
Received September 16, 2018, accepted October 4, 2018, date of publication October 8, 2018, date of current version October 31, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2874544

Scribble-Supervised Segmentation of Aerial
Building Footprints Using Adversarial Learning
WEIMIN WU 1, (Senior Member, IEEE), HUAN QI2, ZHENRUI RONG1,
LIANG LIU3, AND HONGYE SU 1, (Senior Member, IEEE)
1State Key Laboratory of Industrial Control Technology, Institute of Cyber-Systems and Control, Zhejiang University, Hangzhou 310027, China
2Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, U.K.
3Daniel J. Epstein Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, CA 90089, USA

Corresponding author: Weimin Wu (wmwu@iipc.zju.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grants 61773343 and 61621002.

ABSTRACT Aerial image segmentation usually requires a large amount of pixel-level masks in order to
achieve quality performance. Obtaining these annotations can be both costly and time-consuming, limiting
the amount of data available for training. In this paper, we present an approach for learning to segment aerial
building footprints in the absence of fully annotated label masks. Instead, we exploit cheap and efficient
scribble annotations to supervise deep convolutional neural networks for segmentation. Our proposed
model is based on an adversarial architecture that jointly trains two networks to produce building footprint
segmentations that resemble synthetic label masks. We present competitive segmentation results on the
Massachusetts Buildings data set by using only scribble supervision signals. Further experiments show that
our method effectively alleviates building instance separation issue and displays strong robustness towards
different scribble instance levels. We believe our cost-effective approach has the potential to be adapted for
other aerial image interpretation tasks.

INDEX TERMS Aerial image, generative adversarial network, image segmentation, weak supervision.

I. INTRODUCTION
The process of examining aerial imagery with the pur-
pose of recognizing high-level semantics such as objects
and scenes is referred to as aerial image interpretation [1].
In recent years, technological advances have motivated the
development of geographic analysis. Numerous aerial images
are produced, collected and stored everyday, bringing new
challenges for the development of techniques to meet the
requirements of geographical knowledge understanding and
discovery. To this end, exploiting big data analysis tech-
niques to automate aerial image interpretation has become an
increasingly promising approach, as evidenced in [2]–[4].

One of the most fundamental aerial image interpretation
tasks is to assign a semantic label (e.g. building, tree, car) to
each pixel of an aerial image, i.e. converting the raw input into
a semantically meaningful raster map before further process-
ing such as vectorization [5]. This corresponds to semantic
image segmentation in computer vision, which can be formu-
lated as a classification problem by mapping the pixel set into
a pre-defined label set. So far, the most effective technique for
semantic segmentation is supervisedmachine learning, which
usually requires a large amount of fully annotated training

samples. Within the training set, each sample image needs to
be paired with a fully annotated ‘ground-truth’ label mask of
the same size.

Supervised image segmentation with ground-truth masks
(strong supervision) have achieved great success over the past
few years. Methods such as deep learning generally requires a
large training set with fully annotated label masks. Although
powerful annotation tools have been developed over the years
to speed up the process [6], [7], it may still takes minutes
for an experienced annotator to label one image [8]. Take
aerial building footprint segmentation as an example. It is
not uncommon for a 500×500 px image to contain more
than 100 building instances, making the mask annotation
process even more demanding. Therefore, it can be quite
costly and time-consuming to obtain fully annotated label
masks for aerial images, limiting the amount of data available
for training. It is desirable for a learning-based model to work
with weak supervision of certain form, which is expected to
be much cheaper to attain than its strong counterpart.

Driven by the motivation of balancing annotation effi-
ciency and model performance for automated aerial image
interpretation, we propose to perform building footprint
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FIGURE 1. Samples from PASCAL-Scribble Dataset and Massachusetts Buildings Dataset. Each sample contains a ground truth mask and a scribble mask.
Note that images from PASCAL-Scribble Dataset generally contain fewer object instances and have relatively consistent background in spatial/color
feature space, while images from the Massachusetts Buildings Dataset contain a number of building instances of various sizes and shapes. White and
grey scribble denote building and background, respectively.

segmentation using a type of weak supervision: scribble
supervision. As shown in Figure 1, it is much more efficient
to annotate images with simple scribbles than with label
masks. Specifically, we develop an algorithm that exploits
only scribble annotations to train a deep convolutional neural
network for building footprint segmentation. Without object
boundary outlines, it is supposed to be a very challenging
task. For the rest of this paper, we address models supervised
by fully annotated label masks as ‘mask-supervised’ models,
as opposed to our ‘scribble-supervised’ models.

