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ABSTRACT Indoor scene reconstruction is important for robot positioning and navigation in scenario
reconstruction, especially in constructing a semantic map. In previous research, RGB-D cameras have been
utilized to obtain a semantic map. However, because of indoor objects and depth sensors, the accuracy
and precision of the depth values could be improved, which is a key factor in reconstructing indoor
scenarios. Moreover, there is a relationship between reflectivity and depth accuracy. Therefore, to obtain
depth information that is better than that obtained in our previous research, we present a smart post-
rectification algorithm based on an artificial neural network (ANN). The algorithm improves the accuracy
and precision of depth values by simultaneously considering reflectivity, distances, and different mechanisms
of measuring depth. First, we analyze the RGB-D cameras’ characteristics, including the pinhole camera
model, lens distortions, and the types of error factors due to the types of RGB-D cameras used. Then, this
paper proposes a smart post-rectification algorithm for depth images based on an ANN considering the depth
error caused by reflectivity, the distance-related depth error, and different mechanisms for measuring depth.
Finally, we perform experiments to evaluate the accuracy and precision of the proposed post-rectification
approach by using different types of depth sensors. To evaluate the performance of our proposed algorithm,
the proposed approach is applied to RGB-D SLAM, which is tested in different indoor environments. The
experimental results show that applying our post-rectification algorithm to indoor scenario reconstruction can
result in more accurate and more detailed 3-D reconstruction of objects than other state-of-the-art methods,
highlighting the robustness and efficiency of our proposed algorithm.

INDEX TERMS Artificial neural network, depth sensor, RGB-D cameras, reflectivity, SLAM system.

I. INTRODUCTION
Precision three-dimensional (3D) indoor scenario recon-
struction is an essential process for robot positioning [2],
unmanned aerial vehicle navigation [3], [4] and semantic
mapping [5], [6]. To date, a series of technologies have been
developed for 3D indoor scene reconstruction. For exam-
ple, 3D LiDAR is used in the 3D reconstruction of build-
ing facades [7], stereo cameras are used in real-time suited
precise 3D environmental reconstruction [8], and RGB-D
cameras are used in close-range 3D modeling [9]. Lee [10]
used an expensive computational procedure to reconstruct 3D
indoor scenes with low accuracy. Even though a 3D LiDAR
could provide accuracy and robustness, it is too expensive
for most researchers. In addition, the lack of important color

information is a shortcoming of using a 3D LiDAR [11].
Recently, the RGB-D camera has become a better option
than other equipment for the 3D reconstruction of indoor
scenarios.

The RGB-D camera is a new type of sensing device
that can capture RGB images and the corresponding depth
image pixel-by-pixel. RGB-D cameras depend on either
structured-light (SL) or time-of-flight (ToF) technology to
collect depth data [12]. Recently, several types of RGB-D
camera products, including the Microsoft Kinect v1 [13],
Asus Xtion Pro [14], Occipital Structure Sensor [15], Intel
RealSense [16] and Microsoft Kinect v2 [13], [17], have
been produced. The Kinect v1, Asus Xtion Pro, Occipital
Structure Sensor, and Intel RealSense adopt an SL depth
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sensing mechanism [18], while the Kinect v2 employs ToF
technology to sense depth values. Moreover, based on ToF
technology, the Kinect v2 has other improved SL sensors with
a higher color camera resolution and the ability to operate
outdoors [19], [20]. Recently, due to improved accuracy
and robustness, the Kinect v2 has become an increasingly
popular RGB-D camera [1], [9], [19], [20]. In our previous
work [1], we proposed a post-rectification method for depth
images of Kinect v2, which is a ToF-based sensor used for 3D
indoor reconstruction. Furthermore, based on our previous
method [1], amore universal and smarter algorithm for RGB-
D cameras is proposed in this paper.

There are great expectations that RGB-D systems will
boost new 3D perception-based applications in the fields of
robotics and visual/augmented reality.

