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ABSTRACT A self-tuning fusion estimation problem is addressed for multi-sensor (MS) linear discrete-time
stochastic systems subject to unknown model parameters (UMPs) and missing measurement rates. The
phenomena of missing measurements for different sensors are described by random variable sequences
obeying Bernoulli distributions. The UMPs and missing measurement rates are identified online by the
recursive extended least squares (RELS) algorithms and correlation functions, respectively. A distributed
fusion identifier for UMPs is presented by using matrix-weighted fusion estimation (MWFE) algorithm in
the linear unbiased minimum variance sense. Furthermore, the corresponding self-tuning state estimation
algorithms are obtained by substituting the identified model parameters and missing measurement rates into
the local optimal filters, cross-covariance matrices (CCMs), and distribution optimal fusion filter. Finally,
the convergence of the presented algorithms is analyzed. A numerical example shows the effectiveness of
the presented algorithms.

INDEX TERMS RELS, correlation function, multi-sensor system, unknown model parameter, unknown
missing measurement rate, self-tuning fusion filter.

I. INTRODUCTION
Recently, the research on MS information fusion filter has
achieved much attention owing to its wide applications in
practical systems, such as industrial monitor, navigation and
guidance, object identification, and so on. The classical
Kalman filtering theory [1] requires the known model param-
eters and noise statistical characteristics, which restricts its
application fields. This pushes the development of the adap-
tive or self-tuning estimation theory.

For MS systems subject to unknown variances of noises,
the self-tuning distributed fusion state predictors are obtained
in [2]–[4] where unknown variances of noises are identi-
fied by correlation functions and weighted average meth-
ods. Using the same identification methods as [2]–[4],
a self-tuning full-order weightedmeasurement fusion (WMF)
Kalman filter is proposed in [5] for MS descriptor systems
subject to unknown variances of noises. For systems sub-
ject to UMPs, the self-tuning fusion estimation problems

are discussed in [6]–[8]. The weighted average method is
adopted to obtain the fused UMPs, and then a self-tuning
fusion filter is proposed in [6]. Then, the correspondingWMF
self-tuning fusion filter is also proposed for multi-channel
signals in [7]. The RELS algorithm is adopted to identify
the UMPs, and then the self-tuning WMF Kalman filter is
presented for MS discrete systems with correlated measure-
ment noises in [8]. In the aforementioned literature, the self-
tuning fusion estimation algorithms proposed are all by the
complete measurement data. However, the sensor data may
be incomplete or disturbed in sensor networks or networked
systems because of the aging, fault, saturation, and bias of
sensors, or fading measurements, packet droppings and ran-
dom transmission delays induced by unreliable networks, and
so on [9]–[13].

For discrete linear stochastic systems subject to multi-
ple random transmission delays and packet droppings, opti-
mal linear estimators have been designed in [14] and [15].
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For nonlinear systems subject to missing measurements,
the event-based filtering algorithms [16], [17], the receding
horizon filtering algorithm [18], and the variance-constrained
approach [19] have been designed, respectively. However,
multiple sensors are not considered in [14]–[19]. For MS
systems subject to random transmission delays, centralized
fusion (CF) estimators are proposed in [20]. However, CF has
the bad reliability, whichmeans that a faulty sensor may bring
the divergence of CF estimators. Distributed fusion (DF)
filters have good reliability because of the parallel structures.
Therefore, DF filter obtains much attention in the recent
years. DF estimators are presented for sensor networks sub-
ject to packet droppings in [21] and [22] and for networked
systems subject to transmission delays and packet droppings
in [23] and [24]. The estimation algorithms proposed in the
above literature have assumed the known missing measure-
ments rates, delay rates and packet dropping rates.

Thus far, the research on self-tuning DF estimation prob-
lem for systems subject to unknown missing measurement
rates has been rarely reported, particularly, as well as UMPs
together. In this paper, the RELS algorithm is adopted to
identify the UMPs and the correlation function is adopted to
identify the unknown missing measurement rates of different
sensors. A self-tuning DF state filter is presented for MS
systems subject to UMPs and unknownmissingmeasurement
rates. The main contributions include: 1) the studied systems
are subjected to both UMPs and unknown missing measure-
ment rates; 2) the correlation functions are utilized to identify
the unknown missing measurement rates; 3) a DF identifier
for model parameters is presented by using the MWFE algo-
rithm in the LUMV sense in [25]; 4) a self-tuning DF state
filter is obtained based on the identified model parameters
and missing measurement rates; and 5) the convergence of
the presented algorithms is analyzed by using the dynamic
error system analysis (DESA) method and dynamic variance
error system analysis (DVESA) method in [26].

II. PROBLEM FORMULATION
Consider the following MS discrete-time stochastic system
with missing measurements

x(k + 1) = 8x(k)+ 0w(k) (1)

yi(k) = µi(k)Hix(k)+ vi(k), i = 1, · · · ,L (2)

where x(k) ∈ Rn is a state, yi(k) ∈ R is a scalar measurement.
The subscript i means the ith sensor. L is the number of
sensors. {µi(k)} is a random variable sequence obeying the
Bernoulli distribution with the probabilities Prob{µi(k) =
1} = αi and Prob{µi(k) = 0} = 1 − αi. µi(k) = 1 means
the perfect signal delivery and µi(k) = 0 means the missing
measurement. αi is a receiving measurement rate. 1 − αi is
a missing measurement rate. µi(k) is independent of other
stochastic variables. 8, 0 and Hi are time-invariant matrices
of suitable dimensions.
Assumption 1: w(k) and vi(k) are uncorrelated white noises

of zero mean and variances Qw and Qvi .

