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ABSTRACT To fight against the evolving computer viruses, we must constantly inject new virus patches
into the computer networks. This paper addresses the patch injection problem, i.e., the problem of developing
a patch injection strategy to mitigate the negative impact of virus attacks. As the impact of an attack depends
on not only the patch injection strategy but the unknown virus injection strategy, the patch injection problem
is very complicated. This paper initiates the study of the patch injection problem by means of security
economics and differential game theory. First, based on a novel virus-patch mixed propagation model,
we model the original problem as a differential game. Second, we develop a method for finding a candidate
for the Nash equilibrium of the game, examine the structure of the candidate, and give some examples of
the candidate. Furthermore, we demonstrate through comparative experiments that the candidate is better
in terms of the Nash equilibrium solution concept. Therefore, we recommend the patch injection strategy
in the candidate. Finally, we examine the effects of some factors on the performance of the recommended
patch injection strategy. Overall, these findings undoubtedly have guiding significance to defense against
virus infections.

INDEX TERMS Computer networks, computer security, modeling, nonlinear systems, decision making.

I. INTRODUCTION
Modern society relies heavily on computer networks. On a
daily basis, people acquire information through the Web,
communicate with each other through online social networks,
and buy goods through electronic payment [1]. However,
computer networks as a double-edged sword are the paradise
of computer virus as well. For instance, the recent Wanna
Decryptor ransomware attack is estimated to have caused
a total loss of four billion dollars [2], [3]. What is worse,
electronic virus is in perpetual evolution. As a matter of fact,
currently available antiviruses are often insufficient to tackle
future sophisticated viruses. Therefore, fighting against digi-
tal infections is a long and arduous task [4], [5].

To defend against evolving computer viruses, we must
constantly develop new virus patches and inject them into
computer networks [6], [7]. In this setting, we need to develop
a patch injection strategy to mitigate the negative impact of
virus attacks. We refer to the problem of developing an effec-
tive patch injection strategy as the patch injection problem.
As the impact of a virus attack depends on not only the
patch injection strategy but the unknown virus injection strat-
egy, the patch injection problem is very complicated. To our

knowledge, the problem has not been tackled previously. This
paper approaches this problem by means of two key theories:
security economics and differential game theory. Below we
give a brief review of the two theories.

Security economics is a powerful way of looking at
overall system security [8]. As a complement to cyberse-
curity engineering approaches, security economics applies
economic analysis to information security issues. By taking
into account economic parameters, we can propose cyberse-
curity strategies that minimize risk exposure of systems and
networks [9], [10].

Game theory is the study of mathematical models of
strategic interaction between rational decision makers [11].
In the past decade, game theory has been widely
applied to various aspects of cybersecurity [12], [13]. For
instances, [14] and [15] took the game-theoretic approach
to address smart grid security and advanced persistent threat
defense, respectively.

Differential game theory as a branch of game theory is
devoted to the study of game-theoretic problems subject
to continuous-time state evolution dynamics [16]. Different
from static and repeated games [14], [15], differential games
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are played continuously in dynamic environments. In recent
years, the differential game approach has been applied
to some cybersecurity problems. Through the approach,
[17]–[22] studied smart grid security, intrusion detection in
cloud computing, auditing in cloud storage, malicious fog
node identification, intrusion response in fog computing, and
misinformation control, respectively.

This paper takes the first step toward solving the patch
injection problem by use of security economics and differ-
ential game theory. Our main contributions in this work are
summarized as follows.
• We establish a virus-patchmixed propagation with patch
injection. Thereby, we formulate the attacker’s virus
injection strategy and the network administrator’s patch
injection strategy, and we estimate the attack’s expected
impact as well as the attacker’s expected net benefit.
On this basis, we model the patch injection problem as
a noncooperative differential game in which the goal of
the administrator is to seek an open-loop Nash equilib-
rium of a virus injection strategy and a patch injection
strategy.

• By use of differential game theory, we derive a method
for finding a candidate for the Nash equilibrium of the
proposed game. We then examine the structure of the
candidate. Through comparison with a set of heuristic
virus and patch injection strategies, we show that the
candidate is better in terms of the Nash equilibrium
solution concept. Therefore, we recommend the patch
injection strategy in the candidate. Finally, we examine
the effects of some factors on the performance of the
candidate. These findings help to minimize the negative
impact and potential consequence of virus attacks.

The remainder of this paper is organized in this fashion.
Section 2 reviews the related work. Section 3 models the
patch injection problem as a differential game. Section 4 gives
a method for finding a candidate for the Nash equilibrium
of the game and inspects its structure, and Section 5 evalu-
ates the performance of the candidate. The effects of some
factors on the performance of the candidate are examined in
Section 6. Section 7 closes this work.

II. RELATED WORK
Computer virus propagation dynamics is a new applied math-
ematics aiming to understand the laws governing the spread
of computer virus and thereby mitigate the impact of virus
attacks [23]. Originally, the study was focused on virus
propagation based on homogeneous networks [24]–[27].
In particular, as virus patches can be forwarded rapidly
through computer networks [28], [29], a number of virus-
patch mixed propagation models on homogeneous net-
works were proposed [30]–[33]. Later, the finding that
many real-world networks are scale-free [34], [35] set off a
wave of research on virus propagation based on scale-free
networks [36], [37]. With the advance in wireless networking
technology, today’s computer networks may be deployed
in any way [38]. To understand a variety of propagation

phenomena on arbitrary computer networks, a number of
propagation models based on arbitrary networks, which
we refer to as node-level propagation models, have been
suggested [39]–[43]. In particular, a node-level virus-patch
mixed propagation model has recently been reported [44].

As we know, patch forwarding has to be preceded by patch
injection. However, all the above virus-patch mixed propaga-
tion models neglect patch injection. As a result, neither of
them applies to the patch injection problem. In this paper,
we introduce a node-novel virus-patch mixed propagation
model with patch injection mechanism, which not only is in
line with the actual situation but applies to the patch injection
problem.

Based on the proposed virus-patch mixed propagation
model, we estimate the expected impact of a virus attack as
well as the expected net benefit of the attacker. On this basis,
we model the patch injection problem as a differential game
in which the attacker pursues the highest expected net benefit
and the duty of the network administrator is to mitigate the
expected impact.

Reference [17] proposed a differential game framework
to demonstrate worst-case strategies for stealthy attacker to
disrupt the transient stability of an electric power utility by
leveraging control over distributed energy resources, showing
that if the utility is able to identify uncompromised compo-
nents, the impact of attack could be legitimated significantly.
Reference [18] introduced and studied a differential game
model for cloud intrusion detection. This work helps to
improve the performance of cloud intrusion detection sys-
tems. Reference [19] established and studied a differential
game model for cloud storage auditing. This work has poten-
tial application in enhancing the auditing level of cloud stor-
age. Reference [20] proposed and studied a differential game
model for identifying malicious nodes in fog computing envi-
ronment. This work contributes to the promotion of fog com-
puting security. Reference [21] suggested a differential game
model for intrusion response in fog computing and derived
a closed-form formula for closed-loop Nash equilibrium of
the game. Inspired by all of these work, our paper addresses
a new problem (the patch injection problem) by means of
differential game theory. In all of these work, the propagation
of cyber attack through heterogeneous network is neglected.
In sharp contrast to these work, our work is based on a
heterogeneous network-based epidemic model, i.e., the node-
level virus-patch mixed propagation model. Hence, our work
matches the practice better.