Furthermore, to capture high-quality color images, either
SL or ToF technology is introduced to capture depth
in images. Therefore, using an RGB-D camera, many
researchers have conducted related studies for 3D recon-
struction to improve accuracy, precision, and robustness.
To this end, the calibration of RGB-D cameras plays an
important role. However, only a few off-the-shelf calibration
approaches for RGB-D cameras andmethods are available for
processing color and depth in images that consider reflectivity
as a key factor influencing accuracy and precision in 3D
indoor scenario reconstruction when different types of sen-
sors are used [21]– [27].

Therefore, our contributions in this paper are as follows:
(1) Introduction of an ANN for a fast and robust rectifi-

cation model, rendering our proposed method smarter than
other types of methods, including ourmethod proposed in [1].

(2) Verification that the between among the reflectivity-
related depth error, the distance-related depth error and
the different mechanisms of measuring depth are nonlinear.
A nonlinear relationship was identified in our previous work,
which resulted in an improvement in the accuracy and preci-
sion of depth values.

This paper is organized as follows. Section II presents
related studies investigating the properties and use of RGB-
D cameras for 3D indoor reconstruction. Then, we provide
a comprehensive analysis of the characteristics of RGB-D
cameras in Section III. In Section IV, we propose a smart post-
rectification approach for depth images based on reflectivity,
distance and different mechanisms for measuring depth and
ANN in detail. Then, experiments and experimental results
are reported and discussed in Section V. Finally, Section VI
concludes the paper.

II. RELATED WORK
In our previous research, we compared the performances
of the Kinect v1 and v2 [12], [22], [28]. Because of
their great performance, Kinect sensors are widely used
in 3D reconstruction [9], [21], [29], [30] and mobile robot
navigation [31].

Using different technologies to obtain depth information,
many researchers have performed many studies to identify

a reasonable Kinect sensor for reconstructing a 3D model.
In [12], a detailed comparison of the two versions of Kinect
sensors was performed. The authors provided a comprehen-
sive analysis of the factors (including the reflectivity-related
factor) that resulted in depth information errors. According
to their research, the Kinect v2 performed better than the
Kinect v1 in reducing the systematic error in the distance
and being insensitive to illumination changes. Moreover,
Gonzalez-Jorge et al. [32] tested the accuracies of different
Kinect sensors at different distances and showed that the
Kinect v2, which used ToF technology, can achieve better per-
formance in depth accuracy and precision than the Kinect v1.
Nevertheless, accuracy and precision can be further improved
by considering reflectivity-related depth errors.

Lindner and Kolb [33] and Lindner et al. [34] proposed
an approach for calibrating the intensity-related distance
error of ToF cameras. A special planar checkerboard pattern
with different stripes was used in their experiment, which
inspired us to design our evaluation study. Wasenmüller and
Stricker [28] proposed a principle for calculating depth using
a ToF camera.

Rodríguez-Gonzálvez et al. [35] proposed a radiometric
calibration function to display the relationship between the
depth sensor of the Kinect v2 and reflectivity. This function
can transform digital values into physical values. According
to [1], the quality of this approach is appropriate for exploit-
ing the radiometric possibilities of low-cost depth sensors
used in agriculture and forestry. However, the authors only
focused on the Kinect v2 and did not consider other RGB-D
cameras used in indoor applications.

Yu et al. [36] proposed a shading-based shape refinement
algorithm that uses a noisy, incomplete depth map from the
Kinect to obtain a high-quality 3D surface reconstruction.
However, for reflectance, the authors used mean-shift cluster-
ing to segment RGB images into small areas with a uniform
albedo. Thismethod ismore complex than ourmethod.More-
over, 3D surface reconstruction is only qualitative research
without quantitative calculations. Therefore, we carry out
both qualitative and quantitative studies. Han et al. [37] pro-
posed a shading-based approach for shape refinement of an
RGB-D image. However, this approach still requires explicit
image segmentation for handling multi-albedo objects. The
approach presented in our paper is simpler and smarter than
previous approaches.

Kim et al. [38] refined depth sensing using a shading
analysis. These authors assumed that neighboring pixels have
a locally similar reflectance that includes the smoothness con-
straint of reflectance. However, such a hypothesis is slightly
limiting.We do notmake an assumption regarding reflectance
in our paper to obtain a better result.

