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ABSTRACT There are immense applications of graph theory in chemistry and in the study of molecular
structures, and after that, it has been increasing exponentially. Molecular graphs have points (vertices)
representing atoms and lines (edges) that represent bonds between atoms. In this paper, we study the
molecular graph of 2-D silicon–carbon Si2C3-I and Si2C3-II and analyzed its topological properties. For
this purpose, we have computed topological indices, namely forgotten topological index, augmented Zagreb
index, and Balaban index, and redefined first, second, and third Zagreb indices of 2-D silicon–carbon Si2C3-I
and Si2C3-II .

INDEX TERMS Balaban index, forgotten index, augmented index, redefined first, second and third Zagreb
indices, silicon-carbon.

I. INTRODUCTION
The importance of graph theory for chemistry stands mainly
from the existence of isomerism, which is rationalized by
chemical graph theory. The essence of chemistry is the com-
binatorics of atoms according to definite rules. Thus, the most
adequate mathematical tools for this purpose are graph theory
and combinatorics, the branches of mathematics which are
closely related. The chemical graph theory contributes the
prominent role in the area of chemical theory. Chemical
compounds have a variety of applications in chemical graph
theory, drug design, etc. The manipulation and examination
of chemical structural information is made conceivable by
using molecular descriptors. A great variety of topological
indices are studied and used in theoretical chemistry, phar-
maceutical researchers [26], [27].
Silicon has superiority over other semiconductor objects:
It is, of low cost, nontoxic, its resources are unlimited,
decades of research carried out about its purification, expan-
sion and device manufacturing. It is utilized for all most
recent electronic gadgets. The most stable structures of
two-dimensional 2D silicon-carbon monolayer molecules
with various stoichiometric pieces were anticipated in [18]
which in view of the molecule swarm advancement meant

as (PSO) method joined with thickness practical hypothesis
improvement.
The graphene sheets were effectively disengaged in [20]
and [21] and from that point to onward this honeycomb struc-
tured 2D material has roused and motivated serious research
interests to a great extent in view of its exceptional electronic,
mechanical, and optical properties, including its unusual
quantum Hall impact, unrivaled electronic conductivity, and
high mechanical quality. Specifically, the one of a kind elec-
tronic properties of graphene attract consideration regarding
this 2D material is a potential possibility for applications in
speedier and littler electronic devices. The carbon and silicon
has a 2D allotrope with a honeycomb structure, in particu-
lar silicene. To date, heaps of exertion has been dedicated
to open a bandgap in silicene sheets. A 2D silicon carbon
(Si-C) monolayers can be seen as piece tunable materials
between the immaculate 2D carbon monolayer graphene and
the unadulterated 2D silicon vmonolayer-silicene. Bunches
of endeavors have been directed towards anticipating themost
stable structures of the SiC sheet read this [16], [17], and [30]
for more data.
In the fields of chemical graph theory, molecular topology,
and mathematical chemistry, a topological index also known
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as a connectivity index is a type of a molecular descriptor
that is calculated based on the molecular graph of a chemical
compound. More Preciously a topological index is a numeric
amount related with a graph which describes the topology of
the graph and is invariant under graph automorphism. There
are some significant classes of topological indices such as
degree based topological indices, degree based topological
lists and tallying related polynomials and indices of graphs.
The idea of topological record originated from work done
by Wiener [29] while he was dealing with breaking point
of paraffin. He named this index as path number. Later on,
the path number was renamed as Wiener index. The Wiener
index is the first and most concentrated topological index,
both from hypothetical perspective, applications and char-
acterized as the entirety of separations between all sets of
vertices in G, for more points of interest see [11] and [12].
Let G = (V ,E) be a graph with vertex set V and edge set
E . The degree d(t) of a vertex t is the number of edges of G
connecting with t . One of the oldest topological index is the
first Zagreb index presented by I. Gutman and N. Trinajstic
based on degree of vertices of G in 1972. Taken after by
the first and second Zagreb indices, Furtula and Gutman [8]
introduced Forgotten topological index (also called F-index)
which was defined as:

F(G) =
∑

st∈E(G)

(
d(s)2 + d(t)2

)
(1)

Propelled by the accomplishment of the ABC index,
Furtula et al. [9] set forward its adjusted variant, that they
fairly deficiently named Augmented Zagreb index and is
characterized as:

AZI (G) =
∑

st∈E(G)

(
d(s) · d(t)

d(s)+ d(t)− 2

)3

(2)

