1yk−1 + β2yk−2 + vk ,

(29)

where

β1=

[
0.2485 0.1552
−0.4856 −0.3011

]
, β2=

[
−0.3042 −0.3009
0.3265 0.4914

]
,

TABLE 3. OMDC-PLS dynamic process monitoring technology.
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FIGURE 1. The dynamic process monitoring technology flow chart.

P =


0.5586
0.2007

0.2042
0.0492

0.2042
0.4429

0.0874 0.6062 0.0664
0.9332
0.2594

0.5463
0.0958

0.3743
0.2491

 ,

C =


0.9249
0.6295
0.8783
0.6417
0.7984

0.4350
0.9811
0.0960
0.5275
0.5456


T

,

C2 =


1.7198 − 0.3715
0.5835 1.5011
1.4236 1.3226
0.4963 − 1.4145
−2.5717 1.0696


T

,

α1 =

 0.4389 0.1210 −0.0862
−0.2966 −0.0550 0.2274
0.4538 −0.6573 0.4239

,
α2 =

−0.2998 −0.1905 −0.2669
−0.0204 −0.1585 −0.2950
0.1461 −0.0755 0.3749

 ,

tk =


t0k + [10; 10; 10] , 250 > k ≥ 1
t0k − [5; 5; 5] , 500 > k ≥ 250
t0k + [1; 1; 1] sin (0.1k) , 750 > k ≥ 500
t0k 1000 > k ≥ 750,

where ek ∼ N
(
0, 0.12I3

)
, vk ∼ N

(
0, 0.12I3

)
, and t0k ∼

N
(
0, 22I3

)
. Based on the dynamic model, 1000 samples

(X,Y) are generated under normal operating conditions. To
search for the optimal A and q using the two-dimensional
cross-validation- based approach (see Appendix), Amax = 5
and qmax = 10 are selected. The data in Fig. 2 show that
A = 3, q = 3 are obtained for 1000 samples (X,Y).

FIGURE 2. Two-dimensional cross-validation results for (X,Y).

Faults are added to the input space and the output space as
follows:

xk = x∗k +4x fx , (30)

yk = y∗k +4yfy, (31)

where 4x and 4y are the fault-free values and fx and fy
are the corresponding fault magnitudes. Using formulae
(30) and (31), we generate 1000 online samples (X,Y)Online,
which consist of 249 normal samples and 751 fault samples.
In this study, we set t = 1 and build the C-PLS model
from (X,Y) to obtain the load matrices Rc, Py and Px ; thus,
we obtain 4x and 4y [7].

2) PREDICTABLE QUALITY-RELATED FAULTS
In CVS, we set fx = 1 and choose 4x to be the first column
of Rc to obtain (X,Y)T

2
cnew . Fault detection of (X,Y)T

2
cnew

is performed using OMDC-PLS. The fault detection result
in Fig. 3 shows that only T 2

cnew detects the fault, whereas the
other statistics are not affected. This result means that the fault
detected by T 2

cnew is a predictable quality-related fault.
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FIGURE 3. Fault occurs in CVS.

3) UNPREDICTABLE QUALITY-RELATED FAULT
To generate a fault in OPS, we set fy = 50, and we choose
4y to be the first column of Py to obtain (X,Y)T

2
ynew . Fault

detection of (X,Y)T
2
ynew is performed using the OMDC-PLS

dynamic process monitoring technology. The fault detection
results in Fig. 4 show that both T 2

ynew and Qynew detect the
fault. The results imply that the fault detected by both T 2

ynew
and Qynew is an unpredictable quality-related fault.

4) POTENTIALLY UNPREDICTABLE QUALITY-RELATED FAULT
In IRS, we set fx = 16 and choose 4x to be the
first column of

(
I − PxPTx

) [
I − Rc

(
RTc Rc

)−1
RTc
]
to obtain

(X,Y)Qxnew . Fault detection of (X,Y)Qxnew is performed using
the OMDC-PLS dynamic process monitoring technology.
The fault detection result in Fig. 5 shows that T 2

ynew andQynew
detect the fault; thus, the fault is identified as an unpredictable
quality- related fault. Moreover, both Ĵth,Qx and Jth,Qx of
Qxnew also detect the fault. This result implies that Qxnew can
detect potentially unpredictable quality-related faults in the
input space.

5) PREDICTABLE QUALITY-UNRELATED BUT
PROCESS-RELATED FAULT
Here, we need to explain that the implementation of the
minor fault detection capability of OMDC-PLS is similar to
the principle of the existing dynamic PCA algorithm [35].
The data matrices X used in both OMDC-PLS and dynamic

FIGURE 4. Fault occurs in OPS.