Our work is closely related to [45]. In this paper, the virus-
containing problemwas studied using game theory. However,
this paper assumes the network is homogeneous, not com-
plying with the actual situation. Worse still, this paper leaves
patch injection out of consideration. In contrast, our work is
grounded in reality and hence has good practical value.

Our work is related to [22] as well. In this paper, a dif-
ferential game about misinformation control was proposed
and studied. As the underlying spreading network of this
game is highly averaged through themean-field approach, the
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practical applicability of the recommended misinformation
control strategy is questionable. Our work has been inspired
by this work. However, in our paper the underlying spreading
model of the differential game accommodates the complete
information on the network topology and hence captures the
virus-patch mixed spreading processes relatively accurately.
As a result, the recommended patch injection strategy is
expected to achieve a better performance.

III. THE PATCH INJECTION PROBLEM
AND ITS MODELING
This paper addresses the following problem:
Patch injection problem: Develop a patch injection strat-

egy to mitigate the negative impact of virus attacks.
For this purpose, in this section we model the problem by

following these steps: (1) introduce terminologies and nota-
tions, (2) establish a state evolution model, (3) formulate the
virus and patch injection strategies, (4) quantify the impact
of the virus attack as well as the benefit of the attacker, and
(5) model the patch injection problem.

A. BASIC TERMINOLOGIES AND NOTATIONS
Consider a computer network with the topology G = (V ,E),
where V = {1, 2, · · · ,N } denotes the set of all the hosts
(nodes) in the network, (i, j) ∈ E denotes that host i has access
to host j. In this paper, we assume G is unchanged over time.
Let A =

(
aij
)
N×N denote the adjacency matrix of G.

Suppose there is a cyber malefactor who keeps injecting
new viruses into the network in the time horizon [0,T ].
To mitigate the impact of the virus attack, the network admin-
istrator has to constantly inject new patches into the network.
Assume that at any time t ∈ [0,T ], each and every node
in the network is either susceptible or infected or patched.
Susceptible nodes are not infected with any virus but are
vulnerable to the newest virus, because they have not received
the newest patch. Infected nodes are infected with at least
one virus. Patched nodes are not infected with any virus and
are immune to the newest virus, because they have received
the newest patch against the newest virus. Let Xi(t) = 0, 1,
and 2 denote the events that node i is susceptible, infected,
and patched at time t , respectively. Then all Xi(t) are random
variables, and the random vector

X(t) = (X1(t),X2(t), · · · ,XN (t)) (1)

stands for the state of the network at time t .
Let Pr denote probability. For 1 ≤ i ≤ N , 0 ≤ t ≤ T , let

Si(t) = Pr{Xi(t) = 0}, Ii(t) = Pr{Xi(t) = 1},

Pi(t) = Pr{Xi(t) = 0}. (2)

That is, Si(t), Ii(t), and Pi(t) denote the probabilities of node i
being susceptible, infected, and patched at time t , respec-
tively. As Si(t) = 1− Ii(t)− Pi(t), the vector

E(t) = (I1(t), · · · , IN (t),P1(t), · · · ,PN (t)) (3)

stands for the expected state of the network at time t .

FIGURE 1. A diagram of the hypotheses (H1)-(H5).

Remark 1: The network administrator may collect and
analyze virus reports delivered by network users to decide
whether one or a few viruses are present and, if so, estimate
the network’s initial expected state E(0).

B. A STATE EVOLUTION MODEL OF THE NETWORK
To model the patch injection problem, we need to model the
evolution process of the network’s expected state over time.
To this end, let us introduce a set of rational hypotheses as
follows (see Fig. 1).
(H1) For 1 ≤ i ≤ N , 0 ≤ t ≤ T , virus injection renders

the susceptible node i to become infected at time t at
rate βIi (t).

(H2) For 1 ≤ i, j ≤ N , 0 ≤ t ≤ T , virus propagation
coming from the infected node j renders the susceptible
node i to become infected at time t at average rate βPaji,
where βP is a positive constant we refer to as the virus
propagation rate. Hence, for 1 ≤ i ≤ N , 0 ≤ t ≤ T ,
virus propagation renders the susceptible node i to
become infected at time t approximately at average rate∑N

j=1 βPaji(t)Ij(t). This hypothesis implies that virus
propagation is a fully spontaneous process and hence
is not under the control of the attacker.

(H3) For 1 ≤ i ≤ N , 0 ≤ t ≤ T , patch injection makes
the unpatched node i to become patched at time t at
rate γ Ii (t).

(H4) For 1 ≤ i, j ≤ N , 0 ≤ t ≤ T , patch forwarding
coming from the patched node j makes the unpatched
node i to become patched at time t at average rate γPaji,
where γP is a positive constant we refer to as the patch
forwarding rate. Hence, for 1 ≤ i ≤ N , 0 ≤ t ≤ T ,
patch forwarding makes the unpatched node i to
become patched at time t approximately at average rate∑N

j=1 γPaji(t)Ij(t). This hypothesis implies that patch
forwarding is a fully spontaneous process and hence is
not under the control of the network administrator.

(H5) For 1 ≤ i ≤ N , 0 ≤ t ≤ T , the emergence of new
virus renders the patched node i to become susceptible
at time t at average rate δ, where δ is a positive constant
we refer to δ as the patch failure rate.

Remark 2: In practice, βP, γP, and δ can be estimated by
the network administrator through analyzing the historical
data.
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Combining the above hypotheses and based on differential
dynamical system theory [46], the network’s expected state
evolves approximately according to the following differential
dynamical system:

dIi(t)
dt
=

βIi (t)+ βP N∑
j=1

ajiIj(t)

 [1− Ii(t)− Pi(t)]

−

γ Ii (t)+ γP N∑
j=1

ajiPj(t)

 Ii(t),
dPi(t)
dt
=

γ Ii (t)+ γP N∑
j=1

ajiPj(t)

 [1− Pi(t)]− δPi(t),

0 ≤ t ≤ T , 1 ≤ i ≤ N ,
(4)

with the initial conditionE(0) = E0.We refer to the system as
the Susceptible-Infected-Patched-Susceptible (SIPS) model.

C. THE VIRUS AND PATCH INJECTION STRATEGIES
The N -dimensional function x defined by

x(t) = (βI1(t), · · · , β
I
N (t)), 0 ≤ t ≤ T , (5)

is under the control of the virus attacker. We refer to x as
the virus injection strategy. The N -dimensional function y
defined by

y(t) = (γ I1 (t), · · · , γ
I
N (t)), 0 ≤ t ≤ T , (6)

is under the control of the network administrator. We refer
to y as the patch injection strategy. Let PCN [0,T ] denote the
set of all the piecewise continuous N -dimensional functions
on the interval [0,T ], and let us impose some restrictions on
the virus and patch injection strategies as follows.
(H6) x, y ∈ PCN [0,T ]. The hypothesis implies that the

virus and patch injection strategies are easily imple-
mentable.

(H7) For 1 ≤ i ≤ N , 0 ≤ t ≤ T , we have βi ≤ βi(t) ≤ βi,
γi ≤ γi(t) ≤ γi, where βi, βi, γi, and γi are all positive
constants.