Balaban et al. [4], [5] introduced a topological index based
on the degree of the vertex and is called Balaban index. This
Balaban index for a graph G of order n, size m is defined as:

J (G) =
m

m− n+ 2

∑
s,t∈E(G)

1
√
d(s) · d(t)

(3)

Ranjini et al. [22] re-defined the Zagreb indices namely the
redefined first, second and third Zagreb indices for a graph G
as:

ReZG1(G) =
∑

st∈E(G)

d(s)+ d(t)
d(s) · d(t)

(4)

ReZG2(G) =
∑

st∈E(G)

d(s) · d(t))
d(s)+ d(t)

(5)

ReZG3(G) =
∑

st∈E(G)

(d(s) · d(t))(d(s)+ d(t)) (6)

II. APPLICATIONS OF TOPOLOGICAL INDICES
Furtula and Gutman [8] raised that the prescient capacity of
Forgotten topological index is practically like that of first
Zagreb index and for the acentric factor and entropy, and

then to acquire correlation coefficients bigger than 0.95.
This reality suggests the motivation behind why Forgotten
topological index is helpful for testing the chemical and
pharmacological properties of medication atomic structures.
Recently, Gao et al. [10] showed the Forgotten topological
index of some noteworthy medication atomic structures.
Mekenyan et al. [19] found that Balaban index correlate well
with a range of physicochemical properties or with acute
toxicity of ethers. However, Thakur et al. [28] found that the
inhibition of carbonic anhydrase by sulphonamides was mod-
eled well by Balaban index. Also the Balaban index increase
with the molecular size and branching of molecules. This
property of Balaban index is very useful for chemical and
biological structures in Quantitative structure-activity rela-
tionship(QSPR). Balaban index is also useful for modifica-
tion of heteroatoms. The Augmented Zagreb index provides a
very good correlation for the stability of linear alkanes as well
as the branched alkanes and for computing the strain energy
of cyclo alkanes [9]. Bajaj et al. [6], who used redefined
Zagreb indices to model the anti-inflammatory activity of N-
arylanthranilic acids, and that of Dureja et al. [7], who found
that redefined Zagreb indices are valuable in modeling the
fraction bound and clearance of cephalosporins in humans.
Moreover Zagreb type indices were found to occur for com-
putation of the total π -electron energy of the molecules of
Silicon Carbide Si2C3-I [p, q] 2D structure within specific
approximate expressions [13]. For further study of topolog-
ical indices and their applications of chemical structures,
see [1]–[3], [12], [14], [15], [24], and [25].

III. METHODS
To compute our results we use the method of combinatorial
computing, vertex partition method, edge partition method,
graph theoretical tools, analytic techniques, degree counting
method and sum of degrees of neighbors method. Moreover
we use the Matlab for mathematical calculations and Maple
for plotting these mathematical results.

IV. SILICON CARBIDE SI2C3-I [P, Q] 2D STRUCTURE
The 2D molecular graph of Silicon Carbide Si2C3-I is given
in Figure 1. To describe its molecular graph we have used the
settings in this way: we define p as the number of connected
unit cells in a row(chain) and by q we represent the number
of connected rows each with p number of cell. In Figure 2 we
gave a demonstration how the cells connect in a row(chain)
and how one row connects to another row. We will denote
this molecular graph by Si2C3-I [p, q]. Thus the quantity of
vertices in this graph is 10pq and the number of edges are
15pq− 2p− 3q.

V. METHODOLOGY OF SILICON CARBIDE SI2C3-I [P, Q]
FORMULAS
For the computation of these formulas for Silicon Carbide
Si2C3-I [p, q], we use first a unit cell then combine with
another unit cell in horizontal direction and so on up to p
unit cells. After this we use first a unit cell then combine
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FIGURE 1. (a) Chemical unit cell of Si2C3-I[p, q], (b) Si2C3-I[4, 3]. Carbon atom C are brown and Silicon
atom Si are blue.

FIGURE 2. (a) Si2C3-I[4, 1], One row with p = 4 and q = 1 (b) Si2C3-I[4, 2], two rows are
being connecting. Red lines(edges) connects the upper and lower rows.

with another unit cell in vertical direction and so on up to
q unit cells, so we obtained Silicon Carbide [p, q] structure
see Figure 1. Now for the computation of vertices we use the
Table 1, Table 2 and Matlab software for generalizing these
formulas of vertices. In the following table, V1 represents the
quantity of vertices of degree 1, V2 represents the quantity of
vertices of degree 2 and V3 represents the quantity of vertices
of degree 3.