FIGURE 5. Fault occurs in IRS.

PCA introduce d-1 delay data. Suppose that there are minor
faults, which exist in the form of subcomponents, inX . Minor
faults are repeated for a total of d times, so the magnitude
of the minor fault is amplified so that it can be effectively
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detected. The minor fault detection capability of the OMDC-
PLS algorithm proposed in this paper can further distinguish
whether the minor fault is related to unpredictable quality,
which is an ability that dynamic PCA does not have, and it is
also the contribution of the proposed algorithm.

To demonstrate the characteristics of the algorithm, in IPS,
we set fx = 7 and choose 4x to be the first column of
Px to obtain (X,Y)T

2
xnew . Fault detection of (X,Y)T

2
xnew is

performed using the OMDC-PLS dynamic process monitor-
ing techno- logy. The fault detection results in Fig. 6 show
that T 2

xnew detects the fault. This result means that the
fault detected by T 2

xnew is a predictable quality-unrelated but
process-related fault. Only Jth,Qx of Qxnew detects a fault,
indicating that the fault is a minor fault. From the trend
in the Qynew statistics, this minor fault is a minor unpre-
dictable quality-related fault, which means that there is a
minor unpredictable quality- related fault in the predictable
quality-unrelated but process- related fault.

FIGURE 6. Fault occurs in IPS.

B. CASE STUDY ON THE TENNESSEE EASTMAN
PROCESS (TEP)
The variables for the TEP include 12 manipulated vari-
ables and 41 measured variables. The measurement interval
for the process variables is usually 3 minutes. A detailed
introduce- tion to the TEP can be found in the litera-
ture [36]. The TEP simulation data are downloaded from
Prof. Richard D. Braatz’s website.1 Based on the data, mon-
itoring with OMDC-PLS, C-PLS and D-TPLS is performed.

1[Online]. Available: http://web.mit.edu/braatzgroup/links.html

1) EXPERIMENTAL DATA AND PARAMETER INITIALIZATION
In this experiment, the process measurements
XMEAS(1-36) and the manipulated variables XMV(1-11)
are selected to compose X . The quality measurements
XMEAS(37-41) are selected to compose Y . The initial mod-
eling data are d00 normal operating data with a sample
size of 500.The number of online monitoring data samples
is 980, including the first 500 normal data samples and the
last 480 fault data samples.The fault data with 480 samples
are derived from the 21 process faults (d01-d21), of which
d01-d15 are 15 known faults. For C-PLS, A = 4 is deter-
mined by 10-fold cross-validation. Set t = 1. For OMDC-
PLS and D-TPLS, the larger the values of A and q are,
the larger the calculation amount of the algorithm. The value
of q should not be too large. Compared to the A value,
the q value increases the calculation by a larger amount. Amax
and qmax must be specified to determine a parameter that is
suitable for online model updating. Therefore, Amax = 4 and
qmax = 10 are selected to search for the optimal A and q by
using the two dimensional cross-validation-based approach
(see Appendix). The simulation result is shown in Fig. 7,
where A = 4 and q = 5.

FIGURE 7. Two-dimensional cross-validation result for TEP.

2) FAULT DETECTION
Before applying a known fault, whether the fault is related
to y should be determined. According to the criterion intro-
duced in [4], nine faults [IDV(1,2,5-8,10,12,13)] are related
to y, and five faults [IDV(3, 4, 9, 11, 15)] are unrelated to y.
According to the false alarm rates (FARs) and fault detection
rates (FDRs) introduced in [33], TABLE 4 and TABLE 5 list
14 fault FARs and FDRs.

In TABLE 4, the FARs of the proposed OMDC-PLS
method are 0 because OMDC-PLS adopts the alarm-
parameter alarmmethod. Therefore, the OMDC-PLS method
is more suitable for quality-related fault detection. In this
experiment, we set the parameter limit PL = 5, which
means that 5 consecutive samples must all detect a fault
before an alarm is raised; otherwise, no alarm will be issued.
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TABLE 4. FARs of the quality-unrelated faults from the TEP (%).

TABLE 5. FDRs of quality-related faults from the tep (%).

FIGURE 8. Detection results of IDV(3) by C-PLS (a),OMDC-PLS (b) and D-TPLS (c).

In a continuous industrial production process, if production
is stopped from a temporary recoverable fault, large losses
occur. Therefore, the dynamic process monitoring technol-
ogy proposed in this study is more suitable for continuous
production process monitoring.