Assumption 2: The initial value x(0) is uncorrelated with
w(k) and vi(k), and satisfies

E {x(0)} = u0, E
{
[x(0)− u0] [x(0)− u0]T

}
= P0

where E is the mathematical expectation, the superscript T
denotes the transpose.
Assumption 3: 8 is a stable matrix.
Assumption 4: yi(k), i = 1, · · · ,L are bounded.
Assumption 5: αi and part parameters of 8 are unknown.
Assumptions 1 and 2 are general in estimation problem.

Assumptions 3 and 4 will be used in the convergence proof
of the proposed algorithms in later text. Assumption 5 shows
the problem to be solved.

Our objective is to design the self-tuning DF filter
x̂s(k|k) for the state x(k) based on the measurement data
(yi(1), . . . yi(k)), i = 1, . . . ,L by identifying the unknown
parameters in Assumption 5 and then substituting them into
the optimal DF filter.

III. OPTIMAL FUSION FILTERING ALGORITHM
In this section, one first need drive the distributed optimal
fusion filter under the condition of the known model param-
eters and missing measurement rates. Next, one will present
it under Assumptions 1-3.

Eq. (2) can be rewritten as

yi(k) = αiHix(k)+ Vi(k) (3)

where Vi(k) = (µi(k)−αi)Hix(k)+ vi(k) is a fictitious white
noisewith zeromean and the variancematrixQVi (k) = αi(1−
αi)HiX (k)HT

i +Qvi . The state second-order moment X (k) =
E[x(k)xT(k)] is recursively calculated by

X (k + 1) = 8X (k)8T
+ 0Qw0T (4)

under the initial valueX (0) = u0uT0+P0. FromAssumption 3,
it follows that X (k) is bounded.
The following Lemma 1 introduces the algorithm of local

optimal filter. Lemma 2 presents the formula of computing
the CCMs. The distributed optimal fusion filter by using
MWFE algorithm is given in Lemma 3.
Lemma 1 [25]: Under Assumptions 1-3, the local optimal

filtering algorithm based on the measurement data of each
sensor subsystem for systems (1) and (3) is given as

x̂i(k + 1|k) = 8x̂i(k|k) (5)

Ci(k + 1) = yi(k + 1)− Fix̂i(k + 1|k) (6)

6i(k + 1|k) = 8Pi(k|k)8T
+ 0Qw0T (7)

QCi (k + 1) = Fi6i(k + 1|k)FT
i + QVi (k + 1) (8)

Ki(k + 1) = 6i(k + 1|k)FT
i Q
−1
Ci (k + 1) (9)

Pi(k + 1|k + 1) = [In − Ki(k + 1)Fi]6i(k + 1|k) (10)

x̂i(k + 1|k + 1) = 9fi(k + 1)x̂i(k|k)+ Ki(k + 1)yi(k + 1)

(11)

where Fi = αiHi, 9fi(k + 1) = [In − Ki(k + 1)Fi]8. x̂i(k|k)
and x̂i(k+1|k) are the filter and predictor with corresponding
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variancematricesPi(k|k) and6i(k+1|k).Ki(k) is the filtering
gain matrix. The initial values are x̂i(0|0) = u0 and Pi(0|0) =
P0.
Lemma 2 [25]: Defining the filtering error CCM between

arbitrary two local filters as Pij(k|k) = E[x̃i(k|k)x̃Tj (k|k)],
i, j = 1, · · · ,L, i 6= j with x̃i(k|k) = x(k) − x̂i(k|k), one
has the recursive computational formula as

Pij(k + 1|k + 1)

= [In − Ki(k + 1)Fi][8Pij(k|k)8T
+ 0Qw0T]

×[In − Kj(k + 1)Fj]T (12)

under the initial value Pij(0|0) = P0.
Lemma 3 [25]:Under Lemma 1 and Lemma 2, the MWFE

filter in the LUMV sense is calculated as

x̂o(k|k) =
L∑
i=1

Wi(k)x̂i(k|k) (13)

where the optimal weighting coefficient matrices are
calculated as

[W1(k), . . . ,WL(k)] = (eTP−1(k|k)e)−1eTP−1(k|k) (14)

where e = [In, . . . , In]T ∈ RnL×n and P(k|k) =
[
Pij(k|k)

]
∈

RnL×nL . The variance matrix of the DF filter is calculated as

Po(k|k) = (eTP−1(k|k)e)−1 (15)

Also, the relation Po(k|k) ≤ Pi(k|k), i = 1, · · · ,L holds.

IV. FUSION IDENTIFIER OF UNKNOWN
MODEL PARAMETERS
When 8 contains unknown parameters, one identifies the
UMPs based on the RELS algorithm in this section.