So finally we calculate the number of vertices of degree 1
are 2, the quantity of vertices of degree 2 are 4p+2+6(q−1)
and the number of vertices of degree 3 are 10pq−4p−6q+2.

TABLE 1. Vertex partition of Si2C3-I[p, q].

To find topological indices of Si2C3-I [p, q] we will take
its edge partition as follows: The Table 3 shows the edge
partition of Si2C3-I [p, q] with p, q ≥ 1. The edge set is
partitioned into five sets, say, E1, E2, E3, E4, E5 based on the
degree of end vertices of each edge. The set E1 contains one
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TABLE 2. Vertex partition of Si2C3-I[p, q].

TABLE 3. Edge partition of Si2C3-I[p, q].

edges of type uv such that d(s) = 2, d(t) = 1, E2 contains
one edge of type uv such that d(s) = 3, d(t) = 1, E3 contains
p + 2q edge of type uv such that d(s) = 2, d(t) = 2, E4
contains 6p−1+8(q−1) edges of type uv such that d(s) = 3,
d(t) = 2, E5 contains 15pq− 9p− 13q+ 7 edges of type uv
such that d(s) = 3, d(t) = 3.
Theorem 1: Consider the graph of silicon carbide

Si2C3-I [p, q], then its Forgotten index is

F(Si2C3-I [p, q]) = 24− 76p− 114q+ 270pq

Proof: Let G be the graph of silicon carbide
Si2C3-I [p, q]. Then by using Table 3 and equation (1) the
Forgotten index is computed below:

F(G) =
∑

s,t∈E(G)

(
d(s)2 + d(t)2

)
F(G) =

∑
st∈E1

[d(s)2 + d(t)2]+
∑
st∈E2

[d(s)2 + d(t)2]

+

∑
st∈E3

[d(s)2 + d(t)2]+
∑
st∈E4

[d(s)2 + d(t)2]

+

∑
st∈E5

[d(s)2 + d(t)2]

F(G) = 5 | E1(Si2C3-I [p, q]) | +10 | E2(Si2C3-I [p, q]) |

+8 | E3(Si2C3-I [p, q]) | +13 | E4(Si2C3-I [p, q]) |

+18 | E5(Si2C3-I [p, q]) |

= 5(1)+ 10(1)+ 8(p+ 2q)

+13(6p− 1+ 8(q− 1))

+18(15pq− 9p− 13q+ 7)

= 24− 76p− 114q+ 270pq

Theorem 2: Consider the graph of silicon carbide Si2C3-
I [p, q], then its Augmented Zagreb index is

AZI (Si2C3-I [p, q]) =
1223
64
−

2977
64

p

−
4357
64

q+
10935
64

pq

Proof: Let G be the graph of silicon carbide
Si2C3-I [p, q]. Then by using Table 3 and equation (2) the
Augmented Zagreb index is computed below:

AZI (G) =
∑

st∈E(G)

(
d(s) · d(t)

d(s)+ d(t)− 2

)3

AZI (G) =
∑
st∈E1

(
d(s) · d(t)

d(s)+ d(t)− 2

)3

+

∑
st∈E2

(
d(s) · d(t)

d(s)+ d(t)− 2

)3

+

∑
st∈E3

(
d(s) · d(t)

d(s)+ d(t)− 2

)3

+

∑
st∈E4

(
d(s) · d(t)

d(s)+ d(t)− 2

)3

+

∑
st∈E5

(
d(s) · d(t)

d(s)+ d(t)− 2

)3

= 8 | E1(Si2C3-I [p, q]) |

+
27
8
| E2(Si2C3-I [p, q]) |

+8 | E3(Si2C3-I [p, q]) |

+8 | E4(Si2C3-I [p, q]) |

+
729
64
| E5(Si2C3-I [p, q]) |

AZI (G) = 8(1)+
27
8
(1)+8(p+ 2q)+ 8(6p− 1+ 8(q− 1))

+
729
64

(15pq− 9p− 13q+ 7)

=
1223
64
−

2977
64

p−
4357
64

q+
10935
64

pq

Theorem 3: Consider the graph of silicon carbide
G ∼= Si2C3-I [p, q], then its Balaban index is

J (G) =
15pq− 2p− 3q

5pq− 2p− 3q+ 2

[
7
3
+

√
2
2

]

+
15pq− 2p− 3q

5pq− 2p− 3q+ 2

[√
3
3
−

5
2
p

]