TABLE 5 shows that the FDRs of quality-related faults
are higher in the proposed OMDC-PLS method than in the

C-PLS and D-TPLS method. Only in IDV(6) does the
OMDC-PLS have a lower FDR than C-PLS and D-TPLS.
These results show that OMDC-PLS has better quality-
related fault detection capabilities than mature methods,
i.e., C-PLS andD-TPLS. OMDC-PLS can successfully detect
noise or minor faults in the process, as shown in the com-
parison in Fig. 8. As shown in Fig. 8, C-PLS and D-TPLS
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FIGURE 9. Detection results of IDV(5) by C-PLS (d), OMDC-PLS (e) and D-TPLS (f).

FIGURE 10. Detection results of IDV(11) by C-PLS (g), OMDC-PLS (h) and D-TPLS (i).

fail to detect IDV(3). In contrast, a slight deviation in
the D feed temperature is fully detected by QJxnew of
OMDC-PLS, as shown in (b) of Fig. 8. This is primarily
because of the introduction of time-delay process variables,
which cause X̃gr to generate a slight deviation. The Qx
statistic can be sensitive to slight deviations. For C-PLS,
Qy is null and does not need to be monitored; therefore,
we report only the monitoring results of the other four
statistics.

The monitoring results of C-PLS, OMDC-PLS and
D-TPLS for IDV(5) are presented in (d), (e) and (f) of Fig. 9,
respectively. Fig. 9 shows that the fault is detected at the 500th
point. However, the process eventually tested as normal after
the 700th point. After the 700th point, a slight deviation in the
condenser cooling water flow rate is fully detected by QJxnew

of OMDC-PLS. However, the C-PLS and D-TPLS methods
failed to detect this slight deviation.

The monitoring results of C-PLS, OMDC-PLS and
D-TPLS for IDV(11) in quality-unrelated fault detection are
presented in (g), (h) and (i) of Fig. 10, respectively. As shown
in the figure, the fault is detected only by T 2

xnew and Qxnew
in C-PLS and OMDC-PLS. In D-TPLS, the fault is detected
by T 2

snew, Qsnew and T 2
dnew. Therefore, the fault is identified

as a predictable quality-unrelated but process- related fault.
The Qxnew FDR of OMDC-PLS is higher than the Qxnew
FDR of C-PLS and the Qsnew FDR of D-TPLS. The FDRs
of OMDC-PLS, C-PLS and D-TPLS are 96.7%, 77.5% and
74.1% respectively. This example shows that OMDC-PLS
also performs better than C-PLS and D-TPLS in quality-
unrelated fault detection.
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3) RELATION BETWEEN MULTIPLE Ti AND PARAMETER d
To calculate Ĵth,Qx directly from Jth,Qx , multiple Ti are
defined. There is an implicit relation between Ti and param-
eter d . To develop this relation, we select the d00 data set
and the d00_te data set, assign d ∈ [2, 40], and perform
39 simulations to obtain 39 sets of Ĵth,Qx and Jth,Qx . Then,
39 Ti are calculated with d ∈ [2, 40], and the relation between
Ti and d was obtained by curve fitting. The detailed process
of the experiment is shown in TABLE 6.

TABLE 6. Relationship between multiple Ti and parameter d .

V. CONCLUSIONS
In this study, we proposed the online monitoring dynamic
partial least squares (OMD-PLS) model, which is suitable
because the quality data of the current time period can-
not be obtained in online monitoring using the relation
between time-delay process data and time-delay quality
data. The OMD-PLS model has a wider range of appli-
cations and stronger quality-related fault detection capa-
bilities than DPLS. Furthermore, we propose the online
monitoring dynamic concurrent PLS (OMDC-PLS) model.
The OMDC- PLS model can perform quality-related and
process-related fault monitoring and has stronger quality-
related fault detection ability than mature methods, i.e.,
C-PLS and D-TPLS. We propose an alarm-parameter alarm
method, which enhances the dynamic monitoring capabilities
of OMDC-PLS and effect- tively reduces the magnitude of
FARs. In addition, OMDC- PLS can detect slight deviations
in advance and can be applied to detect minor faults, making
it possible to identify whether these minor faults are related
to predictable quality through trends in other statistics.

APPENDIX
METHOD FOR OBTAINING A AND q
Step 1: Initialize the parameters Amax and qmax, and set

A ∈ [1,Amax], q ∈
[
1, qmax

]
,

Step 2: Obtain quality predictions Ŷ using the DPLS
model, and calculate the mean square error:

MSPE =
1
n

∥∥∥Y − Ŷ∥∥∥2
Step 3: A and q corresponding to the pair.
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