We approach scribble-supervised building footprint seg-
mentation by dividing it into two sub-problems. For the
first one, we train a fully convolutional network (FCN) to
output building label predictions. This is similar to the mask-
supervised model, except that we only back-propagate cross-
entropy losses from pixels that are covered by scribbles
since they are the only correct labels we have obtained.
This is addressed as a partial cross-entropy (pCE) base-
line. We observe this simple but practically effective method
causes building instance separation issue, i.e. the model
cannot separate building instances from each other, leaving
them to stick together and form building blobs, as shown
in Figure 2. For the second sub-problem, we introduce an
adversarial learning architecture by considering the pCE

FIGURE 2. A test sample from the Massachusetts Buildings Dataset. The
third and fourth column display segmentations from a mask-supervised
model and a pCE baseline model. Observe that predictions of pCE
baseline can achieve a reasonably high Interaction-over-Union (IoU)
score but has severe instance separation issue with multiple large
building blobs.

baseline as a generator, which keeps generating building
label predictions. Following [9], we design a second convo-
lutional neural network, the discriminator, whose mission is
to distinguish ‘fake’ generator outputs from ‘real’ building
masks. During adversarial learning, the generator and dis-
criminator keep playing a min-max game, which eventually
cause the discriminator to fail its mission, i.e. the genera-
tor has successfully produced outputs that resemble ‘real’
building masks to some extent. This architecture enables us
to incorporate shape priors to regularize behaviors of the
generator. Note that since we do not have any ‘real’ building
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mask after all, we propose a simple yet effective pipeline to
synthesize obb-scribble masks from scribble annotations by
fitting oriented bounding boxes around scribbles to mimic
how ‘real’ building masks should look like. Motivated by
scribble-supervised methods as well as the generative adver-
sarial network (GAN) [9], we address the proposed model as
ScrGAN.

We use the Massachusetts Buildings Dataset [1] to evalu-
ate our method. To further investigate ScrGAN’s sensitivity
towards scribble instance numbers, we propose an automatic
scribble generation method that allows us to flexibly con-
trol how many scribbles to draw within each aerial image.
Experimental results show that ScrGAN outperforms all the
baseline models including the current state-of-the-art method
using various evaluation metrics. It shows reasonable degra-
dation compared to its mask-supervised counterpart. More-
over, ScrGAN alleviates building instance separation issue
and appears robust towards various scribble instance levels.
These results suggest that scribble-supervised methods have
many desirable aspects as well as the potential to be applica-
ble in other aerial image interpretation tasks.

The rest of this paper is arranged as follows: In Section II,
related work is reviewed with focus on deep-learning-
based strongly and weakly supervised image segmentation.
In Section III, the proposed scribble-based aerial image seg-
mentation method is introduced. The corresponding exper-
imental results and discussion are presented in Section IV,
followed by Section V, which concludes the paper.

II. RELATED WORK
A. FULLY SUPERVISED AERIAL IMAGE SEGMENTATION
Since manual examination can be both expensive and time-
consuming, attempts have been made to develop semi-
or fully-automatic systems for aerial image interpretation
since 1970s [10]. The recent rapid growth of heteroge-
neous data, including the availability of high-resolution aerial
imagery in the areas of urban planning [11], path plan-
ning [12], crop management [13] etc., underlines the need
to develop fully automatic tools with satisfying levels of
accuracy and efficiency. To this end, supervised machine
learning models have found numerous applications in aerial
image interpretation [14], [15].