+
15pq− 2p− 3q

5pq− 2p− 3q+ 2

[
−10
3

q+ 5pq
]

+
15pq− 2p− 3q

5pq− 2p− 3q+ 2

[
6p+ 8q− 9
√
6

]
Proof: Let G be the graph of silicon carbide

Si2C3-I [p, q]. Then by using Table 3 and equation (3) the
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Balaban index is computed below:

J (G) =
m

m− n+ 2

∑
st∈E(G)

1
√
d(s).d(t)

J (G) =
m

m− n+ 2

∑
st∈E1

1
√
d(s).d(t)

+

∑
st∈E2

1
√
d(s).d(t)



+
m

m−n+2

∑
st∈E3

1
√
d(s).d(t)

+

∑
st∈E4

1
√
d(s).d(t)



+
m

m−n+2

∑
st∈E5

1
√
d(s).d(t)


=

15pq− 2p− 3q
5pq− 2p− 3q+ 2

[
1
√
2
| E1(Si2C3-I [p, q]) |

]

+
15pq− 2p− 3q

5pq− 2p− 3q+ 2

[
1
√
3
| E2(Si2C3-I [p, q]) |

]

+
15pq− 2p− 3q

5pq− 2p− 3q+ 2

[
1
2
| E3(Si2C3-I [p, q]) |

]

+
15pq− 2p− 3q

5pq− 2p− 3q+ 2

[
1
√
6
| E4(Si2C3-I [p, q]) |

]

+
15pq− 2p− 3q

5pq− 2p− 3q+ 2

[
1
3
| E5(Si2C3-I [p, q]) |

]
J (G) =

15pq−2p−3q
5pq−2p−3q+2

[
1
√
2
(1)+

1
√
3
(1)+

1
2
(p+ 2q)

]

+
15pq− 2p− 3q

5pq− 2p− 3q+ 2

[
1
√
6
(6p− 1+ 8(q− 1))

]

+
15pq− 2p− 3q

5pq− 2p− 3q+ 2

[
1
3
(15pq− 9p− 13q+ 7)

]
J (G) =

15pq− 2p− 3q
5pq− 2p− 3q+ 2

[
7
3
+

√
2
2

]

+
15pq− 2p− 3q

5pq− 2p− 3q+ 2

[√
3
3
−

5
2
p

]

+
15pq− 2p− 3q

5pq− 2p− 3q+ 2

[
−10
3

q+ 5pq
]

+
15pq− 2p− 3q

5pq− 2p− 3q+ 2

[
6p+ 8q− 9
√
6

]

Theorem 4: Consider the silicon carbide Si2C3-I [p, q],
then its redefine first, second and third Zagreb indices are:

ReG1(Si2C3-I [p, q]) = 10pq

ReG2(Si2C3-I [p, q]) =
67
60
−

53
10
p−

79
10
q+

45
2
pq

ReG3(Si2C3-I [p, q]) = 126− 290p− 430q+ 810pq

Proof: Let G be the graph of silicon carbide Si2C3-
I [p, q]. Then by using Table 3 and equations (4)-(6), we have

ReG1(G) =
∑

st∈E(G)

d(s)+ d(t)
d(s) · d(t)

=

∑
st∈E1

d(s)+ d(t)
d(s) · d(t)

+

∑
st∈E2

d(s)+ d(t)
d(s) · d(t)

+

∑
st∈E3

d(s)+ d(t)
d(s) · d(t)

+

∑
st∈E4

d(s)+ d(t)
d(s) · d(t)

+

∑
st∈E5

d(s)+ d(t)
d(s) · d(t)

ReG1(G) =
3
2
| E1(Si2C3-I [p, q]) | +

4
3
| E2(Si2C3-I [p, q]) |

+1 | E3(Si2C3-I [p, q]) | +
5
6
| E4(Si2C3-I [p, q]) |

+
2
3
| E5(Si2C3-I [p, q]) |

=
3
2
(1)+

4
3
(1)+ 1(p+ 2q)

+
5
6
(6p− 1+ 8(q− 1))

+
2
3
(15pq− 9p− 13q+ 7)

= 10pq

ReG2(G) =
∑

st∈E(G)

d(s) · d(t)
d(s)+ d(t)

=

∑
st∈E1

d(s) · d(t)
d(s)+ d(t)

+

∑
st∈E2

d(s) · d(t)
d(s)+ d(t)