Yang et al. [24] proposed a novel framework to recover
depth maps from low-quality measurements with various
types of degradations, such as low resolution, noise, and
missing depth in some areas. However, the authors did not
consider reflectivity-related depth error or distance-related
depth error.
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FIGURE 1. Two different structures of Microsoft Kinect: (a) Kinect v1 and (b) Kinect v2.

TABLE 1. Technical specifications of two different TYPEs of RGB-D cameras (Kinect v1 and Kinect v2).

Based on a multi-scale sparse representation, a data-
driven depth map refinement method was presented by
Kwon et al. [39]. This method requires the use of a corre-
sponding training set for specific object classes and is not
suitable for the 3D reconstruction of indoor scenes.

III. RGB-D SENSOR PRESENTATION
A. CHARACTERISTICS OF RGB-D CAMERAS
In addition to capturing color images, RGB-D cameras
employ SL or ToF technology to provide depth images simul-
taneously.

Two RGB-D cameras are evaluated, i.e., the Kinect v1,
which is a representative first-generation RGB-D camera
based on SL technology, and the Kinect v2, which is a rep-
resentative RGB-D camera based on ToF technology. The
hardware structures of these two RGB-D cameras are shown
in Fig. 1, and a comparison of their technical specifications
is provided in Table 1 [30], [32], [40].

B. RGB-D CAMERA MODEL
In the RGB-D camera system, the RGB camera captures
2D images, and an infrared camera is used to acquire depth
information. Generally, the pinhole model is used to convert
a real-world scenario into a 2D image in these two types of
cameras [12]. Thus, the system builds a mapping relationship

between a location in the three-dimensional world and a two-
dimensional image pixel.

Calibrating the RGB-D camera before use is necessary.
Therefore, we can obtain the intrinsic and extrinsic param-
eters of the camera [29].

Before using the pinhole model, notably, two types of
camera lens distortions occur when capturing images: radial
distortion and tangential distortion [29].

Similarly, when calibrating an RGB-D camera, we can also
obtain a set of distortion coefficients to be used for accurate
color and depth data acquisition.

C. DEPTH SENSOR L
In an RGB-D camera with SL technology, an infrared light
source projects a dot pattern onto a scene, and an offset
infrared camera receives the pattern and estimates the depth
value. However, the depth value is determined by measur-
ing the phase difference between emitted and reflected light
in an RGB-D camera with ToF technology. Regardless of
whether a camera is equipped with SL or ToF technology,
various error factors can affect the depth values of RGB-D
cameras. TABLE 2 lists the factors that influence perfor-
mance in detecting depth values when implementing Kinect
sensors [12], [28], [30].

Several factors (except for the Flying Pixel) are well known
to influence both SL- and ToF-based cameras during depth
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FIGURE 2. Overview of the smart post-rectification approach: (B) preparation of the stripe plane pattern (SPP) and
data acquisition; (C) training of the ANN model; (D) correcting depth images through an ANN correction model.

TABLE 2. Error factors IN Kinect V1 and V2.

evaluation. In [12], two possible explanations are provided
for reflectivity-related depth error: the multi-path of the effect
and a nonlinear pixel response because of the low illumi-
nation change in indoor scenarios. In Section IV, a method
for reducing the reflectivity-related depth error and distance-
related depth error and the effect of different mechanisms of
measuring depth using RGB-D cameras is proposed.

IV. METHOD
In this section, we propose a novel method for correcting the
depth images of RGB-D cameras based on an artificial neural
network (ANN). An overview is illustrated in Fig. 2.

A. CHARACTERISTICS OF THE ANN
Currently, with the rapid development of ANNs, we uti-
lize an ANN to extract integrated features by considering
multiple factors simultaneously. In this paper, we consider
three different error factors, including different depth image
sensing mechanisms, different distances between objects and
RGB-D cameras and different reflectivity. These factors are
considered simultaneously based on an ANN.