In machine learning and computer vision applications,
the task of semantic segmentation is usually formulated as
a pixel-wise classification problem, in which pre-defined
semantic labels are manually assigned to all pixels within
each image in the training set. Learning algorithms then
perform parameter updating on given models according to
customized objective functions. In order to achieve a good
generalization ability, i.e. performing accurate pixel-wise
classification on data outside the training set, regulariza-
tion terms such as L2 norm are incorporated in the objec-
tive functions. Around a decade ago, successful semantic
segmentation models relied on hand-crafted local features
and flat statistical learners [16], [17]. Applications of these

models in aerial image segmentation led to better perfor-
mance especially in high-resolution imagery. For instance,
Porway et al. [18] developed a boosting-based hierarchi-
cal model to parse aerial images with a pre-defined label
category containing car, road, tree roof and parking lot.
Kluckner et al. [19] developed covariance-based feature rep-
resentations for aerial imagery and learnt through multi-class
random forests and conditional random fields (CRF). Sub-
stantial performance improvements were made by enriching
the representative ability of local features with high-order
context information and structured predictions [20], [21].

Recent years have witnessed a series of revolutionary pro-
gresses in image segmentation due to the emergence of deep
learning. By cascading non-linear mapping that transforms
the representation at one level (starting from the raw input)
into a higher and more abstract level, deep learning methods
can thus learn complex features that are otherwise non-trivial
to obtain in previous hand-crafted methods. One of the key
aspects of deep learning is that features from all layers are
learnt in a fully data-driven fashion [22]. Recently, a fully
convolutional network (FCN) architecture was introduced for
semantic segmentation [23]. In FCN setting, fully connected
layers are replaced by the more efficient and spatially infor-
mative convolutional layers, and therefore avoid redundant
computations in overlapping patches. Since then, FCN-based
models have achieved the state-of-the-art performances in
several large-scale segmentation challenges such as PASCAL
VOC. Using up-sampling operations such as bi-linear inter-
polation and transposed convolution [23], [24], the resolu-
tion of outputs can be restored to the same as inputs. Other
techniques such as skip connections [25], dilated convolu-
tions [26], [27] and CRF post-processing [28] have been
shown to marginally improve segmentation performance.

Automatic aerial image interpretation has benefited from
the development of deep learning methods. Among early
works, Mnih et al. proposed deep neural networks for road
detection [29] and map annotation [15]. More recently, FCN
models have been successfully used in aerial image segmen-
tation [5], [30], [31]. Marmanis et al. ensembled two struc-
turally identical FCNs for very high resolution (VHR) aerial
image segmentation in an end-to-end way. They cast deep
supervision at multiple scales to form a joint objective func-
tion with the purpose to adjust intermediate features for more
efficient learning [32]. Bischke et al. proposed a multi-task
learning approach to train a VGG-16 based encoder-decoder
FCN. Besides a cross-entropy loss for standard segmentation
task, they added a second output to regress the distance trans-
formation of the segmentation mask in order to preserve roof
boundaries in high-resolution aerial imagery [31]. All these
methods focused on designing more effective network archi-
tectures given a fully annotated dataset. However, amore real-
istic issue, arising with the popularity of deep learning, is the
increasing demand of annotated data. Semantic segmentation,
among common computer vision tasks, is arguably the most
data hungry one due to the fact that every pixel within an
image needs annotating, which can be both expensive and
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time-consuming. Thismakes huge amounts of fully annotated
training data generally rare for image segmentation tasks.
Recently, Kaiser et al. [5] proposed to extract segmentation
masks directly from noisy crowd-sourced online maps and
trained FCNs on them accordingly. The idea of generating
training labels automatically inspired us to investigate the use
of unconventional yet less expensive supervision signals for
aerial image segmentation, which corresponds to the emerg-
ing field of weakly supervised learning.