+

∑
st∈E3

d(s) · d(t)
d(s)+ d(t)

+

∑
st∈E4

d(s) · d(t)
d(s)+ d(t)

+

∑
st∈E5

d(s) · d(t)
d(s)+ d(t)

=
2
3
| E1(Si2C3-I [p, q]) |

+
3
4
| E2(Si2C3-I [p, q]) |

+1 | E3(Si2C3-I [p, q]) |

+
6
5
| E4(Si2C3-I [p, q]) |

+
3
2
| E5(Si2C3-I [p, q])

ReG2(G) =
2
3
(1)+

3
4
(1)+ 1(p+ 2q)
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FIGURE 3. Comparison of Forgotten index F (G), Augmented Zagreb index
AZI(G) and Balaban index J(G) of Si2C3-I[p, q].

+
6
5
(6p− 1+ 8(q− 1))

+
3
2
(15pq− 9p− 13q+ 7)

=
67
60
−

53
10
p−

79
10
q+

45
2
pq

ReG3(G) =
∑

st∈E(G)

(d(s) · d(t))(d(s)+ d(t))

=

∑
st∈E1

(d(s) · d(t))(d(s)+ d(t))

+

∑
st∈E2

(d(s) · d(t))(d(s)+ d(t))

+

∑
st∈E3

(d(s) · d(t))(d(s)+ d(t))

+

∑
st∈E4

(d(s) · d(t))(d(s)+ d(t))

+

∑
st∈E5

(d(s) · d(t))(d(s)+ d(t))

ReG3(G) = 2(3) | E1(Si2C3-I [p, q]) |

+3(4) | E2(Si2C3-I [p, q]) |

+4(4) | E3(Si2C3-I [p, q]) |

+6(5) | E4(Si2C3-I [p, q]) |

+9(6) | E5(Si2C3-I [p, q]) |

= 2(3)(1)+ 3(4)(1)+ 4(4)(p+ 2q)

+6(5)(6p− 1+ 8(q− 1))

+9(6)(15pq− 9p− 13q+ 7)

= 126− 290p− 430q+ 810pq

FIGURE 4. Comparison of redefine first ReG1(G), second ReG2(G) and
third Zagreb indices ReG3(G) of Si2C3 − I[p, q].

TABLE 4. Vertex partition of Si2C3-II[p, q].

VI. SILICON CARBIDE SI2C3-II [P, Q] 2D STRUCTURE
The 2Dmolecular graph of Silicon Carbide Si2C3-II is given
in Figure 5. To describe its molecular graph we have used the
settings in this way: we define p as the number of connected
unit cells in a row(chain) and by q we represents the number
of connected rows each with p number of cell. In Figure 6 we
gave a demonstration how the cells connect in a row(chain)
and how one row connects to another row. We will denote
this molecular graph by Si2C3-II [p, q]. Thus the quantity of
vertices in this graph is 10pq and the number of edges are
15pq− 3p− 3q.

VII. METHODOLOGY OF SILICON CARBIDE SI2C3-II [P, Q]
FORMULAS
For the computation of these formulas for Silicon Carbide
Si2C3-II [p, q], we use first a unit cell then combine with
another unit cell in horizontal direction and so on up to p unit
cells. After this we use first a unit cell then combine with
another unit cell in vertical direction and so on up to q unit
cells, so we obtained Silicon Carbide Si2C3-II [p, q] structure
see Figure 5. Now for the computation of vertices we use the
Table 4, Table 5 and Matlab software for generalizing these
formulas of vertices. In the following table, V1 represents the
quantity of vertices of degree 1, V2 represents the quantity
of vertices of degree 2 and V3 represents the quantity of
vertices of degree 3. Now in general, the quantity of ver-
tices of degree 1 are 3, the quantity of vertices of degree 2
are 6(p + q − 1), the quantity of vertices of degree 3 are
10pq− 6p− 6q+ 3.
To find topological indices of Si2C3-II [p, q] we will take

its edge partition as follows: The edge set is partitioned into
five sets, say, E1, E2, E3, E4, E5 based on the degree of end
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FIGURE 5. (a) Chemical unit cell of Si2C3-II[p, q], (b) Si2C3-II[3, 3]. Carbon atom C are brown and Silicon atom
Si are blue.

FIGURE 6. (a) Si2C3-II[5, 1], One row with p = 5 and q = 1 (b) Si2C3-II[5, 2], two rows are connecting. Green
lines(edges) connects the upper and lower rows.