Remark 3: βi stands for the lowest allowable virus injec-
tion rate and measures the lowest attack strength against
node i. βi stands for the highest allowable virus injection rate
and is determined by the highest allowable cost for attacking
node i. γi stands for the lowest allowable patch injection
rate and measures the lowest defense strength of node i.
γi stands for the highest allowable patch injection rate for
node i and is determined by the highest allowable cost for
patching node i.

Based on the above two hypotheses, the set of all the
admissible virus injection strategies is

UV =

{
x ∈ PCN [0,T ] | x(t) ∈

N∏
i=1

[βi, βi], t ∈ [0,T ]

}
,

(7)

and the set of all the admissible patch injection strategies
is

UP =

{
y ∈ PCN [0,T ] | y(t) ∈

N∏
i=1

[γi, γi], t ∈ [0,T ]

}
.

(8)

Let

� = {(I1, · · · , IN ,P1, · · · ,PN ) ∈ R2N
+ | Ii + Pi ≤ 1,

1 ≤ i ≤ N }. (9)

Let � denote the interior of �. We have the following pre-
liminary result.
Lemma 1: Suppose E(t) (0 ≤ t ≤ T ) is a solution to the

SIPS model (4). Then E(t) ∈ �, 0 < t ≤ T .
The proof of this lemma is left to Appendix A.

D. THE BENEFIT OF THE ATTACKER AND THE IMPACT
OF THE VIRUS ATTACK
To model the patch injection problem, we need to quantify
the benefit of the attacker as well as the impact of the virus
attack.

First, define the value of each node as the average loss
per unit time suffered by the owner of the node. For
1 ≤ i ≤ N , denote the value of node i as vi units (dollars, say).
Let v = (v1, · · · , vN ).
(H8) For 1 ≤ i ≤ N , vi is a positive constant.
Based on the hypothesis, the expected loss of the network in
the time horizon [0,T ] is

L(x, y) =
∫ T

0

N∑
i=1

viIi(t)dt (10)

units. In what follows, we adopt the quantity as the measure
of the loss of the network.

Second, we quantify the cost for implementing a virus
injection strategy. For this purpose, let us introduce the fol-
lowing hypothesis.
(H9) For 1 ≤ i ≤ N , the cost per unit time for inject-

ing viruses into the susceptible node i at the rate of
β is φi(β) units, where φi(0) = 0, φi is strictly
increasing.

Every φi can be approximated by carrying out simulated
virus injections with different rates and then generating a
curve fitting all the simulated costs. Based on the hypoth-
esis, the expected cost for implementing the virus injection
strategy x is

CV (x, y) =
∫ T

0

N∑
i=1

φi(βIi (t))(1− Ii(t)− Pi(t))dt (11)

units. Henceforth, we adopt the quantity as the mea-
sure of the cost for implementing the virus injection
strategy x.
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Combining the above discussions, we use the quantity

JV (x, y) = L(x, y)− CV (x, y)

=

∫ T

0

N∑
i=1

[
viIi(t)−φi

(
βIi (t)

)
(1− Ii(t)−Pi(t))

]
dt

(12)

to measure the benefit of the attacker.
Finally, let us measure the cost for implementing a patch

injection strategy. To this end, we introduce the following
hypothesis.

1) [(H10)] For 1 ≤ i ≤ N , the cost per unit time for
injecting patches into the unpatched node i at the rate
of γ is ψi(γ ) units, where ψi(0) = 0, ψi is strictly
increasing.

Every ψi can be approximated by carrying out simulated
patch injections with different rates and then generating a
curve fitting all the simulated costs. Based on the hypothe-
sis, the expected cost for implementing the patch injection
strategy y is

CP(x, y) =
∫ T

0

N∑
i=1

ψi(γ Ii (t))(1− Pi(t))dt (13)

units. From now on, we adopt this quantity as the measure of
the cost for implementing the patch injection strategy y.
Combining the above discussions, we may use the quantity

JP(x, y) = L(x, y)+ CP(x, y)

=

∫ T

0

N∑
i=1

[viIi(t)+ψi
(
γ Ii (t)

)
(1−Pi(t))]dt. (14)

to measure the impact of the virus attack.

E. THE MODELING OF THE PATCH INJECTION PROBLEM
Based on the previous discussions, the patch injection prob-
lem comes down to the problem of seeking a patch injection
strategy y ∈ UP to mitigate JP(x, y). However, JP(x, y) is
dependent on not only y but the unknown virus injection strat-
egy x ∈ UV . This complicates the patch injection problem.

From the worst-case perspective, we may assume the
attacker is aware of the loss of the network and attempts
to maximize his benefit JV (x, y). In this setting, the solu-
tion concept of Nash equilibrium is relevant. A strategy pair
(x∗, y∗) ∈ UV ×UP is referred to as a Nash equilibrium if

JV (x∗, y∗) ≥ JV (x, y∗), ∀x ∈ UV , (15)

and

JP(x∗, y∗) ≤ JP(x∗, y), ∀y ∈ UP. (16)

This implies that (a) when the network administrator sticks
to the patch injection strategy y∗, the attacker has to choose
the virus injection strategy x∗ to maximize his benefit, and
(b) when the attacker insists on x∗, the administrator cannot
reduce the impact of the virus attack by deviating from y∗.
Therefore, in the worst-case scenario the patch injection strat-
egy y∗ is acceptable to the network administrator.

Combining the above discussions, we model the patch
injection problem as the following noncooperative differen-
tial game:
Patch injection game: Suppose the attacker attempts to

maximize JV (x, y), and the network administrator tries to
minimize JP(x, y), where (x, y) ∈ UV × UP. Seek a Nash
equilibrium.

Suppose (x∗, y∗) is a Nash equilibrium of the patch injec-
tion game. We recommend the patch injection strategy y∗ to
the network administrator. In the next section, we will try to
solve the patch injection game.

IV. A STUDY OF THE PATCH INJECTION GAME
In this section, we study the patch injection game by means
of differential game theory. First, we develop a method for
seeking a candidate for the Nash equilibrium of the game.
Second, we examine the structure of the candidate. Finally,
we give some examples of the candidate.

A. SEEKING A CANDIDATE FOR THE NASH EQUILIBRIUM
To develop a method for finding a candidate for the Nash
equilibrium of the game, we need to derive a necessary con-
dition for the Nash equilibrium. This involves the following
two Hamiltonians.

HV (E, x, y, λ) =
N∑
i=1

[
viIi − φi(βIi )(1− Ii − Pi)

]
+

N∑
i=1

λIi
dIi
dt
+

N∑
i=1

λPi
dPi
dt
, (17)

where λ = (λI , λP) = (λI1, · · · , λ
I
N , λ

P
1 , · · · , λ

P
N ) is the

continuous and piecewise differentiable adjoint function.