B. WEAKLY SUPERVISED IMAGE SEGMENTATION
In a recent review [33], Zhou categorized weakly supervision
signals into three types: incomplete supervision, where only
a subset of training data are given strong labels; inexact
supervision, where only coarse-grained labels are provided;
and inaccurate supervision, where the given labels are not
always ground-truth. Incomplete supervision usually relies
on active learning or semi-supervised learning techniques,
which is beyond the scope of this paper. Inexact supervision
mainly deals with class-level labels. It is not suitable for com-
plex high resolution aerial imagery, where pixel-level spatial
information rather than class-level information is of the pri-
mary concern. Inaccurate supervision for image segmentation
frees annotators from careful outline of object boundaries by
sacrificing performance. Annotations for inaccurate supervi-
sion is usually much cheaper. Meanwhile it restores spatial
information to some extent, which has intriguing potentials
for image segmentation.

Training image segmentation models with (weak) inaccu-
rate supervision has caught wide interest recently. Various
forms of supervision signals were exploited, e.g. scribbles [8],
[34], points [35], [36] and bounding boxes [37], [38]. In this
work, we investigate training aerial image segmentation
models using scribbles as supervision signals. Previously,
scribbles were widely used in interactive image segmenta-
tion [39]–[41] and were recognized as being much more user-
friendly than pixel-level manual segmentation. Driven by the
popularity of weakly supervised learning, recent work con-
sidered directly using scribbles (instead of fully-annotated
masks) to train image segmentation models. Lin et al. [8]
developed an alternating training scheme: use superpixel-
based graph cut to generate segmentation proposals from
scribbles, train an FCN using these proposals, refine the
unary terms with FCN predictions. By iterating this process,
the FCN were gradually fed with more reliable proposals and
thus propagated more accurate labels. They also introduced
the PASCAL-Scribble Dataset, which is shown in Figure 1.
However, inaccuracies of the generated segmentation pro-
posals can propagate errors thus inevitably sabotage FCN’s
performance. Tang et al. [34] proposed a solution to this
problem. Instead of alternating between FCN and graphical
models, they trained a single FCN via a joint loss function
with two terms: one is a partial cross entropy loss for scribbles
only, the other is a relaxed normalized-cut regularizer that
implicitly propagated true labels to unknown pixels during
training.

Although the aforementioned learning algorithms brought
the performance of scribble-supervised models closer to their
mask-supervised counterparts on datasets such as PASCAL
VOC, there is no guarantee that they would generalize well
to aerial image segmentation. As shown in Figure 1, objects
in PASCAL-Scribble Dataset tend to appear near the centre
of the image with clear boundaries and reasonably large
size. Stuff (water, sky, road, etc.) in the dataset tend to be
consistent in both spatial and color domain. On the contrary,
building instances in the Massachusetts Buildings Dataset,
for instance, appear to be randomly distributed with varying
sizes and shapes. Existence of trees and shadows may exert
negative influence on image interpretation. Therefore, it is not
clear whether the performance of weakly-supervised learning
algorithms on aerial imagery would be consistent with those
on PASCAL. So far, many efforts have been made to utilize
weakly supervised learningmethods on aerial image interpre-
tation. Han et al. [42] proposed to use saliency detection and
class-level annotations for object detection in optical remote
sensing images. Zhou et al. [43] presented a deep learning
approach via transfer learning and negative bootstrapping to
detect targets in aerial imagery. To the best of our knowledge,
no work has made any attempt to investigate the performance
of scribble-based weak supervision for aerial image segmen-
tation or propose any modification to make it well-suited for
aerial imagery.

C. GENERATIVE ADVERSARIAL NETWORKS
The recent success of Generative Adversarial Net-
works (GANs) opens up intriguing possibilities for many
research areas. In the original work, Goodfellow et al. [9]
proposed an adversarial architecture to train deep generative
models. A typical GAN consists of two sub-networks: a
generator and a discriminator, where two networks compete
with each other in a min-max game during training. The
adopted adversarial loss regulates the behaviors of two sub-
networks. It is expected that the generator would learn a map-
ping which makes its output indistinguishable from samples
drawn from a target domain. GANs have achieved impressive
progresses in image generation [44], unsupervised image-to-
image translation [45] and representation learning [44], [46].
Recent work begins to apply adversarial learning as a new
type of structured loss that enforces extra regularizations
upon the existing model, which is otherwise non-trivial to
define in closed-form objective functions. In this setting,
the existing model is usually treated as a generator con-
ditioned on a given input, while a discriminator is opti-
mized to distinguish the model’s output from ground truths.
For instance, Luc et al. [47] trained an FCN (generator) to
perform semantic segmentation and a discriminator to dis-
tinguish ground truth masks from generator’s outputs. The
motivation is to correct higher-order inconsistencies between
ground truth masks and model predictions via the adver-
sarial loss. Pan et al. [48] adopted a similar architecture for
saliency prediction in order to produce saliency maps that
resembled the ground truth. Hung et al. [49] exploited GANs
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TABLE 1. Annotation efficiency test. Columns represents the form of
inaccurate supervision signals. Note that test images are of size
500×500 px, cropped from raw aerial images. The unit is second per
image.