TABLE 5. Vertex partition of Si2C3-II[p, q].

vertices of each edge. The edge set E1 contains 2 edges of
type st such that d(s) = 2, d(t) = 1, E2 contains one edge
of type st such that d(s) = 3, d(t) = 1, E3 contains 2p + 2q
edges of type st such that d(s) = 2, d(t) = 2, E4 contains
8p + 8q − 14 edges of type st such that d(s) = 3, d(t) = 2,
E5 contains 15pq−13p−13q+11 edges of type st such that
d(s) = 3, d(t) = 3. The Table 6 shows the edge partition of
Si2C3-II [p, q] with p, q ≥ 1.
Theorem 5: Consider the silicon carbide Si2C3-II [p, q],

then its Forgotten index is equal to

F(Si2C3-II [p, q]) = 36− 114p− 114q+ 270pq

TABLE 6. Edge partition of Si2C3-II[p, q].

Proof: LetG be the graph silicon carbide Si2C3-II [p, q].
Now by using Table 6 and equation (1) the Forgotten index is
calculated as follows:

F(G) =
∑

s,t∈E(G)

(
d(s)2 + d(t)2

)
F(G) =

∑
st∈E1

[d(s)2 + d(t)2]+
∑
st∈E2

[d(s)2 + d(t)2]

+

∑
st∈E3

[d(s)2 + d(t)2]+
∑
st∈E4

[d(s)2 + d(t)2]
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+

∑
st∈E5

[d(s)2 + d(t)2]

= 5 | E1(Si2C3-II [p, q]) |

+10 | E2(Si2C3-II [p, q]) |

+8 | E3(Si2C3-II [p, q]) |

+13 | E4(Si2C3-II [p, q]) |

+18 | E5(Si2C3-II [p, q]) |

= 5(2)+ 10(1)+ 8(2p+ 2q)

+13(8p+ 8q− 14))

+18(15pq− 13p− 13q+ 11)

= 36− 114p− 114q+ 270pq

Theorem 6: Consider the silicon carbide Si2C3-II [p, q],
then its Augmented Zagreb index is

AZI (Si2C3-II [p, q]) =
2091
64
−

4357
64

p

−
4357
64

q+
10935
64

pq

Proof: LetG be the graph silicon carbide Si2C3-II [p, q].
Now by using Table 6 and equation (2) the Augmented
Zagreb index is calculated as follows:

AZI (G) =
∑

st∈E(G)

(
d(s) · d(t)

d(s)+ d(t)− 2

)3

AZI (G) =
∑
st∈E1

(
d(s) · d(t)

d(s)+ d(t)− 2

)3

+

∑
st∈E2

(
d(s) · d(t)

d(s)+ d(t)− 2

)3

+

∑
st∈E3

(
d(s) · d(t)

d(s)+ d(t)− 2

)3

+

∑
st∈E4

(
d(s) · d(t)

d(s)+ d(t)− 2

)3

+

∑
st∈E5

(
d(s) · d(t)

d(s)+ d(t)− 2

)3

AZI (G) = 8 | E1(Si2C3-II [p, q]) |

+
27
8
| E2(Si2C3-II [p, q]) |

+8 | E3(Si2C3-II [p, q]) |

+8 | E4(Si2C3-II [p, q]) |

+
729
64
| E5(Si2C3-II [p, q]) |

= 8(2)+
27
8
(1)+ 8(2p+ 2q)

+8(8p+ 8q− 14)

+
729
64

(15pq− 13p− 13q+ 11)

=
2091
64
−

4357
64

p−
4357
64

q+
10935
64

pq

Theorem 7: Consider the silicon carbide G ∼= Si2C3-
II [p, q], then its Balaban index is given by:

J (G) =
15pq− 3p− 3q

5pq− 3p− 3q+ 2

[
11
3
+
√
2+

√
3
3

]

+
15pq− 3p− 3q

5pq− 3p− 3q+ 2

[
−
10
3
p−

10
3
q+ 5pq

]

+
15pq− 3p− 3q

5pq− 3p− 3q+ 2

[√
6
6

(8p+ 8q− 14)

]
Proof: LetG be the graph silicon carbide Si2C3-II [p, q].