HP(E, x, y, µ) =
N∑
i=1

[
viIi + ψi(γ Ii )(1− Pi)

]
+

N∑
i=1

µIi
dIi
dt
+

N∑
i=1

µPi
dPi
dt
, (18)

where µ = (µI , µP) = (µI1, · · · , µ
I
N , µ

P
1 , · · · , µ

P
N ) is the

continuous and piecewise differentiable adjoint function.
We are ready to give the necessary condition.
Theorem 1: Suppose (x, y) is a Nash equilibrium of the

patch injection game, E the solution to the associated SIPS
model. Then there exist λ and µ with λ(T ) = µ(T ) = 0 such
that the system (19), as shown at the top of the next page,
holds. Moreover,

βIi (t) ∈ arg max
β∈[βi,βi]

fi(β; t),

γ Ii (t) ∈ arg min
γ∈[γi,γi]

gi(γ ; t), 0 ≤ t ≤ T , 1≤ i ≤ N , (20)

where

fi(β; t) = λIi (t)β − φi(β),

gi(γ ; t) =
[
µPi (t)(1− Pi(t))− µ

I
i (t)Ii(t)

]
γ

+(1− Pi(t))ψi(γ ). (21)
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dλIi (t)

dt
= −vi − φi(βIi (t))− βP

N∑
j=1

aijλIj (t)
[
1− Ij(t)− Pj(t)

]
λIi (t)

βIi (t)+ γ Ii (t)+ N∑
j=1

aji
(
βPIj(t)+ γPPj(t)

) ,
dλPi (t)

dt
= −φi(βIi (t))+ γP

N∑
j=1

aijλIj (t)Ij(t)− γP
N∑
j=1

aijλPj (t)(1− Pj(t))+ λ
I
i (t)

βIi (t)+ βP N∑
j=1

ajiIj(t)


+ λPi (t)

δ + γ Ii (t)+ γP N∑
j=1

ajiPj(t)

 ,
dµIi (t)

dt
= −vi − βP

N∑
j=1

aijµIj (t)
[
1− Ij(t)− Pj(t)

]
+ µIi (t)

βIi (t)+ γ Ii (t)+ N∑
j=1

aji
(
βPIj(t)+ γPPj(t)

) ,
dµPi (t)

dt
= ψi(γ Ii (t))+ γP

N∑
j=1

aijµIj (t)Ij(t)− γP
N∑
j=1

aijµPj (t)(1− Pj(t))+ µ
I
i (t)

βIi (t)+ βP N∑
j=1

ajiIj(t)


+ µPi (t)

δ + γ Ii (t)+ γP N∑
j=1

ajiPj(t)

 ,
0 ≤ t ≤ T , 1 ≤ i ≤ N .

(19)

We refer to the system consisting of Eqs. (4),
Eqs. (19)-(20), E(0) = E0, and λ(T ) = µ(T ) = 0
as the candidate system for the patch injection game, and
the strategy pair obtained by solving the system as the
candidate strategy-pair of the game, denoted (xCA, yCA),
because it is likely to be a Nash equilibrium of the game.
Further, we refer to xCA and yCA as the candidate virus
injection strategy and the candidate patch injection strategy,
respectively.

Eqs. (19) imply that all disjoints rely on the network’s
expected states at all time. So, Eqs. (20)-(21) demonstrate that
the candidate virus injection strategy and the candidate patch
injection strategy both rely on the network’s expected states
at all time.

We shall invoke the Forward-Backward Sweep
Method [47] to solve the candidate system to get the can-
didate strategy-pair of the patch injection game. The CS-FBS
(abbreviation of candidate system forward-backward sweep)
algorithm given below is a pseudo-code description of the
method.

In all the following experiments, we will use the CS-FBS
algorithm to solve the candidate system, where the conver-
gence error ε = 10−6, the iteration bound K = 103.

B. THE STRUCTURE OF THE CANDIDATE STRATEGY-PAIR
Now, let us examine the structure of the candidate
strategy-pair of the patch injection game. Let (x, y) be
the candidate strategy-pair, E the solution to the asso-
ciated SIPS model, (λ,µ) the associated adjoints. For
technical reason, we will show the following lemma in
Appendix B.
Lemma 2: λI (t) > 0, µI (t) > 0, µP(t) < 0, t ∈ [0,T ).

For brevity, let

θi =
φi(βi)− φi(βi)

βi − βi
, 1 ≤ i ≤ N , (22)

ηi =
ψi(γi)− ψi(γi)

γi − γi
, 1 ≤ i ≤ N , (23)

hi(t) = µIi (t)
Ii(t)

1− Pi(t)
− µPi (t), 0 ≤ t ≤ T , 1 ≤ i ≤ N .

(24)

Below we present a set of four theorems characterizing the
structure of the candidate strategy-pair.
Theorem 2: Suppose φi is concave. Then

βIi (t) =

{
βi if λIi (t) < θi,

βi if λIi (t) > θi,
0 ≤ t ≤ T . (25)

Moreover, if

θi <
vi + φi(βi)

βi + γi +max{βP, γP}d
−

i

, (26)

then either (a) βIi (t) = βi for t ∈ [0,T ], or (b) there exists
ti ∈ [0,T ) such that βIi (t) = βi for t ∈ [0, ti) and βIi (t) = βi
for t ∈ (ti,T ].
Theorem 3: Suppose φi is differentiable and strictly con-

vex. Then

βIi (t) =


βi if λIi (t) < φ

′

i (βi),
βi if λIi (t) > φ

′

i (βi),[
φ
′

i

]−1
(λIi (t)) otherwise,

0 ≤ t ≤ T .

(27)
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Algorithm 1 CS-FBS
Input: patch injection game given by GPI =(

G, v, f , βP, γP, δ,T , {φi}Ni=1, {ψi}
N
i=1,E0

)
, convergence

error ε, iteration bound K .
Output: strategy pair (x, y).
1: k := 0;
2: x(0)(t) := (β1, · · · , βN ), 0 ≤ t ≤ T ;
3: y(0)(t) := (γ1, · · · , γN ), 0 ≤ t ≤ T ;
4: use the system (4) with x = x(0), y = y(0), andE(0) = E0

to forwardly calculate E(t), 0 ≤ t ≤ T ;
5: E(1)

:= E;
6: use the system (19) with x = x(0), y = y(0), E = E(1),

and λ(T ) = µ(T ) = 0 to backwardly calculate λ(t) and
µ(t), 0 ≤ t ≤ T ;

7: λ(1) := λ, µ(1)
= µ;

8: use the systems (20)-(21) with E = E(1), λ = λ(1), and
µ = µ(1) to calculate x(t) and y(t), 0 ≤ t ≤ T ;

9: x(1) = x, y(1) = y;
10: while ||x(k+1) − x(k)|| + ||y(k+1) − y(k)|| ≥ ε or k < K

do
11: k = k + 1;
12: use the system (4) with x = x(k), y = y(k), and E(0) =

E0 to forwardly calculate E(t), 0 ≤ t ≤ T ;
13: E(k+1)

:= E;
14: use the system (19) with x = x(k), y = y(k), E =

E(k+1), and λ(T ) = µ(T ) = 0 to backwardly calculate
λ(t) and µ(t), 0 ≤ t ≤ T ;

15: λ(k+1) := λ, µ(k+1)
= µ;

16: use the systems (20)-(21) with E = E(k+1), λ =
λ(k+1), and µ = µ(k+1) to calculate x(t) and y(t),
0 ≤ t ≤ T ;

17: x(k+1) = x, y(k+1) = y;
18: end while
19: return(x(k+1), y(k+1)).