According to [42], a major benefit of ANNs is their flexi-
bility in modeling the nonlinearity of independent variables.
Linear regression techniques are very common in statistical
data analysis because they can extract information based only
on linear models, which can be a limitation in real data
contexts. Based on the same selected variables, an ANN is
employed to improve the prediction of the linear model, tak-
ing advantage of the nonlinear modeling capabilities. There-
fore, this paper presents a smart post-rectification algorithm
for building a nonlinear regression model using an ANN.

B. PREPARATION OF THE STRIPE PLANE PATTERN (SPP)
AND DATA ACQUISITION
1) PREPARATION OF THE SPP
To build a model of the relationship between reflectivity
and depth values captured by different types of sensors,
we designed and utilized a striped plane pattern with six
different gray levels. The gray values of the plane panel were
divided into six levels; the reflectivity at each level is shown
in Table 3.

2) DATA ACQUISITION
First, before data acquisition, we calibrated the Kinect v1 and
v2 [23], [43]. We captured depth images at different distances
within the effective scope of the measuring range. The region
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TABLE 3. The expected offset of six TYPES of reflectivity [1].

FIGURE 3. Striped plane pattern with different grayscales: (a) striped
plane pattern, (b) green rectangle area, and (c) blue rectangle area.

of interest (ROI) in each original depth image to be studied is
indicated by a green rectangle in Fig. 3b.

A calibrated RGB-D camera was fixed to a stable photo-
graphic tripod, and the SPP is fixed to another photographic
tripod. The front panel of the RGB-D camera and the SPP
were consistently parallel as shown in Fig. 4 (Kinect v2 as
an example). The SPP was gradually moved away from the
RGB-D camera within the effective scope of the measuring
range at a step length of sm. Notably, swas usually no greater
than 0.05m. Furthermore, we captured L sets of depth images
in the green rectangular area. The value L was determined by
the size of the value of the operative measuring range and the
step length. One set contained N depth images. The operative
measuring range is based on the type of RGB-D camera and
the practical application environment. Furthermore, smaller
steps and greater numbers of depth images in one set are
helpful for the method presented in this paper.

FIGURE 4. Setup of the method: RGB-D camera (Kinect v2 as an example)
(a) and striped plane pattern (b).

Then, we obtained the original depth images. Subse-
quently, the ROI in each original depth image was processed
into a one-dimensional vector. The ground truths of the ROIs
were the corresponding distances. Therefore, we performed

the entire data acquisition of the depth images with one-
dimensional vectors of ROIs and their ground truths in pairs.

Finally, to train and achieve a better ANN-based correc-
tion model, the entire data acquisition of depth images was
divided into the following 3 parts as shown in Fig. 2: a training
set, a validation set, and a testing set.

C. TRAINING OF THE ANN MODEL
The training process was carried out as follows.

The ANN model used in our work was a multi-layer per-
ceptron (MLP) [42], which is a feed-forward neural network
used for mapping sets of input data onto a set of appropriate
outputs. MLP is characterized by L+2 layers of neurons
(input layer-1 layer, hidden layers-L layers, and output layer-
1 layer) with nonlinear activation functions at the hidden
layer units. To indicate the nonlinearity between the different
influencing factors and reflectivity, a feed-forward MLP was
used for the nonlinear mapping of the influencing factors (x)
into a single predicted value y (shown in Fig. 5).

FIGURE 5. Nonlinear calculation for the ANN model.

In the MLP (as shown in Fig. 5), the input layer consisted
of the one-dimensional vectors of ROIs in the original depth
images and their ground truths; the hidden layers were char-
acterized by hidden neurons with the rectified linear unit
function; and the output layer was composed of only one
output neuron (the nonlinear value y). The number of hidden
neurons was determined through a trial-and-error process
following the general principle of parsimony because no com-
monly accepted theory for determining the optimal number of
neurons in hidden layers exists. In detail, we have designed
and trained the model based on different number of neurons
in the hidden layers. At last, we fix the network with scale as
6 Layers and [20, 50, 100, 50] neural units for hidden layers.