Now by using Table 6 and equation (3) the Balaban index is
calculated as follows:

J (G) =
m

m− n+ 2

∑
st∈E(G)

1
√
d(s).d(t)

J (G) =
m

m− n+ 2

∑
st∈E1

1
√
d(s).d(t)

+

∑
st∈E2

1
√
d(s).d(t)


+

m
m−n+2

∑
st∈E3

1
√
d(s).d(t)

+

∑
st∈E4

1
√
d(s).d(t)


+

m
m− n+ 2

∑
st∈E5

1
√
d(s).d(t)


J (G) =

15pq− 3p− 3q
5pq− 3p− 3q+ 2

[
1
√
2
| E1(Si2C3-II [p, q]) |

]

+
15pq− 3p− 3q

5pq− 3p− 3q+ 2

[
1
√
3
| E2(Si2C3-II [p, q]) |

]

+
15pq− 3p− 3q

5pq− 3p− 3q+ 2

[
1
2
| E3(Si2C3-II [p, q]) |

]

+
15pq− 3p− 3q

5pq− 3p− 3q+ 2

[
1
√
6
| E4(Si2C3-II [p, q]) |

]

+
15pq− 3p− 3q

5pq− 3p− 3q+ 2

[
1
3
| E5(Si2C3-II [p, q]) |

]

=
15pq− 3p− 3q

5pq− 3p− 3q+ 2

[
1
√
2
(2)+

1
√
3
(1)
]
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+
15pq− 3p− 3q

5pq− 3p− 3q+ 2

[
1
2
(2p+ 2q)

]

+
15pq− 3p− 3q

5pq− 3p− 3q+ 2

[
1
√
6
(8p+ 8q− 14)

]

+
15pq− 3p− 3q

5pq− 3p− 3q+ 2

[
1
3
(15pq− 13p− 13q+ 11)

]
J (G) =

15pq− 3p− 3q
5pq− 3p− 3q+ 2

[
11
3
+
√
2+

√
3
3

]

+
15pq− 3p− 3q

5pq− 3p− 3q+ 2

[
−
10
3
p−

10
3
q+ 5pq

]

+
15pq− 3p− 3q

5pq− 3p− 3q+ 2

[√
6
6

(8p+ 8q− 14)

]

Theorem 8: Consider the silicon carbide Si2C3-II [p, q],
then its the redefine first, second and third Zagreb indices are

ReG1(Si2C3-II [p, q]) = 10pq

ReG2(Si2C3-II [p, q]) =
107
60
−

79
10
p−

79
10
q+

45
2
pq

ReG3(Si2C3-II [p, q]) = 198− 430p− 430q+ 810pq

Proof: LetG be the graph silicon carbide Si2C3-II [p, q].
Now by using Table 6 and equation (4)-(6) the redefine
first, second and third Zagreb indices are calculated as
follows:

ReG1(G) =
∑

st∈E(G)

d(s)+ d(t)
d(s) · d(t)

ReG1(G) =
∑
st∈E1

d(s)+ d(t)
d(s) · d(t)

+

∑
st∈E2

d(s)+ d(t)
d(s) · d(t)

+

∑
st∈E3

d(s)+ d(t)
d(s) · d(t)

+

∑
st∈E4

d(s)+ d(t)
d(s) · d(t)

+

∑
st∈E5

d(s)+ d(t)
d(s) · d(t)

=
3
2
| E1(Si2C3-I [p, q]) |

+
4
3
| E2(Si2C3-I [p, q]) |

+(1) | E3(Si2C3-I [p, q]) |

+
5
6
| E4(Si2C3-I [p, q]) |

+
2
3
| E5(Si2C3-I [p, q]) |

=
3
2
(2)+

4
3
(1)+ 1(2p+ 2q)

+
5
6
(8p+ 8q− 14)

+
2
3
(15pq− 13p− 13q+ 11)

= 10pq

ReG2(G) =
∑

st∈E(G)

d(s) · d(t)
d(s)+ d(t)

ReG2(G) =
∑
st∈E1

d(s) · d(t)
d(s)+ d(t)

+

∑
st∈E2

d(s) · d(t)
d(s)+ d(t)

+

∑
st∈E3

d(s) · d(t)
d(s)+ d(t)

+

∑
st∈E4

d(s) · d(t)
d(s)+ d(t)

+

∑
st∈E5

d(s) · d(t)
d(s)+ d(t)

=
2
3
| E1(Si2C3-I [p, q]) | +

3
4
| E2(Si2C3-I [p, q]) |

+1 | E3(Si2C3-I [p, q]) |+
6
5
| E4(Si2C3-I [p, q]) |

+
3
2
| E5(Si2C3-I [p, q]) |

=
2
3
(2)+

3
4
(1)+ 1(2p+ 2q)