to facilitate semi-supervised learning and achieved better
performances on several semantic segmentation datasets.
More recently, GANs have shown great potential in improv-
ing weakly supervised learning. Shen et al. [50] speeded
up online weakly supervised object detectors by introduc-
ing an adversarial paradigm that trained class-level labels.
Remez et al. [51] reformulated the box-supervised segmen-
tation task using an adversarial cut-and-paste operation.
It remains an open question how to exploit adversarial learn-
ing in under-constrained settings such as scribble-supervised
image segmentation, where ground-truth masks are not avail-
able during training.

III. METHODS
A. SCRIBBLES AS SUPERVISION SIGNALS
As shown in Figure 1, a scribble is a set of pixels with a
semantic label. Compared tomask annotation, which requires
annotators to categorize all pixels into corresponding seman-
tic labels, scribble annotation tends to be sparse, with the
process being more intuitive and thus less time-consuming.
Pixels that are not annotated with scribbles fall into an
‘unknown’ category and technically should not be pun-
ished or rewarded during learning. Without using any full
mask annotation, our algorithm exploits only scribbles to
supervise deep convolutional neural networks for aerial build-
ing footprint segmentation. As mentioned in II-B, inaccurate
supervision signals may take various forms such as scribbles,
points and bounding boxes. A point annotation [35], [36] can
be viewed as a degenerate case of a scribble annotation, where
annotators simply click at the centre of the object and store the
point coordinate and class label. Unlike points and scribbles
that lie within objects, a bounding box annotation aims to
determinate the spatial bound of an object by excluding all
irrelevant pixels outside the box. It is a stronger type of
supervision signal. One obvious drawback of bounding box
annotation, besides lower annotation efficiency, is that it is not
suitable for annotating non-object regions (or ‘stuff’) such as
sky, water and the generic ‘background’ in our case.

In Table 1, we present results of a preliminary annotation
efficiency test among scribble, point and bounding box anno-
tations on the Massachusetts Buildings Dataset. Following
annotation criteria in [8], [36], and [51], we randomly sample
50 images and annotate all building instances with scrib-
bles, points and bounding boxes respectively. Each image
is cropped from the raw aerial maps to have width and
height of 500 pixels. Details will be covered in Section IV-A.
As shown in Table 1, it appears that scribble and point anno-
tation share a similar level of annotation efficiency. We argue

this results from the fact that objects such as buildings in
aerial imagery usually have many instances and reasonably
small sizes, degenerating scribbles towards points. Since a
scribble annotation covers more pixels (i.e. creates more
training samples) than a point annotation, this implies that
scribble-supervised learning may be more promising than
point-supervised learning in aerial image interpretation, as an
alternative to mask-supervised learning. To evaluate scribble-
based learning under different circumstances, we propose to
generate scribbles automatically from ground-truth masks.
Note that this is simply a flexible and time-saving alternative
to drawing scribble manually since our method generates
scribbles that visually resemble those from manual annota-
tion. Moreover, our scribble generation method involves ran-
domness, as opposed to human annotation which is inclined
to subjectivity. This is by all means different from using
ground-truth masks directly to train segmentation models,
but rather a flexible use of ground-truth masks in a self-
supervised fashion, i.e. all supervision signals come from the
dataset itself and no extra human input is needed. We discuss
and verify the effectiveness of our scribble generationmethod
in Section IV by comparing against scribbles drawn by two
human annotators under a specific annotation protocol.