Moreover, if

φ
′

i (βi) <
vi + φi(βi)

βi + γi +max{βP, γP}d
−

i

, (28)

then either (a) βIi (t) = βi for t ∈ [0,T ], or (b) there exists
ti ∈ [0,T ) such that βIi is strictly decreasing in [0, ti) and
βIi (t) = βi for t ∈ (ti,T ], or (c) there exist t

(1)
i , t (2)i ∈ [0,T ),

t (1)i < t (2)i , such that βIi (t) = βi for t ∈ [0, t (1)i ), βIi (t)
is strictly decreasing in (t (1)i , t (2)i ), and βIi (t) = βi for

t ∈ (t (2)i ,T ].
Theorem 4: Suppose ψi is concave. Then

γi(t) =

{
γi if hi(t) < ηi,

γi if hi(t) > ηi.
0 ≤ t ≤ T . (29)

Moreover, if

ηi <
ψi(γi)

δ + αi + γi + γPd
−

i

, (30)

FIGURE 2. A synthetic small-world network GSW.

then either (a) γi(t) = γi for t ∈ [0,T ], or (b) there exists
ti ∈ [0,T ) such that γ Ii (t) = γi for t ∈ [0, ti) and γ Ii (t) = γi
for t ∈ (ti,T ].
Theorem 5: Suppose ψi is differentiable and strictly con-

vex. Then

γ Ii (t) =


γi if hi(t) < ψ

′

i (γi),
γi if hi(t) > ψ

′

i (γi),[
ψ
′

i

]−1
(hi(t)) otherwise,

0 ≤ t ≤ T .

(31)

Moveover, if

ψ
′

i (γi) <
ψi(γi)

δ + αi + γi + γPd
−

i

, (32)

then either (a) γi(t) = γi for t ∈ [0,T ], or (b) there exists
ti ∈ [0,T ) such that γi is strictly decreasing in [0, ti) and
γi(t) = γi for t ∈ (ti,T ], or (c) there exist t

(1)
i , t (2)i ∈ [0,T ),

t (1)i < t (2)i , such that γi(t) = γi for t ∈ [0, t (1)i ), γi(t) is strictly
decreasing in (t (1)i , t (2)i ), and γi(t) = γi for t ∈ (t (2)i ,T ].
The proofs of the first two theorems are left to

Appendixes C and D, respectively. The proofs of the last two
theorems are omitted, because they are similar to those of the
first two theorems, accompanied with tedious calculations.

C. EXAMPLES OF THE CANDIDATE STRATEGY-PAIR
Next, let us give some candidate strategy-pairs by solving the
associated candidate systems.

Many real-world networks are small-world, i.e., they each
admit a small diameter [48]. By using the Pajek software [49],
we get a synthetic small-world network GSW with N = 100
nodes, which is shown in Fig. 2.
Example 1: Consider the pair of patch injection games

with G = GSW, v = (1, · · · , 1), T = 10, βP = 0.2,
γP = 0.1, δ = 0.15, βi = 0.1, βi = 0.4, γi = 0.2, γi = 0.5,
E(0) = (0.1, · · · , 0.1),
(a) φi(β) =

√
β, ψi(γ ) =

√
γ , 1 ≤ i ≤ N; or

(b) φi(β) = β2, ψi(γ ) = γ 2, 1 ≤ i ≤ N.
For the two games, the candidate virus and patch injection
strategies for three nodes are plotted in Fig. 3(a)-(c) and
Fig. 3(d)-(f), respectively, agreeing with Theorems 2-5.

Many real-world networks are scale-free, i.e, they
each approximately follow a power-law degree distribu-
tion [34], [35]. By using Pajek [49], we get a synthetic
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FIGURE 3. A glance of the candidate virus and patch injection strategies
in Example 1.

FIGURE 4. A synthetic scale-free network GSF.

FIGURE 5. A glance of the candidate virus and patch injection strategies
in Example 2.

scale-free network GSF with N = 100 nodes, which is
exhibited in Fig. 4.
Example 2: For the two patch injection games with the

same parameters as those in Example 1 except G = GSF,
the candidate virus and patch injection strategies for three
nodes are plotted in Fig. 5(a)-(c) and 5(d)-(f), respectively,
matching Theorems 2-5.

Fig. 6 exhibits a subnet GFN with N = 100 nodes of the
facebook network [50].
Example 3: For the two patch injection games with the

same parameters as those in Example 1 except G = GFN,
the candidate virus and patch injection strategies for three
nodes are exhibited in Fig. 7(a)-(c) and Fig. 7(d)-(f), respec-
tively, conforming to Theorems 2-5.

FIGURE 6. A subnet of the facebook network GFN.

FIGURE 7. A glance of the candidate virus and patch injection strategies
in Example 3.

V. PERFORMANCE EVALUATION OF THE CANDIDATE
STRATEGY-PAIR
In [18]–[21], the closed-form formula of a closed-loop Nash
equilibrium was given by analyzing the corresponding Bell-
man equation of each of the differential games. In [22],
an open-loop equilibrium of the proposed differential game
was calculated numerically. In the previous section, we pre-
sented a method for finding a candidate for the open-loop
Nash equilibrium of the patch injection game. Due to the
inherent complexity of the game, it seems impossible to show
that the game admits a Nash equilibrium. As a result, the can-
didate strategy-pair is probably not a Nash equilibrium of the
game. Therefore, it is necessary to evaluate the performance
of the candidate strategy-pair through comparative experi-
ments. This section is devoted to this work. For convenience,
let (xCA, yCA) denote the candidate strategy-pair.

A. A SET OF HEURISTIC VIRUS AND PATCH INJECTION
STRATEGIES
For the comparison purpose, we give a set of heuristic
virus/patch injection strategies as follows.

The first virus (resp. patch) injection strategy is to always
achieve the highest allowable virus (resp. patch) injection
rate of each susceptible (resp. unpatched) node. We refer
to the virus (resp. patch) injection strategy as the highest
rate (HR) virus (resp. patch) injection strategy, denoted xHR
(resp. yHR). Formally,

xHR(t) =
(
β1, · · · , βN

)
, t ∈ [0,T ],

yHR(t) = (γ1, · · · , γN ) , t ∈ [0,T ]. (33)
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The second virus (resp. patch) injection strategy is to
always achieve the lowest allowable virus (resp. patch) injec-
tion rate of each susceptible (resp. unpatched) node. We refer
to the virus (resp. patch) injection strategy as the lowest rate
(LR) virus (resp. patch) injection strategy, denoted xLR (resp.
yLR). Formally,

xLR(t) =
(
β1, · · · , βN

)
, t ∈ [0,T ],

yLR(t) =
(
γ1, · · · , γN

)
, t ∈ [0,T ]. (34)

The third virus (resp. patch) injection strategy is to always
achieve a virus (resp. patch) injection rate of each susceptible
(resp. unpatched) node that is linearly increasing with the
out-degree of the node. We refer to the virus (resp. patch)
injection strategy as the out-degree first (OF) virus (resp.
patch) injection strategy, denoted xOF (resp. yOF). Formally,

xOF =
(
β1 + (β1 − β1)d∗1 , · · · , βN + (βN − βN )d∗N

)
,

t ∈ [0,T ],

yOF =
(
γ1 + (γ1 − γ1)d∗1 , · · · , γN + (γN − γN )d∗N

)
,

t ∈ [0,T ], (35)

where d∗i =
d+i

max1≤j≤N d
+

j
, d+i =

∑N
j=1 aij denotes the out-

degree of node i, respectively.
The fourth virus (resp. patch) injection strategy is (1) to

always achieve the highest allowable virus (resp. patch) injec-
tion rate of each susceptible (resp. unpatched) node in the
time horizon[0,T/2), and (2) to always achieve the lowest
allowable virus (resp. patch) injection rate of each suscep-
tible (resp. unpatched) node in the time horizon[T/2,T ].
We refer to the virus (resp. patch) injection strategy as the
high-low (HL) virus (resp. patch) injection strategy, denoted
xHL (resp. yHL). Formally,

xHL(t) =

{
(β1, · · · , βN ), t ∈ [0,T/2),

(β1, · · · , βN ), t ∈ [T/2,T ],

yHL(t) =

{
(γ1, · · · , γN ), t ∈ [0,T/2),

(γ1, · · · , γN ), t ∈ [T/2,T ].
(36)