From (1), it follows that

x(k) = (In − q−18)−1q−10w(k) (16)

where q−1 is the backward shift operator, i.e., q−1x(k) =
x(k − 1). Substituting (16) into (3) leads to

yi(k) = αiHi(In − q−18)−1q−10w(k)+ Vi(k) (17)

From (17), one can obtain a new measurement model

A(q−1)yi(k) = αiBi(q−1)w(k)+ A(q−1)Vi(k) (18)

with

A(q−1) = det(In − q−18) (19)

Bi(q−1) = Hiadj(In − q−18)q−10 (20)

where the ‘det’ denotes the matrix determinant and the ‘adj’
denotes the adjoint matrix. A(q−1) and Bi(q−1) are polynomi-
als with forms as

A(q−1) = 1+ a1q−1 + · · · + anaq
−na ,

Bi(q−1) = Bi1q−1 + · · · + BinBiq
−nBi

at , t = 1, . . . , na and Bit , t = 1, . . . , nBi are the coeffi-
cients of A(q−1) and B(q−1), and na and nBi are their orders,
respectively.

From [26], two moving average (MA) processes in the
right hand side of (18) are equivalent to a stable MA process
Di(q−1)εi(k), where εi(k) is the white noise with unknown
variance σ 2

εi
, and Di(q−1) is the polynomial with the form as

Di(q−1) = 1+ di1q−1 + · · · + dinDiq
−nDi

dit , t = 1, . . . , nDi are the coefficients of Di(q
−1) and nDi is

the order of Di(q−1).
One can rewrite (18) as

A(q−1)yi(k) = Di(q−1)εi(k) (21)

Setting

ϕTi (k) = [−yi(k − 1), · · · ,−yi(k − na),

ε̂i(k − 1), · · · , ε̂i(k − ninDi )],

ϑi = [a1, · · · , ana , di1, · · · dinDi ]
T

one has

yi(k) = ϕTi (k)ϑi + εi(k) (22)

Then, one has the parameter estimator based on the RELS
algorithm as follows [26]:

ϑ̂i(k + 1) = ϑ̂i(k)+Mi(k + 1)ε̂i(k + 1) (23)

ε̂i(k + 1) = yi(k + 1)− ϕTi (k + 1)ϑ̂i(k) (24)

Mi(k + 1) =
Zi(k)ϕi(k + 1)

1+ ϕTi (k + 1)Zi(k)ϕi(k + 1)
(25)

Zi(k + 1) = [Ina+nDi −Mi(k + 1)ϕTi (k + 1)]Zi(k) (26)

under the initial values ϑ̂i(0) = 0 and Zi(0) = βiI , with a
sufficiently large positive number βi, ε̂i(k) = yi(k) = 0,
(k ≤ 0). From [26], one has that the parameter estimator
based on the RELS algorithm is consistent, i.e., the estimates
converge to the true values with probability 1, ϑ̂i(k) → ϑi
as k →∞.

Based on themeasurements of single sensor, one can obtain
the local estimators ϑ̂i(k) at time k of unknown parameters ϑi
by above algorithms. From the definition of ϑi, one knows
that the parameters at , t = 1, . . . , na have been estimated
L times based on L sensors, so one can obtain the fusion
estimates of parameters at by applying MWFE algorithm
in [26]. One needs to calculate the estimation error variances
of the local parameter estimators and the CCMs between any
two local parameter estimators. Next, one will solve them.

From (23), the local estimation error ϑ̃i(k) = ϑ̂i(k) − ϑi
satisfies the equation

ϑ̃i(k + 1) = [InA+nDi −Mi(k + 1)ϕTi (k + 1)]ϑ̃i(k)

+Mi(k + 1)εi(k + 1) (27)

The CCM Pϑij (k) = E[ϑ̃i(k)ϑ̃T
j (k)] between any two local

parameter estimation errors can be solved by

Pϑij (k + 1) = [InA+nDi −Mi(k + 1)ϕTi (k + 1)]Pϑij (k)

×[InA+nDj −Mj(k + 1)ϕTj (k + 1)]T

+Mi(k + 1)σ̂ 2
εij
(k + 1)MT

j (k + 1) (28)
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where the cross-covariance σ 2
εij

between εi(k) and εj(k) can
be approximately computed by the following recursion

σ̂ 2
εij
(k) =

1
k

k∑
l=1

ε̂i(l)ε̂j(l)

= σ̂ 2
εij
(k − 1)+

1
k
[ε̂i(k)ε̂j(k)− σ̂ 2

εij
(k − 1)] (29)

The initial value is σ̂ 2
εij
(0) = yi(0)yj(0). Pϑii (k) is the local

parameter estimation error variance Pϑi (k) when i = j.
Setting ϑA = [a1, · · · , ana ]

T, then ϑA = [Ina , 0]ϑi. One
has local parameter estimators and estimation error CCMs of
ϑA as

ϑ̂Ai(k) = [Ina , 0]ϑ̂i(k),PϑAij (k) = [Ina , 0]Pϑij (k)[Ina , 0]
T

(30)

wherePϑAii (k) is the local parameter estimation error variance
PϑAi (k) when i = j.