The input variable vector x was mapped to the neurons in
the hidden layers as follows:

hi = ReLU (Wi · x + bi), (i = 1) (1)

hi = ReLU (Wi · hi−1 + bi), (i = 2, 3, . . . ,L) (2)

where hi is the output value of layer i. L is the number of
hidden layers, Wi is the weight matrix between the former
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FIGURE 6. Visualization of depth images at different distances using Kinect v1 (left) and v2 (right).

layer i-1and the current layer i and bi is the bias parameter
vector of the former layer i-1and the current layer i. The value
y represents the distance obtained from the depth images. The
value y is the output of each sample which is obtained from a
linear combination of the hidden neurons vector hi as follows:

y = f (x;W )

= hL(hL−1(· · · h2(h1(x;w1);w2); · · · ;wL−1);wL) (3)

Finally, the cost function was calculated as follows:

Loss =
1
n

n∑
j=1

[yj − y
gt
j ]

2
=

1
n

n∑
j=1

[f (xj;W )− ygtj ]
2 (4)

where Loss is the cost function of the training set, validation
set or testing set; n is the number of samples; yj is the output
value of sample j, and ygtj is the ground truth of sample j.
Equation (4) shows the average error between the predicted

value and the ground truth. TheAveError is utilized for tuning
the model.

AveError =
√
Loss (5)

D. CORRECTING DEPTH IMAGES THROUGH AN ANN
CORRECTION MODEL
After training the ANN, we established an ANN correction
model. First, we captured the original depth images with
an RGB-D camera based on either SL or ToF technology.
Then, the original depth images were entered into the ANN
correction model. Finally, the corrected depth images were
obtained. Therefore, the corrected depth images with the
corresponding color images can be used to obtain a better 3D
reconstruction.

V. EXPERIMENTS AND RESULTS
We performed our experiments in our laboratory, which mea-
sures 60m2, using static illumination.We preheated the RGB-
D camera for one hour to eliminate the effect of temperature
drift [9], [12], [21]. Notably, we performed our experimental
work in a setting similar to that reported in [1] to compare the
ANN-based algorithm to our previously proposed method.

Because accuracy and precision [22], [28] decrease as
the measurement range increases, the indoor environment
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FIGURE 7. Green rectangle area at a distance of 0.80 m using Kinect v1 and Kinect v2: 3D view (top) and side view (bottom).

is usually very small. Therefore, the operative measurement
range in our experiment was less than 2 meters. The tripod
with the SPP was gradually moved away from the tripod with
the RGB-D camera from 0.60 meters to 2 meters in steps
of 0.05 meters. Ultimately, 1450 images were captured to
construct a database in our experiment.

The green rectangle area’s visualized depth images are
presented in Figs. 6a–f at the preceding few distances. The
color bar represents the pixel values of the depth images.
As shown in Fig. 6b, the high-reflectivity areas occurred
at the bottom of the rectangle box, and a pixel value of 0
(invalid null value) was easily obtained at a short distance
when the Kinect v2 was utilized. However, no invalid null
value (pixel value 0) was obtained in the depth image when
using the Kinect v1. In summary, in our indoor environment,
the minimum operative measuring distance using the Kinect
v1 was shorter than the official value of 0.80m, while themin-
imum operative measuring distance using the Kinect v2 was
between 0.70 m and 0.75 m [1].

Therefore, we captured the original depth images at dis-
tances of 0.75 m to 2.0 m with the same step width of 0.05 m.
We considered the Kinect v1 and v2 simultaneously to avoid
the effects of invalid null values and conducted reliable
studies.

A. SAME DISTANCE BUT DIFFERENT REFLECTIVITY:
REFLECTIVITY-RELATED DEPTH ERROR
Fig. 3b demonstrates that the different reflectivities in the
green rectangle on the SPP significantly affected the mea-
sured depth value at the same distance. As shown in Fig. 7,

as reflectivity increased, the depth value using the Kinect
v1 increased, while the value obtained using the Kinect
v2 was smaller at a distance of 0.80 m. The relationships
between the different reflectivities andmeasured depth values
at a distance of 0.80 m in the front of the depth sensor are
illustrated in Fig. 6e and Fig. 6f. Furthermore, the bottom
panel in Fig. 7 clearly indicates the side view at a dis-
tance of 0.80 m. Therefore, the depth values captured by the
ToF-based RGB-D sensor (Kinect v2) and the SL-based sen-
sor (Kinect v1) differed at the same distance under different
reflectivity conditions.