The fifth virus (resp. patch) injection strategy is to reduce
the virus (resp. patch) injection rate of each susceptible (resp.
unpatched) node linearly from the highest allowable virus
(resp. patch) injection rate to the lowest allowable virus (resp.
patch) injection rate. We refer to the virus (resp. patch) injec-
tion strategy as the linear descent (LD) virus (resp. patch)
injection strategy, denoted xLD (resp. yLD). Formally,

xLD(t) =

(
β1 −

β1 − β1

T
t, · · · , βN −

βN − βN

T
t

)
,

t ∈ [0,T ], (37)

yLD(t) =
(
γ1 −

γ1 − γ1

T
t, · · · , γN −

γN − γN

T
t
)
,

t ∈ [0,T ]. (38)

FIGURE 8. The comparison results in Experiment 1.

The sixth and last virus (resp. patch) injection strategy is
to achieve a virus (resp. patch) injection rate of each node
that is linearly increasing with the probability of the node
being susceptible (resp. unpatched). We refer to the virus
(resp. patch) injection strategy as the linear-feedback (LF)
virus (resp. patch) injection strategy, denoted xLF (resp. yLF).
Formally,

xLF(t) =
(
β1+(β1−β1)S1(t), · · · , βN + (βN−βN )SN (t)

)
,

t ∈ [0,T ],

yLF(t) =
(
γ1 + (γ1 − γ1)(1− P1(t)), · · · ,

γN + (γN − γN )(1− PN (t))
)
, t ∈ [0,T ].

(39)

B. COMPARATIVE EXPERIMENTS
Now, let us evaluate the performance of the candidate
strategy-pair through a comparison with the proposed heuris-
tic virus and patch injection strategies. Let

A = {xCA, xHR, xLR, xOF, xHL, xLD, xLF},

B = {yCA, yHR, yLR, yOF, yHL, yLD, yLF}.

Experiment 1: Consider the pair of patch injection games
with G = GSW, v = (1, · · · , 1), T = 10, βP = 0.2,
γP = 0.1, δ = 0.1, βi = 0.1, βi = 0.4, γi = 0.1, γi = 0.4,
E(0) = (0.1, · · · , 0.1),
(a) φi(β) =

√
β, ψi(γ ) =

√
γ , 1 ≤ i ≤ N; or

(b) φi(β) = β2, ψi(γ ) = γ 2, 1 ≤ i ≤ N.
For the two games, JV (x, yCA) (x ∈ A) and JP(xCA, y) (y ∈ B)
are plotted in Fig. 8(a)-(b) and Fig. 8(c)-(d), respectively. It is
seen that (xCA, yCA) is the best in terms of Nash equilibrium,
provided (x, y) ∈ A× B.
Experiment 2: For the two patch injection games with

the same parameters as those in Experiment 1 except
G = GSF, JV (x, yCA) (x ∈ A) and JP(xCA, y) (y ∈ B) are
given in Fig. 9(a)-(b) and Fig. 9(c)-(d), respectively. Again,
(xCA, yCA) is the best in terms of Nash equilibrium, provided
(x, y) ∈ A× B.
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FIGURE 9. The comparison results in Experiment 2.

FIGURE 10. The comparison results in Experiment 3.

Experiment 3: For the two patch injection games with the
same parameters as those in Experiment 1 except G = GFN,
JV (x, yCA) (x ∈ A) and JP(xCA, y) (y ∈ B) are exhib-
ited in Fig. 10(a)-(b) and Fig. 10(c)-(d), respectively. Also,
(xCA, yCA) is the best in terms of Nash equilibrium, provided
(x, y) ∈ A× B.
We conclude from the above experiments that the strategy-

pair (xCA, yCA) is the best in terms of Nash equilibrium,
provided (x, y) ∈ A×B. Further, we speculate that (xCA, yCA)
is a Nash equilibrium of the patch injection game.

Based on the above discussions, we find that the candidate
patch injection strategy is likely to be superior to most heuris-
tic patch injection strategies in terms of Nash equilibrium.
On the other hand, the candidate patch injection strategy is
easily implementable, because it has a relatively simple struc-
ture. For instance, when all the conditions in Theorem 4 are
met, the patch injection strategy of the corresponding node
goes through a single jump from the highest allowable injec-
tion rate to the lowest allowable injection rate. Therefore,
we recommend the candidate patch injection strategy to the
network administrator.

One remarkable advantage of adopting the recommended
patch injection strategy is that no matter what virus injection

FIGURE 11. The effects of T on JV (xCA, yCA) and JP (xCA, yCA)
in Experiment 4.

strategy the attacker uses, the impact of the virus attack can
be controlled satisfactorily in the sense of Nash equilibrium
solution concept.

In practice, the network administrator may divide the
whole time horizon into a number of small time intervals.
At the initial time point of each interval, he may collect and
analyze recent virus reports to decide on the current expected
state of the network. Then, he may apply the recommended
patch injection strategy to the interval. Therefore, although
the patch injection game per se is open-loop and hence lacks
flexibility, the administrator is capable of managing the net-
work in a closed-loop manner, further mitigating the negative
impact of virus attacks.

VI. FURTHER DISCUSSIONS
For an patch injection game, we refer to the attacker’s benefit
and the attack’s impact associatedwith the candidate strategy-
pair as the candidate benefit and the candidate impact,
respectively. In this section, we examine the effects of some
factors on the two quantities through computer experiments.

A. THE EFFECT OF THE ATTACK DURATION
First, we examine the effect of the attack duration T on the
two candidate quantities.
Experiment 4: Consider the family of patch injection

games with G ∈ {GSW,GSF,GFN}, T ∈ {5, 6, · · · , 15},
v = (1, · · · , 1), βP = 0.2, γP = 0.1, δ = 0.15, βi = 0.1,
βi = 0.4, γi = 0.1, γi = 0.4, φi(β) = β2, ψi(γ ) =

√
γ ,

1 ≤ i ≤ N. Fig. 11 exhibits the effect of T on JV (xCA, yCA)
and JP(xCA, yCA).
It is concluded from this experiment that the attacker’s

candidate benefit and the attack’s candidate impact are both
increasing with the attack duration. In practice, the network
administrator should take measures to reduce the attack dura-
tion to mitigate its negative impact and potential conse-
quence.

B. THE EFFECT OF THE COMMON VALUE
Second, suppose all the nodes in the network share a common
value, and let us inspect the effect of the common value on the
two candidate quantities.
Experiment 5: Consider the family of patch injection

games with the same parameters as those in Experiment 4
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FIGURE 12. The effects of v on JV (xCA, yCA) and JP (xCA, yCA)
in Experiment 5.