Based on the local parameter estimators ϑ̂Ai(k) and esti-
mation error CCMs PϑAij (k), applying the MWFE algorithm
in the LUMV sense [25], one can obtain the DF parameter
estimator.
Theorem 1: The matrix-weighted DF parameter estimator

in the LUMV sense is calculated as

ϑ̂Ao(k) =
L∑
i=1

W ϑA
i (k)ϑ̂Ai(k) (31)

The parameter fusion weighted matrices are calculated as

[W ϑA
1 (k), . . . ,W ϑA

L (k)] = (eTϑP
−1
ϑA

(k)eϑ )−1eTϑP
−1
ϑA

(k) (32)

where eϑ =
[
Ina · · · Ina

]T
naL×na

,PϑA (k) =
[
PϑAij (k)

]
naL×naL

,
i, j = 1, · · · ,L, is an naL × naL matrix.

The parameter fusion estimation error variance is given as

PϑAo (k) = (eTϑP
−1
ϑA

(k)eϑ )−1 (33)

Also, the relation PϑAo (k|k) ≤ PϑAi (k|k), i = 1, . . . ,L holds.
From (19), one knows that the parameter ϑA =

[a1, · · · , ana ]
T is a function of the unknown parameters of8.

If the unknown parameters of 8 can be uniquely identified
by ϑA, one can obtain the unknown parameter fusion estima-
tor of 8 based on the identified fusion parameter estimator
ϑ̂Ao(k). Further, one gets the estimator 8̂(k) of 8. From the
above analysis, one can see that 8̂(k) converges to 8 with
probability 1, i.e., 8̂(k)→ 8 as k →∞.

V. IDENTIFICATION OF THE UNKNOWN RECEIVING
MEASUREMENT RATES
Substituting 8̂(k) into (4), one obtains

X̂ (k + 1) = 8̂(k)X̂ (k)8̂T(k)+ 0Qw0T (34)

One introduces the zero-step correlation function Ri(k) =
E[y2i (k)], from (2) it is computed as

Ri(k) = αiHiX̂ (k)HT
i + Qvi (35)

The correlation function can be approximated by the sam-
pling correlation function which can be recursively calculated
as [26]:

R̂i(k) =
1
k

k∑
l=1

y2i (l) = R̂i(k − 1)+
1
k
[y2i (k)− R̂i(k − 1)]

(36)

under the initial value R̂i(0) = 0.
From (35) one can obtain the receiving measurement rate

of the ith sensor at each time as

α̂i(k) =
R̂i(k)− Qvi
HiX̂ (k)HT

i

(37)

From Section 3, 8̂(k)→ 8 as k →∞. From the stability
of8 and (34), X̂ (k)→ X (k) as k →∞. From the ergodicity
of stochastic process [26], R̂i(k)→ Ri(k) as k →∞. One can
obtain that the estimate α̂i(k) converges to the true value αi,
i.e., α̂i(k)→ αi as k →∞. Further, one has

Q̂Vi (k) = α̂i(k)(1− α̂i(k))HiX̂ (k)HT
i + Qvi

→ αi(1− αi)HiX (k)HT
i + Qvi = QVi (k), k →∞

Substituting the estimates 8̂(k) and α̂i(k) into the local
optimal filter in Lemma 1, CCMs in Lemma 2 and distributed
MWFE algorithm in Lemma 3, respectively. One can obtain
the corresponding self-tuning filtering algorithms. To save
space, the detail is omitted. Denote the corresponding self-
tuning local filter, prediction error variance, filtering error
CCM, and fusion filter by x̂si(k|k), 6̂si (k|k − 1), P̂sij(k|k),
and x̂s(k|k), respectively.

VI. CONVERGENCE ANALYSIS OF SELF-TUNING
FUSION FILTER
A. PRELIMINARY LEMMAS
The following Lemma 4 and Lemma 5 present a stability
criterion in terms of Lyapunov equations, which constitutes
the DVESAmethod and DESAmethod. Further, utilizing the
two methods, the convergence of the proposed self-tuning
fusion filter is proven.
Lemma 4 [26]: Consider a time-varying Lyapunov

equation

J (k) = T1(k)J (k − 1)T T
2 (k)+ U (k)

where J (k) ∈ Rn×n and U (k) ∈ Rn×n. The matrices T1(k) ∈
Rn×n and T2(k) ∈ Rn×n are uniformly asymptotically stable,
i.e., there are constants ci > 0 and 0 < ρi < 1, such that

‖Ti(k, t)‖ ≤ ciρ
k−t
i , ∀k ≥ t ≥ 0, i = 1, 2

where Ti(k, k) = In, Ti(k, t) = Ti(k)Ti(k − 1) · · · Ti(t +
1), k > t . Then, J (k) is bounded if U (k) is bounded, further
J (k)→ 0 as k →∞ if U (k)→ 0 as k →∞.
Lemma 5 [26]: Consider the dynamic error system

δ(k) = T (k)δ(k − 1)+ u(k)
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where δ(k) ∈ Rn and u(k) ∈ Rn. The matrix T (k) ∈ Rn×n

is uniformly asymptotically stable. Then, δ(k) is bounded if
u(k) is bounded, further δ(k)→ 0 as k →∞ if u(k)→ 0 as
k →∞.