Given a ground-truth mask with ‘1’ representing building
and ‘0’ being background, our scribble generation method
accounts for two tasks. For the first one, we isolate each
object instance based on connectivity and then run a fast
skeletonization algorithm [52] to reduce the instance to a
1-pixel-width representation without breaking its internal
connectivity. Empirically, we find the resulting skeletons
qualify as scribbles for small object instances with regular
shapes such as buildings.We further augment the skeletons by
incorporating neighbors that are within a distance of 4 pixels
to thicken the skeleton. In Figure 3(a), we illustrate the simple
pipeline for the first task, which is referred to as foreground
scribble generation.

For the second task background scribble generation,
we start by inverting the mask and perform skeletonization
on it to obtain a connected skeleton of the background.
The key part is to extract visually acceptable scribbles from
the skeleton to resemble those drawn by human annotators,
which tend to be smooth rather than zigzag. To achieve
this, we propose an effective random walk (RW) searching
algorithm to collect a set of spatially connected coordinates
from the skeleton, following a cumulative direction sampling
mechanism. As shown in Algorithm 1, the search starts by
randomly sampling a coordinate c on the skeleton S. Our
random walker moves according to a compass vector p,
denoting the probabilistic distribution of choosing one out of
eight based on 8-neighbor connectivity. Every direction in p
is initialized to be 0.125. We assign an offset vector for each
direction based on 2D image coordinate system. For example,
north corresponds to [0,−1] and southwest [−1, 1]. Our RW
moves according to this compass vector. For each ‘Move’
operation, a random direction was drawn by following a cate-
gorical distribution on p. If the resulting position is also on the
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FIGURE 3. Automatic scribble generation pipeline.

FIGURE 4. Scribble generation examples with different scribble instance rates.

Algorithm 1 Scribble Generation via Random Walks
1: procedure SEARCH(T )
2: p = [ 18 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ,

1
8 ],S = {Skeleton}

3: D = {8-neighbor offset vector}, L = ∅
4: Randomly sample a coordinate c from S
5: L = L ∪ c
6: for t in {1 · · · T }
7: MOVE(c,p,L)
8: return L F scribble coordinates
9:

10: procedureMOVE(c,p,L)
11: γ = 0.05
12: cd ∼ Cat(p) F cd ∈ D, sample a direction
13: if (cd + c) ∈ S
14: c = cd + c F move to the new position
15: if c /∈ L
16: L = L ∪ c
17: pd = pd + γ
18: pneighbour(d) = pneighbour(d) + 0.5γ
19: Normalize p
20: else
21: pd = pd − γ
22: Normalize p

skeleton and not visited before, we reward this direction with
a constant γ and its two neighboring directions with 0.5γ .
The neighboring directions of any given direction refer to

its two closest ordinal directions (e.g. north-east and north-
west for north, south and west for south-west). The rewarding
mechanism encourages the walker to move along a particular
direction rather than jump randomly. Similarly, we punish the
direction which would take the walker off the skeleton. After
each reward or punishment, we re-normalize p to sum up to
one. Trace of the random walker is recorded as the scribble.
We empirically set γ = 0.05. This simple RW algorithm
is quite effective in our experiments. A visually acceptable
scribble can be generated within 150 moves. For each train-
ing sample, we randomly sample 5∼7 background scribbles.
Using the proposed automatic scribble generation pipeline,
we can also investigate the dynamics between scribble num-
bers and segmentation performance, as shown in Figure 4.