FIGURE 13. The effect of βP on JV (xCA, yCA) and JP (xCA, yCA)
in Experiment 6.

expect T = 10 and vi = v ∈ {0.1, 0.2, · · · , 1}, 1 ≤
i ≤ N. Fig. 12 shows the effect of v on JV (xCA, yCA) and
JP(xCA, yCA).
From this experiment, we conclude that the attacker’s

candidate benefit and the attack’s candidate impact are both
increasing with the common value of all the nodes. Hence,
the same virus attack has a greater impact on high-valued
networks.

C. THE EFFECT OF THE VIRUS PROPAGATION RATE
Third, let us inspect the effect of the virus propagation rate βP
on the two candidate quantities.
Experiment 6: Consider the family of patch injection

games with the same parameters as those in Example 4 except
T = 10 and βP ∈ {0.05, 0.1, · · · , 0.5}. Fig. 13 show the
effect of βP on JV (xCA, yCA), and JP(xCA, yCA), respectively.

It is inferred from this experiment that the attacker’s candi-
date benefit and the attack’s impact are both increasing with
the virus propagation rate. Therefore, virus attackers prefer to
enhance the virus propagation rate to enhance their benefits.

D. THE EFFECT OF THE PATCH FORWARDING RATE
Next, we examine the effect of the patch propagation rate γP
on the two candidate quantities.
Experiment 7: Consider the family of patch injection

games with the same parameters as those in Example 4 except
T = 10 and γP ∈ {0.05, 0.1, · · · , 0.5}. Fig. 14 shows the
effect of γP on JV (xCA, yCA) and JP(xCA, yCA).
It is concluded from this experiment that the attacker’s

benefit and the attack’s impact are both decreasing with the

FIGURE 14. The effect of γP on JV (xCA, yCA) and JP (xCA, yCA)
in Experiment 7.

FIGURE 15. The effect of δ on JV (xCA, yCA) and JP (xCA, yCA)
in Experiment 8.

patch forwarding rate. In practice, new patches should be
forwarded as fast as possible to reduce the impact of virus
attacks.

E. THE EFFECT OF THE PATCH FAILURE RATE
Finally, let us examine the effect of the patch failure rate δ on
the two candidate quantities.
Experiment 8: Consider the family of patch injection

games with the same parameters as those in Experiment 4
except T = 10 and δ ∈ {0.05, 0.1, · · · , 0.5}. Fig. 15 shows
the effect of δ on JV (xCA, yCA) and JP(xCA, yCA).
From this experiment, we infer that the attacker’s benefit

and the attack’s impact are both increasing with the patch
failure rate. In reality, we should develop new patches with
longer period of validity.

VII. CONCLUDING REMARKS
This paper has addressed the issue of developing a patch
injection strategy to minimize the impact of virus attacks.
We havemodeled the patch injection problem as a differential
game in which the objective is to seek a Nash equilibrium.
We have derived a candidate for the Nash equilibrium of the
proposed game and have shown that the candidate is better
in term of the Nash equilibrium solution concept. Therefore,
we have recommended the patch injection strategy in the
candidate.

There are some relevant research topics that are worth fur-
ther investigation. First, the proposed patch injection strategy
should be implemented in practice. Second, in this paper it is
assumed that virus propagation and patch forwarding are both
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spontaneous processes. In the actual situation, the attacker
is likely to get control of the virus propagation process
to enhance his benefit, whereas the network administrator
might control the patch forwarding process to reduce the
impact of the virus attack. In this situation, we have to
develop a patch injection-forwarding strategy to mitigate the
impact of the attack, and this problem may be modeled as a
more complicated differential game. Third, with the prolifer-
ation of mobile adhoc networks, the patch injection problem
should be modified to adapt to the time-varying network
situation [51], [52]. Last, the methodology developed in this
work could be applied to other areas of cybersecurity such as
rumor control [53], [54], intrusion detection [55], proactive
cyber defense [56], [57], and privacy protection [58].

APPENDIX A
PROOF OF LEMMA 1
It follows from the model (4) that

lim
t→0+

dPi(t)
dt
= γ Ii (0) ≥ γi > 0, 1 ≤ i ≤ N . (40)

In view of the continuity of P(t), there exists t0 ∈ (0,T ] such
that 0 < Pi(t) < 1 for all i and 0 < t ∈ (0, t0]. We show that

0 < Pi(t) < 1, 0 < t ≤ T , 1 ≤ i ≤ N . (41)

On the contrary, suppose there exist i∗ and t∗ ∈ (t0,T ] such
that (a) either Pi∗ (t∗) = 0 or Pi∗ (t∗) = 1, and (b)

0 < Pi(t) < 1, 0 < t < t∗, 1 ≤ i ≤ N . (42)

If Pi∗ (t∗) = 0, then

lim
t→t∗−

dPi∗ (t)
dt

= γ Ii∗ (t
∗−)+ γP

N∑
j=1

aji∗Pj(t∗) > 0. (43)

This implies that there exists t1 ∈ [0, t∗) such thatPi∗ (t1) < 0,
contradicting Eqs. (42). Hence, Pi∗ (t∗) 6= 0. If Pi∗ (t∗) = 1,
then

lim
t→t∗−

dPi∗ (t)
dt

= −δ < 0. (44)

This implies that there exists t2 ∈ [0, t∗) such thatPi∗ (t2) > 1,
again contradicting Eqs. (42). Hence, Pi∗ (t∗) 6= 1. Therefore,
Eqs. (41) hold. On this basis and by an analogous argument,
we can show that Ii(t) > 0, 0 < Ii(t)+Pi(t) < 1, 0 < t ≤ T ,
1 ≤ i ≤ N . The proof is complete.

APPENDIX B
PROOF OF THEOREM 1
According to the Pontryagin Maximum/Minimum Princi-
ple [16], there exist λ and µ such that for 1 ≤ i ≤ N ,

0 ≤ t ≤ T , we have

dλIi (t)

dt
= −

∂HV (E(t), x(t), y(t), λ(t))
∂Ii

,

dλPi (t)

dt
= −

∂HV (E(t), x(t), y(t), λ(t))
∂Pi

,

dµIi (t)

dt
= −

∂HP(E(t), x(t), y(t), µ(t))
∂Ii

,

dµPi (t)

dt
= −

∂HP(E(t), x(t), y(t), µ(t))
∂Pi

.

(45)

Thus, Eqs. (19) follow by direct calculations. As the terminal
cost is unspecified and the final state is free, we have the
transversality condition λ(T ) = µ(T ) = 0. Moreover, for
0 ≤ t ≤ T , we have

x(t) ∈ arg max
x̃∈
∏N
i=1[βi,βi]

HV (E(t), x̃, y(t), λ(t)),

y(t) ∈ arg min
ỹ∈
∏N
i=1[γi,γi]

HP(E(t), x(t), ỹ, µ(t)). (46)

Eqs. (20)-(21) follow by direct calculations.

APPENDIX C
PROOF OF LEMMA 2
We prove only the first claim, because the remaining two
claims can be shown analogously.

By the first N equations of the system (19) and λI (T ) = 0,
we get

lim
t→T−

dλIi (t)

dt
= −vi − φi(βIi (T

−)) < 0, 1 ≤ i ≤ N .