B. CONVERGENCE OF THE SELF-TUNING LOCAL
FILTERING AND PREDICTION ERROR
VARIANCE MATRICES
Denote the systems (1) and (3) with known model param-
eters and receiving measurement rates by the notation
(8,0,Fi,Qw,QVi (k)), and the systems (1) and (3) with
UMPs and unknown receiving measurement rates by the
notation (8̂(k), 0, F̂i(k),Qw, Q̂Vi (k)).
Lemma 6 [26]: For system (8,0,Fi,Qw,QVi (k)) under

Assumptions 1-5, the state transition matrix 9fi(k) =
[In − Ki(k)Fi]8 of local optimal filter and the state
transition matrix 9pi(k) = 8[In − Ki(k)Fi] of local
optimal predictor are both uniformly asymptotically sta-
ble. Both 6i(k|k − 1) and Ki(k) are bounded. For sys-
tem (8̂(k), 0, F̂i(k),Qw, Q̂Vi (k)), the state transition matrix
9̂sfi(k) = [In−K̂si(k)F̂i(k)]8̂(k) of local self-tuning filter and
the state transition matrix9̂spi(k) = 8̂(k)[In − K̂si(k)F̂i(k)]
of local self-tuning predictor are uniformly asymptotically
stable. Both 6̂si(k|k − 1) and K̂si(k) are bounded.
Theorem 2: Under Assumptions 1-5, the self-tuning pre-

diction error variance matrix 6̂si(k + 1|k) with the consistent
estimates 8̂(k) and α̂i(k) converges to the optimal prediction
error variance matrix 6i(k + 1|k) with the true values 8 and
αi with probability 1. The local self-tuning filtering error vari-
ance P̂si(k|k) converges to the optimal filtering error variance
Pi(k|k) with probability 1, i.e.,

[6̂si(k + 1|k)−6i(k + 1|k)] → 0, k →∞ (38)

[P̂si(k|k)− Pi(k|k)] → 0, k →∞ (39)

Further, one has [K̂si(k)− Ki(k)]→ 0, k →∞.
Proof: From Lemma 1, 6̂si(k + 1|k) and 6i(k + 1|k)

satisfy the Riccati equation

6̂si(k + 1|k) = 8̂(k)[6̂si(k|k − 1)− K̂si(k)F̂i(k)

× 6̂si(k|k − 1)]8̂T(k)+ 0Qw0
T (40)

6i(k + 1|k) = 8[6i(k + 1|k)− Ki(k)Fi6i(k + 1|k)]8T

+0Qw0
T (41)

Let 18̂(k) = 8̂(k) − 8. Substituting 8̂(k) = 8 + 18̂(k)
into (40) and subtracting (41) from (40) yield

6̂si(k + 1|k)−6i(k + 1|k)

= 8̂(k)[6̂si(k|k − 1)−6i(k|k − 1)

−K̂si(k)F̂i(k)6̂si(k|k − 1)

+Ki(k)Fi6i(k|k − 1)]8T
+ Ui1(k) (42)

Ui1(k) = 8̂(k)[In − K̂si(k)F̂i(k)]6̂si(k|k − 1)18̂T(k)

+18̂(k)[In − Ki(k)Fi]6i(k|k − 1)8T (43)

From the definitions of 9̂spi(k) and 9pi(k) in Lemma 6,
it follows that

9̂spi(k)(6̂si(k|k − 1)−6i(k|k − 1))9T
pi(k)

= 8̂(k)[6̂si(k|k − 1)−6i(k|k − 1)

− K̂si(k)F̂i(k)6̂si(k|k − 1)

+Ki(k)Fi6i(k|k − 1)]8T
+ Ui2(k) (44)

Ui2(k) = 8̂(k)[K̂si(k)F̂i(k)6i(k|k − 1)

+ K̂si(k)F̂i(k)6̂si(k|k − 1)FT
i K

T
i (k)

− 6̂si(k|k − 1)FT
i K

T
i (k)

− K̂si(k)F̂i(k)6i(k|k − 1)FT
i K

T
i (k)]8

T (45)

Setting F̂i(k) = Fi +1F̂i(k), one has

K̂si(k)F̂i(k)6̂si(k|k − 1)FT
i

= K̂si(k)F̂i(k)6̂si(k|k − 1)F̂T
i (k)

−K̂si(k)F̂i(k)6̂si(k|k − 1)1F̂T
i (k)

= 6̂si(k|k − 1)F̂T
i (k)− K̂si(k)Q̂Vi (k) (46)

−K̂si(k)F̂i(k)6̂si(k|k − 1)1F̂T
i (k)

F̂i(k)6i(k|k − 1)FT
i K

T
i (k)

= Fi6i(k|k − 1)FT
i K

T
i (k)

+1F̂i(k)6i(k|k − 1)FT
i K

T
i (k)

= Fi6i(k|k − 1)− QVi (k)K
T
i (k)

+1F̂i(k)6i(k|k − 1)FT
i K

T
i (k) (47)

Substituting (46) and (47) into (45) yields

Ui2(k)

= 8̂(k)[K̂si(k)1F̂i(k)6i(k|k − 1)

+ 6̂si(k|k − 1)1F̂T
i (k)K

T
i (k)− K̂si(k)(Q̂Vi (k)

−QVi (k))K
T
i (k)− K̂si(k)F̂i(k)6̂si(k|k − 1)1FT

i (k)K
T
i (k)

− K̂si(k)1F̂i(k)6i(k|k − 1)FT
i K

T
i (k)]8

T (48)