+
6
5
(8p+ 8q− 14)+

3
2
(15pq−13p−13q+11)

=
107
60
−

79
10
p−

79
10
q+

45
2
pq

ReG3(G) =
∑

st∈E(G)

(d(s) · d(t))(d(s)+ d(t))

ReG3(G) =
∑
st∈E1

(d(s) · d(t))(d(s)+ d(t))

+

∑
st∈E2

(d(s) · d(t))(d(s)+ d(t))

+

∑
st∈E3

(d(s) · d(t))(d(s)+ d(t))

+

∑
st∈E4

(d(s) · d(t))(d(s)+ d(t))

+

∑
st∈E5

(d(s) · d(t))(d(s)+ d(t))

= 2(3) | E1(Si2C3-I [p, q]) |

+3(4) | E2(Si2C3-I [p, q]) |
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FIGURE 7. Comparison of Forgotten index F (G), Augmented Zagreb index
AZI(G) and Balaban index J(G) of G equivalent to Si2C3-II[p, q].

FIGURE 8. Comparison of redefine first ReG1(G), second ReG2(G) and
third Zagreb indices ReG3(G) of Si2C3-II[p, q]. Blue, red and green
represents ReG1(G), ReG2(G) and ReG3(G), respectively.

+4(4) | E3(Si2C3-I [p, q]) |

+6(5) | E4(Si2C3-I [p, q]) |

+9(6) | E5(Si2C3-I [p, q]) |

= 2(3)(2)+ 3(4)(1)+ 4(4)(2p+ 2q)

+6(5)(8p+ 8q− 14)

+9(6)(15pq− 13p− 13q+ 11)

= 198− 430p− 430q+ 810pq

VIII. COMPARISONS AND DISCUSSIONS
• In this section we have computed all indices for dif-
ferent values of p, q for both structures Si2C3-I [p, q]
and Si2C3-II [p, q]. Now from Table 7 and Table 8,
we can easily see that all indices are in increasing order
as the values of p, q are increasing. But on the other
hand indices showed higher values for Si2C3-I [p, q] as
compared to those of Si2C3-II [p, q].
The graphical representations of topological indices of
Si2C3-I [p, q] and Si2C3-II [p, q] are depicted in Figure 3,
Figure 4, Figure 7 and Figure 8 for certain values of p, q.
Now we presented the comparison of all topological
indices using Table 7, for Si2C3-I [p, q] in Figure 9 and
using Table 8, for Si2C3-II [p, q] in Figure 10.

• The Zagreb types indices and polynomials were found
to occur for the computation of the total π -electron

FIGURE 9. The comparison of all topological indices for Si2C3-I[p, q].

FIGURE 10. The comparison of all topological indices for Si2C3-II[p, q].

TABLE 7. Comparison of all indices for Si2C3-I[p, q].

TABLE 8. Comparison of all indices for Si2C3-II[p, q].

energy of molecules. Thus, the total π -electron energy
in increasing order in the case of Si2C3-I [p, q] and
Si2C3-II [p, q] for higher values of p, q.
The forgotten topological index is helpful for testing
the substance and pharmacological properties of drug
nuclear structures. So in the case of Si2C3-I [p, q] and
Si2C3-II [p, q], its increasing value is useful for quick
action during chemical reaction for drugs.
The augmented Zagreb index displays a good correlation
with the formation heat of heptanes and octane. So our
computation for AZI index is play an important rule for
formation heat of heptanes and octane as its values are
in increasing order.
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Since the Balaban index correlate well with a range
of physicochemical properties of molecule. So in the
case of Si2C3-I [p, q] and Si2C3-II [p, q], the Balaban
index correlate well with a range of physicochemical
properties as well.

IX. CONCLUSION
In this paper we have studied and dealt with topologi-
cal indices of 2D molecular graph of Si2C3-I [p, q] and
Si2C3-II [p, q]. We determined Forgotten index, Augmented
Zagreb index and Balaban index and have computed the
redefine Zagreb indices that is the redefine first, second and
third Zagreb indices.
The graphical representations of Forgotten index, Augmented
Zagreb index, Balaban index and redefine Zagreb indices
of Si2C3-I [p, q] and Si2C3-II [p, q] are depicted in Figure 3,
Figure 4, Figure 7, Figure 8 for some values of p, q. By vary-
ing the value of p, q in the given domain the Forgotten index,
Augmented Zagreb index, Balaban index and redefine Zagreb
indices behaves differently.
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