(47)

As λIi is continuous, there exists t0 ∈ [0,T ) such that λIi (t) >
0 for all i and t ∈ (t0,T ). On the contrary, suppose there exist
i∗ and t∗ ∈ [0, t0] such that (a) λIi∗ (t

∗) = 0, (b) λIi∗ (t) > 0 for
t ∈ (t∗,T ), and (c) λIi (t) ≥ 0 for all i 6= i∗ and t ∈ (t∗,T ).

On one hand, (a) and (b) imply limt→t∗+
dλIi∗ (t)
dt ≥ 0. On the

other hand, (c) and the continuity of λI imply that λIi (t
∗) ≥ 0

for all i. Thus,

lim
t→t∗+

dλIi∗ (t)

dt
= −vi∗ − φi(βIi∗ (t

∗+))

−βP
N∑
j=1

ai∗jλIj (t
∗)
[
1−Ij(t∗)−Pj(t∗)

]
<0.

(48)

A contradiction occurs. Therefore, the claim holds.

APPENDIX D
PROOF OF THEOREM 2
Look at Eqs. (20)-(21). As φi(β) is concave, fi(β; t) is convex.
So, fi(β; t) attains the maximum at either βi or βi. By com-
paring fi(βi; t) and fi(βi; t), we deduce Eq. (25).

Now, suppose Eq. (26) holds. Observe that λIi (T ) = 0 < θi.
We distinguish between two possibilities.
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Case 1: λIi (t) < θi for t ∈ [0,T ). Then βIi (t) = βi for all
t ∈ [0,T ]. Claim (a) holds.
Case 2: There exists t

′

∈ [0,T ) such that λIi (t
′

) ≥ θi. Let

ti = sup{t ∈ [0,T ) : λi(t) ≥ θi}. (49)

Then λIi (t) < θi for t ∈ (ti,T ], which implies βIi (t) = βi for
t ∈ (ti,T ]. As λIi is continuous, we have λ

I
i (ti) = θi. If ti = 0,

claim (b) already holds. Now, assume ti > 0. By Eqs. (19),
Lemma 2 and Eq. (26), we have

dλIi (ti)

dt
≤−vi−φi(βi)+ θi

[
βi + γi +max{βP, γP}d

−

i

]
<0.

(50)

So, there exists ε > 0 such that λIi (t) > θi for t ∈ (ti − ε, ti).
Next, we show that λIi (t) > θi for t ∈ [0, ti). On the contrary,
suppose there exists t

′

i < ti such that λIi (t
′

i ) = θi and

λIi (t) > θi, t
′

i < t < ti. (51)

Again by Eqs. (19), Lemma 2 and Eq. (26), we get
dλIi (t

′

i )
dt < 0.

Thus, there exists t
′′

i ∈ (t
′

i , ti) such that λIi (t
′′

i ) < θi. This
contradicts Eq. (51). Hence, λIi (t) > θi for t ∈ [0, ti). This
implies βIi (t) = βi for all t ∈ [0, ti). Claim (b) holds.

APPENDIX E
PROOF OF THEOREM 3
Look at Eqs. (20)-(21). As φi(β) is strictly convex, fi(β; t) is
strictly concave. We distinguish among three possibilities.
Case 1: fi(β; t) is strictly decreasing, which is equivalent

to λIi (t) < φ
′

i (βi). Then β
I
i (t) = βi.

Case 2: fi(β; t) is strictly increasing, which is equivalent to
λIi (t) > φ

′

i (βi). Then β
I
i (t) = βi.

Case 3: fi is first increasing then decreasing. Then
dfi(βIi (t);t)

dβ = 0, which implies βIi (t) =
[
φ
′

i

]−1
(λIi (t)).

Combining the above discussions, we get Eq. (27).
Now, suppose Eq. (28) holds. Observe that λIi (T ) = 0 <

φ
′

i (βi). We distinguish among three possibilities.
Case 1: λIi (t) < φ

′

i (βi) for t ∈ [0,T ). Then βIi (t) = βi for
t ∈ [0,T ]. Claim (a) holds.
Case 2: There exists t ′ ∈ [0,T ) such that λIi (t

′

) ≥ φ
′

i (βi),
but λIi (t) ≤ φ

′

i (βi) for t ∈ [0,T ). It follows by Eqs. (19),
Lemma 2 and Eq. (28) that for t ∈ [0,T ),

dλIi (t)

dt
≤ −vi − φi(βi)

+φ
′

i (βi)
[
βi + γi +max{βP, γP}d

−

i

]
< 0. (52)

So, λIi is strictly decreasing. As λ
I
i is continuous, there exists

ti ∈ [0,T ) such that λIi (ti) = φ
′

i (βi). Hence, λ
I
i (t) < φ

′

i (βi)
for t ∈ (ti,T ), and λIi (t) > φ

′

i (βi) for t ∈ [0, ti). This implies

that βIi (t) = βi for t ∈ (ti,T ], and βIi (t) =
[
φ
′

i

]−1
(λIi (t)) is

strictly decreasing in [0, ti). Claim (b) holds.
Case 3: There exists t ′ ∈ [0,T ) such that λIi (t

′

) > φ
′

i (βi).
Then there exist t

′′

, t
′′′

∈ [0,T ) such that λIi (t
′′

i ) = φ
′

i (βi),

λIi (t
′′′

i ) = φ
′

i (βi). Let

t (1)i = sup{t ∈ [0,T ) : λIi (t) ≥ φ
′

i (βi)}, (53)

t (2)i = sup{t ∈ [0,T ) : λIi (t) ≥ φ
′

i (βi)}. (54)

Then 0 < t (1)i < t (2)i < T , λIi (t) < φ
′

i (βi) for t ∈
(t (1)i ,T ], λIi (t) < φ

′

i (βi) for t ∈ (t (2)i ,T ], λIi (t
(1)
i ) =

φ
′

i (βi), and λ
I
i (t

(2)
i ) = φ

′

i (βi). Similarly to the argument for

Claim (b), we get that βIi (t) = βi for t ∈ (t (2)i ,T ], and

βIi (t) =
[
φ
′

i

]−1
(λIi (t)) is strictly decreasing in [t (1)i , t (2)i ).

By Eqs. (19), Lemma 2 and Eq. (28), we have

dλIi (t
(1)
i )

dt
≤ −vi − φi(βi)

+φ
′

i (βi)
[
βi + γi +max{βP, γP}d

−

i

]
<0. (55)

Thus, there exists ε > 0 such that λIi (t) > φ
′

i (βi) for t ∈
(t (1)i − ε, t

(1)
i ). We show that λIi (t) > φ

′

i (βi) for t ∈ [0, t (1)i ).
On the contrary, suppose there exists t (3)i < t (1)i such that
λIi (t

(3)
i ) = φ

′

i (βi) and

λIi (t) > φ
′

i (βi), t (3)i < t < t (1)i . (56)

Again by Eqs. (19), Lemma 2 and Eq. (28), we get
dλi(t

(3)
i )

dt < 0. So, there exists t (4)i ∈ (t (3)i , t (1)i ) such that
λIi (t

(4)
i ) < φ

′

i (βi). This contradicts Eq. (56). Thus, λ
I
i (t) >

φ
′

i (βi) for t ∈ [0, t (1)i ). This implies βi(t) = βi for t ∈ [0, t (1)i ).
Claim (c) holds.
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