From (42) and (44), and defining the variance error ϒi(k) =
6̂si(k|k − 1) − 6i(k|k − 1), one has the dynamic variance
error system as

ϒi(k + 1) = 9̂spi(k)ϒi(k)9T
pi(k)+ Ui(k) (49)

Ui(k) = Ui1(k)− Ui2(k) (50)

To prove (38), one only needs to proveϒi(k)→ 0 as k →∞.
Considering the dynamic variance error systems (49)
and (50), according to Lemma 6 one knows that 6̂si(k+1|k),
K̂si(k), 6i(k + 1|k) and Ki(k) are bounded as k → ∞, then
from 18̂(k) → 0, 1F̂i(k) → 0 and Q̂Vi (k) → QVi (k) as
k →∞, it holds that

Ui1(k)→ 0, Ui2(k)→ 0 (51)

Then, Ui(k) → 0 as k → ∞. From (49), according to the
uniformly asymptotic stability of 9̂spi(k) and 9pi(k), based
on Lemma 4, one hasϒi(k)→ 0 as k →∞, i.e., (38) is true.
Similarly, (39) is also true. Further, using K̂i(k) = 6̂si(k|k −
1)F̂T

i (k)Q̂
−1
Ci (k), Ki(k) = 6i(k|k − 1)FT

i Q
−1
Ci (k), (38), and

X̂ (k) → X (k), then K̂si(k) → Ki(k) as k → ∞ is true. The
proof is completed.
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C. CONVERGENCE OF SELF-TUNING FILTERING
ERROR CCM
Substituting the estimates 8̂(k) and α̂i(k) into (12), one can
obtain the self-tuning cross-covariance matrix as

P̂sij(k + 1|k + 1) = [In − K̂si(k + 1)F̂i(k + 1)]

× [8̂(k)P̂sij(k|k)8̂T(k)+ 0Qw0T][In
− K̂sj(k + 1)F̂j(k + 1)]T (52)

Theorem 3: Under Assumptions 1-5, the solution of self-
tuning Lyapunov equation (52) converges to the solution of
optimal Lyapunov equation (12), i.e.,

[P̂sij(k|k)− Pij(k|k)]→ 0, k →∞ (53)

Proof: Let 1ij(k) = P̂sij(k|k) − Pij(k|k), K̂si(k) =
Ki(k)+1K̂i(k), 9̂sfi(k) = 9fi(k)+19̂fi(k). Then,1K̂i(k)→
0, 19̂fi(k)→ 0 as k →∞.
By subtracting (12) from (52), the dynamic variance error

satisfies the following Lyapunov equation as

1ij(k) = 9fi(k)1ij(k − 1)9T
fj (k)+ Uij(k) (54)

Uij(k) = 19̂fi(k)P̂sij(k − 1|k − 1)9T
fj (k)

+19̂fi(k)P̂sij(k − 1|k − 1)19̂T
fj (k)

+9fi(k)P̂sij(k − 1|k − 1)19̂T
fj (k)

+ [In − K̂si(k)F̂i(k)]0Qw0
T[In − K̂sj(k)F̂j(k)]T

− [In − Ki(k)Fi]0Qw0
T[In − Kj(k)Fj]T (55)

Using the boundness of K̂si(k), K̂sj(k), F̂i(k) and F̂j(k),
one has [In− K̂si(k)F̂i(k)]0Qw0T[In− K̂sj(k)F̂j(k)]T− [In−
Ki(k)Fi]0Qw0

T[In − Kj(k)Fj]T→ 0 as k →∞.
Using Lemma 4, Lemma 6 and the uniformly asymptotic

stability of 9̂sfi(k) and 9fi(k), one can obtain that P̂sij(k|k)
is bounded. Hence, from α̂i(k) → αi and 1K̂i(k) → 0,
19̂fi(k)→ 0 as k →∞, one hasUij(k)→ 0. Using (54) and
Lemma 4, one has that (53) is true. The proof is completed.

D. CONVERGENCE OF LOCAL AND FUSION
SELF-TUNING FILTERS
Theorem 4: Under Assumptions 1-5, the local self-tuning
filter x̂si(k|k) converges to the local optimal filter x̂i(k|k), i.e.,

[x̂si(k|k)− x̂i(k|k)]→ 0, k →∞ (56)

Proof: From (11), the local self-tuning filter is given as

x̂si(k|k) = 9̂sfi(k)x̂si(k − 1|k − 1)+ K̂si(k)yi(k) (57)

Because K̂si(k) and yi(k) are bounded and 9̂sfi(k) is uniformly
asymptotically stable, x̂si(k|k) is bounded from Lemma 5. Let
δi(k) = x̂si(k|k)− x̂i(k|k). Subtracting (11) from (57), one has
the dynamic error system

δi(k) = 9fi(k)δi(k − 1)+ ui(k) (58)

where ui(k) = 19̂fi(k)x̂si(k − 1|k − 1) − 1K̂i(k)yi(k).
From the boundedness of x̂si(k|k) and yi(k), and 1K̂i(k) →
0 and 19̂fi(k) → 0, one obtains ui(k) → 0.