B. SAME REFLECTIVITY BUT DIFFERENT DISTANCES:
DISTANCE-RELATED DEPTH ERROR
At the same reflectivity, i.e., grayscale of 60% as shown
in Fig. 3c, the relationship between the measured depth
value and different distances was analyzed. Fig. 8 shows the
experimental results. The expectation was evaluated using
the fluctuation between the metrical depth and the ground
truth. The standard deviation (Std) represents the standard
deviation of the depth information difference between the
corrected depth value and the ground fluctuation between the
measured depth value and the ground truth. The depth accu-
racy of an RGB-D camera is evaluated using the expectation,
and the depth precision is assessed by the Std [28], [32].
Therefore, as shown in Fig. 8, at the same reflectivity but
under different distance conditions, the depth accuracy varied
nonlinearly at different distances using both the Kinect v1
and v2. The same phenomenon occurred with respect to depth
precision.
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FIGURE 8. Expectation and standard deviation of the depth value difference at the same reflectivity and different distances using Kinect v1
(a, b) and Kinect v2 (c, d).

TABLE 4. The experimental results of the testing set for the Kinect v1.

C. TRAINING THE ANN MODEL AND RECTIFYING DEPTH
IMAGES USING KINECT V1 AND KINECT V2
Following Section IV, we obtained one-dimensional vectors
of ROIs and the ground truths of the ROIs in the original
depth images of the Kinect v1 and Kinect v2 at a distance
of 0.75 m to 2.0 m. Then, we divided the data into the
following 3 datasets: a training set, a validation set and a
testing set (60%, 20%, and 20%, respectively).

The RMSprop algorithm was used to train our proposed
ANN-based model by optimizing the multinomial logistic
regression objective. Inspired by Simonyan and Zisserman
[44], for the Kinect v1, the batch size was set to 128, and
the learning rate was initially set to 10−3 but was decreased
by a factor of 10 because the validation set accuracy stopped

improving. Inspired by Simonyan and Zisserman [44], for the
Kinect v2, the batch size was set to 256, and the learning
rate was initially set to 10−2 but was decreased by a factor
of 10 because the validation set accuracy stopped improv-
ing. The learning process was stopped after 390K iterations
(300 epochs) for both the Kinect v1 and v2. The number
of hidden layers for both the Kinect v1 and v2 was 3. This
process was carried out to continuously adjust the various
parameters to obtain suitable results. The training loss and
validation loss are illustrated in Fig. 9. Because the size of
the entire dataset used in this paper was 1300, according to
the above distribution ratio, the testing set contained 260 data
points. Finally, the experimental results of the testing set are
shown in TABLE 4 and TABLE 5.
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TABLE 5. The experimental results of the testing set for the Kinect v2.

TABLE 6. The expectation and standard deviation of the difference between the original value/predicted value and the ground truth.

TABLE 7. Results of the comparison of our previous method and our proposed method.

FIGURE 9. The relationship between the training loss/validation loss and
the epochs for v1 (a) and v2 (b).

By analyzing the data in TABLE 4 and TABLE 5, we calcu-
lated the expectation and standard deviation of the difference
between the original value/predicted value and the ground

truth to evaluate the depth accuracy and depth precision
at distances of 0.75 m to 2.00 m. Therefore, the effects
of reflectivity and distance errors were considered in the
experimental results shown in TABLE 6. Using this smart
post-rectification-based ANN, for the Kinect v1, the depth
accuracy increased by 1.2 millimeters, and the depth pre-
cision increased by 4 millimeters. Simultaneously, for the
Kinect v2, the depth accuracy increased by 114.6 millime-
ters, and the depth precision increased by 0.2 millimeters.
Furthermore, using the Kinect v1, the depth accuracy was
1.0692 mm, and the depth precision was 5.8556 mm, which
are both higher than the depth accuracy (25 mm) and preci-
sion (12mm) reported in [32]. Moreover, using the Kinect v2,
the depth accuracy was 0.9962 mm, and the depth precision
was 5.4298mm,which are both better than the depth accuracy
(5 mm) and precision (8 mm) reported in [32]. In addi-
tion, the depth accuracy and precision reported in [32] were
obtained by a state-of-the-art rectification approach. Further-
more, we compared the results of our previous method with
those of our proposed method and found that our proposed
method surpasses our previous method in accuracy and pre-
cision. The results are shown in TABLE 7.