Applying Lemma 5 to (58) leads to δi(k) → 0, as k → ∞,
i.e., (56) is true. The proof is completed.
Theorem 5: Under Assumptions 1-5, the self-tuning DF

filter x̂s(k|k) converges to the optimal DF filter x̂o(k|k), i.e.,

[x̂s(k|k)− x̂o(k|k)]→ 0, k →∞ (59)

Proof: From (53), one has [Ŵsi(k) − Wi(k)] → 0. Let
Ŵsi(k) = Wi(k) + 1Ŵi(k). Then, 1Ŵi(k) → 0. Using (56)
and the boundedness of x̂si(k|k), one obtains

x̂s(k|k)− x̂o(k|k) =
L∑
i=1

Wi(k)[x̂si(k|k)− x̂i(k|k)]

+

L∑
i=1

1Ŵi(k)x̂si(k|k)→ 0 (60)

i.e., (59) is true. The proof is completed.
Remark 1: From the preceding sections, one can find that

the main difficulties and keys of the work in this paper
include: 1) introduction of the fictitious white noise Vi(k)
in (3) and construction of ARMAmodel (21); 2) the computa-
tion of cross-covariancematrices (28) for parameters; 3) Con-
vergence analysis (Theorem 2-Theorem 5) of the proposed
algorithms.

VII. SIMULATION EXAMPLE
Considering a numerical example as (1) and (2) with 3 sen-
sors. In the simulation, the parameters are taken as 8 =[
a11 a12
0.3 −0.5

]
, 0 =

[
0.5
0.6

]
, H1 =

[
1 1.2

]
, H2 =

[
1.2 1.5

]
,

H3 =
[
0.4 1

]
, Qw = 2,Qv1 = 1.21, Qv2 = 0.81, Qv3 = 0.3.

The UMPs are set as a11 = 0.8, a12 = −0.2 and the unknown
receiving measurement rates are set as α1 = 0.3, α2 = 0.7,
α3 = 0.9. The initial values are x̂i(0|0) = 0, Pi(0|0) = 0.1I2,
and Pij(0|0) = 0.1I2, i, j = 1, 2, 3.
Our aim is to identify the unknown receiving measurement

rates αi and UMPs a11 and a12, and solve the self-tuning
fusion filter x̂s(k|k).
Applying the algorithm proposed in Section 5, the identifi-

cation results of unknown receiving measurement rates for 3
sensors by the correlation function method are given in Fig 1.
As the time increases, one sees that the identified results of
receiving measurement rates converge to the true values of
receiving measurement rates.
Applying the algorithm proposed in Section 4, the fusion

identification results of the UMPs are shown in Fig 2. As the
time increases, one sees that the identification results of
UMPs converge to the true values of model parameters.
To show the advantage of our MWFE parameter identifier,

one does the comparison with weighted average (WA) fusion
estimation algorithm in [6] and [26]. So, the weighted average
fusion estimation algorithm is also given in the simulation.
The local estimation error variances, weighted average esti-
mation error variances and MWFE error variances for UMPs
a11 and a12 can be computed below.
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FIGURE 1. Identification of receiving measurement rates.

FIGURE 2. Identification of parameters of 8.

A. LOCAL ESTIMATION ERROR VARIANCE
From (19), one obtains the relationship between at , t = 1, 2
and the model parameters of 8 as:

a11 = −(a1 + a22) (61)

a12 = −1a21 (a2 − a22a11) (62)

From (30), one can obtain local estimates ât,i(k), t = 1, 2,
i = 1, 2, 3 for at . Then, local estimates of a11 and a12 are
obtained as

â11,i(k) = −(â1,i(k)+ a22),

â12,i(k) = −1a21 (â2,i(k)− a22â11,i(k)),

Defining the local estimation error variances as Pa11,i (k) =
E[ã211,i(k)] and Pa12,i (k) = E[ã12,i(k)ãT12,i(k)] where
ã11,i(k) = â11,i(k) − a11 = ã1,i(k) and ã12,i(k) = â12,i(k) −
a12 = 1

a21
(ã2,i(k) + a22ã1,i(k)). Then, one has the local

estimation error variances of a11 and a12 as

Pa11,i (k) = P(1,1)ϑAi
(k),

Pa12,i (k) =
1

a221
(P(2,2)ϑAi

(k)+ 2a22P
(1,2)
ϑAi

(k)+ a222P
(1,1)
ϑAi

(k)),

B. WEIGHTED AVERAGE ESTIMATION ERROR VARIANCE
Defining the WA estimate of at as

ˆ̄at (k) = 1
3

3∑
i=1

ât,i(k),

FIGURE 3. Estimation error variance of a11.

From (61) and (62), the WA estimates of a11 and a12 are
given as

ˆ̄a11(k) = −( ˆ̄a1(k)+ a22),
ˆ̄a12(k) = −1a21 (

ˆ̄a2(k)− a22 ˆ̄a11(k)),

Defining the WA estimation error variances as P ˜̄a11 (k) =
E[ ˜̄a211(k)] and P ˜̄a12 (k) = E[ ˜̄a212(k)], where

˜̄a11(k) = ˆ̄a11(k) − a11 = 1
3 (

3∑
i=1

ã1,i(k)) and ˜̄a12(k) =

ˆ̄a12(k) − a12 = 1
3a21

3∑
i=1

(ã2,i(k) + a22ã1,i(k)). One has the

WA fusion estimation error variances of a11 and a12 as

P ˜̄a11 (k) =
1
9 (P

(1,1)
ϑA1

(k)+ P(1,1)ϑA2
(k)+ P(1,1)ϑA3

(k)

+ 2P(1,1)ϑA12
(k)+ 2P(1,1)ϑA13

(k)+ 2P(1,1)ϑA23
(k)),

P ˜̄a12 (k) =
1

9a221
(P(2,2)ϑA1

(k)+ P(2,2)ϑA2
(k)+ P(2,2)ϑA3

(k)

+ a222(P
(1,1)
ϑA1

(k)+ P(1,1)ϑA2
(k)+ P(1,1)ϑA3

(k))

+ 2(P(2,2)ϑA12
(k)+ P(2,2)ϑA13

(k)+ a22P
(1,2)
ϑA1

(k)

+ a22P
(2,1)
ϑA12

(k)+ a22P
(2,1)
ϑA13

(k)+ P(2,2)ϑA23
(k)

+ a22P
(2,1)
ϑA21

(k)+ a22P
(1,2)
ϑA2

(k)

+ a22P
(2,1)
ϑA23

(k)+ a22P
(2,1)
ϑA31

(k)+ a22P
(2,1)
ϑA32

(k)

+ a22P
(1,2)
ϑA3

(k)+ a222P
(1,1)
ϑA12

(k)+ a222P
(1,1)
ϑA13

(k)

+ a222P
(1,1)
ϑA23

(k))),

C. MWFE ERROR VARIANCE
From (31), one can obtain the fusion estimates â1,o(k) and
â2,o(k) of parameters a1 and a2, respectively. Then, from (61)
and (62) one has the fusion estimates of a11 and a12 as

â11,o(k) = −(â1,o(k)+ a22),

â12,o(k) = −1a21 (â2,o(k)− a22â11,o(k)),

Defining the fusion estimation error variances as
Pa11,o (k) = E[ã211,o(k)] and Pa12,o (k) = E[ã212,o(k)] where
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FIGURE 4. Estimation error variance of a12.

FIGURE 5. Self-tuning DF filter. (a) The first state component.
(b) The second state component.

ã11,o(k) = â11,o(k)−a11 = ã1,o(k) and ã12,o(k) = â12,o(k)−
a12 = 1

a21
(ã2,o(k)+a22ã1,o (k)). Then, one has the MWFE

error variances of a11 and a12 as

Pa11,o (k) = P(1,1)ϑo
(k),

Pa12,o (k) =
1

a221
(P(2,2)ϑo

(k)+ 2a22P
(1,2)
ϑo

(k)+ a222P
(1,1)
ϑo

(k)),

The local estimation error variances, WA fusion estimation
error variances and MWFE error variances of UMPs a11 and
a12 are shown in Fig 3 and Fig 4, respectively, where Si,
i = 1, 2, 3 denote the local estimation error variances. It can

FIGURE 6. Variances of local, fusion optimal and self-tuning filters.
(a) Variance of the first state component. (b) Variance of the second state
component.

be seen that our MWFE variances are lower than local vari-
ances and WA variances.

The self-tuning DF filter is given in Fig 5. One sees that the
self-tuning DF filter is effective. The local and fusion error
variances of optimal and self-tuning state filters are given
in Fig 6 where Si, i=1,2,3 denote the self-tuning local esti-
mation error variances, the SF denotes the self-tuning fusion
variance, and the lines denote the corresponding optimal vari-
ances. From Fig 6, one sees that the variances of self-tuning
local filters converge to those of optimal local filters, and
the variance of self-tuning fusion filter converges to that of
optimal fusion filter. So, they have the asymptotic optimality.
Moreover, the self-tuning DF filter has better accuracy than
any self-tuning local filter.

Under the case of missing measurements, the self-tuning
algorithms in the existing literature [6] that do not con-
sider missing measurements will lose the asymptotic opti-
mality. Fig.7 shows the comparison of the mean square
errors (MSEs) by 30 times Monte Carlo runs for the
self-tuning fusion filter without considering the missing mea-
surements in [6] and our self-tuning fusion filter with con-
sidering the missing measurements. It can be seen that our
self-tuning fusion filter with considering the missing mea-
surements has better accuracy under the case of missing
measurements.
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FIGURE 7. MSEs of the self-tuning fusion flters with/without considering
missing measurements. (a) MSEs of the first state component. (b) MSEs of
the second component.

VIII. CONCLUSION
A self-tuning DF filter has been proposed for MS systems
subject to UMPs and unknown missing measurement rates.
The model parameters and missing measurement rates are
identified online based on the RELS algorithm and corre-
lation function, respectively. A DF identifier for UMPs is
proposed by using MWFE algorithm in the LUMV sense.
The corresponding self-tuning state filtering algorithms are
obtained by substituting the identified model parameters and
missing measurement rates into the optimal local and fusion
filtering algorithms. By utilizing the DVESA method, it has
been proven that the local self-tuning filtering error variance
converges to the optimal filtering error variance, and the
solution of self-tuning filtering error CCM converges to that
of optimal filtering error CCM. By utilizing DESA method,
it has been proven that the self-tuning local filter converges to
the optimal local filter, and the self-tuning DF filter converges
to the optimal DF filter.
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