In addition, we performed a series of experiments to
measure the actual correction time of our two methods
and the method in [32] on a computer with Intel Core i5
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FIGURE 10. A point cloud of an indoor scene captured by Kinect v1
before (a) and after (b) correction using our proposed method.

3.2 GHz CPU, 16 GB of RAM and NVIDIA GeForce GTX
1060 6 GB (as shown in TABLE 7). Although the average
correction time per frame of our proposed method is more
than that of the method in [32], the accuracy and precision
are better than the method in [32]. And the average correction
time per frame, the accuracy and precision of our proposed
method are much better than those of our previous method.

For RGB-D cameras, the depth values of depth images are
simultaneously related to reflectivity, distances and differ-
ent mechanisms of measuring depth. Therefore, the general
methods can not get depth values of high accuracy and pre-
cision. However, the model trained by ANN can adapt to the
scene well and get more accurate results than the previous
methods.

D. APPLICATION TO RGB-D SLAM SYSTEM
To prove the effectiveness of the smart post-rectification
algorithm based on the ANN, we implemented this method
using RGB-D SLAM as proposed by Endres et al. [45] for
indoor scenarios. We captured color and depth images using
the following two different categories of cameras in our
indoor scenarios: an SL camera (e.g., Kinect v1) and a ToF
camera (e.g., Kinect v2). Based on the offline RGB-D SLAM
approach, we perform 3D reconstructions of indoor scenes
using uncorrected and corrected depth images with corre-
sponding color images. Using this smart post-rectification

FIGURE 11. A point cloud of an indoor scene captured by Kinect v2
before (a) and after (b) correction using our proposed method.

FIGURE 12. A point cloud of an indoor scene captured by Kinect v2
before (a) and after (b) correction using our proposed method.

method for depth images, which is described in detail in
Section IV and SectionV above, better visual effect 3D recon-
structions were achieved, as illustrated in Fig. 10 and Fig. 11.

Furthermore, the smart post-rectification algorithm was
applied to the RGB-D SLAM Dataset (captured by Kinect
v1) [46] and the George Mason University Kitchen Dataset
(captured by Kinect v2) [47]. Fig. 11 and Fig. 12 present the
3D point clouds before and after rectification using the smart
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FIGURE 13. A point cloud of the GMU Kitchen Dataset before (a) and
after (b) correction using our proposed method.

post-rectification algorithm. Obviously, because more accu-
rate depth data were obtained after rectification, we could
obtain a 3D reconstruction that could provide more important
scenario information than that obtained without our proposed
smart post-rectification algorithm.

VI. CONCLUSION
This paper systemically presents the relationship between the
measured distances of depth images and reflectivity/distance
in indoor scenarios using RGB-D cameras. Therefore,
we propose a smart post-rectification algorithm for depth
images based on an ANN considering the reflectivity-related
depth error and distance-related depth error for indoor sce-
nario 3D reconstruction. As demonstrated by the experi-
mental results, using the Kinect v1, the depth accuracy is
1.0692 mm, and the depth precision is 5.8556 mm.Moreover,
using the Kinect v2, the depth accuracy is 0.9962mm, and the
depth precision is 5.4298 mm. Therefore, the depth accuracy
and depth precision using the Kinect v1 and Kinect v2 are
better than the results reported in [1] and [32]. Finally, more
accurate and precise depth images were utilized to obtain a
better visual effect 3D reconstruction of indoor environments.

Applying the smart post-rectification algorithm to the
reconstruction of 3D indoor scenarios in real time using an
RGB-D camera will be considered in our further studies.
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