B. OBB-SCRIBBLE FOR INSTANCE SEPARATION
As shown in Figure 2, predictions made by the pCE baseline
do not preserve well-separated boundaries: many building
instances are merged into a large blob. We argue this is
due to the fact that no structured loss is applied to enforce
separation. With a limited amount of training examples,
models fail to learn this important property automatically,
leading to a reasonable IoU score with a rather inferior
visual outcome. To overcome this limitation, we present an
adversarial architecture that learns a structured loss function
to capture special characteristics of one image domain and
translate into the other domain in the absence of paired
training examples, much like the unpaired image-to-image
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FIGURE 5. Generate obb-scribble masks via OBB fitting.

translation task [45]. In aerial building footprint segmenta-
tion, buildings have straight boundaries in nature. The idea
is to generate masks that resemble the ground-truths in terms
of boundary straightness and instance separation, then use
them to regularize the training so that model predictions
would have straighter boundaries, separated instances and
better IoU performance, if possible. Given input images and
their scribbles from training set, we translate scribble annota-
tions to corresponding obb-scribble masks, where superpix-
els1 connected by each scribble are enclosed by an oriented
bounding box (OBB). Unlike the axis-aligned bounding box
used in object detection, an OBB is not necessarily parallel
to the axes, just like how buildings normally distribute in
aerial images, as illustrated in Figure 5. Given a 2D or 3D
point set, an OBB can be easily generated using the prin-
cipal component analysis (PCA) algorithm. In our 2D case,
we use PCA to find two orthogonal axes such that the sum of
Euclidean distances from one axis is minimized. We project
points onto each axis to determine OBB’s center and form
a rectangle that encloses the point set, as shown in Figure 5
and Figure 6. Please refer to [53] for more topics on OBB.
An obb-scribble mask is generated by fitting OBBs for each
scribble instance respectively. Although obb-scribble masks
do not highly resemble how buildings are arranged in ground-
truth masks, they preserve two appealing visual properties:
boundary straightness and instance separation. To this end,
we introduce an adversarial loss tomake ourmodel prediction
resemble obb-scribble masks.

C. OBJECTIVE FUNCTIONS
From the perspective of domain transfer, our goal is to learn
a mapping function between aerial image domain X and
building footprint mask domain Y given training samples
{xi, si, oi}Ni=1. Here xi ∈ X is the input image, si is the
scribble map and oi is the obb-scribble mask. Our model
includes a generator G : X → Y and a discriminator
D that aims to distinguish between obb-scribble maps {oi}
and model predictions {G(xi)} in order to separate building
instances. We denote these data distributions as x ∼ p(X ),
y ∼ p(Y ) and o ∼ p(O). Our objective function contains
two types of losses: (1) a partial cross entropy (pCE) loss

1In practice, we find using superpixels does not help improve segmenta-
tion performance significantly, compared to fitting oriented bounding box
(OBB) on scribbles directly. So we make it an optional module and report
results without it. We argue it will be more useful in segmenting larger
building instances.

to reduce errors between model predictions and scribbles;
2) adversarial losses to regularize the data distribution of
model predictions to match p(O).

1) PARTIAL CROSS ENTROPY LOSS
By definition, a scribble annotation is a subset of the corre-
sponding mask annotation. Therefore, si can be viewed as a
set of samples drawn directly from yi ∈ Y , which provides us
with a partition of ground truth samples. Given input image
xi, we denote the model prediction G(xi). In [34], Tang et al.
proposed to use a partial cross entropy (pCE) loss:

Lp(xi, si) =
∑
x∈xi

−ux[sxi logG(x)
x
i

+ (1− sxi ) log(1− G(x)
x
i )] (1)

where the superscript x denotes a pixel in xi. ux is 1 if
pixel x is covered by si and 0 otherwise. A pCE loss only
back-propagates gradients for pixels that are annotated by
scribbles. This turns out to be a simple but effective approach
which essentially chooses correctness over sample size, while
the earlier approach [8] did the opposite by training directly
through the entire (inaccurate) segmentation proposal.

2) ADVERSARIAL LOSS
We apply the adversarial loss [9] to both the generator G and
the discriminator D. The objective is defined as:

LGAN (G,D,X ,O) = Ex∼p(X )[log(1− D(G(x)))]

+ Eo∼p(O)[logD(o)] (2)

where D aims to distinguish model predictions G(x) from
obb-scribbles, while G aims to map input images x to look
more similar to obb-scribbles in terms of boundary straight-
ness, hopefully. The process can be summarized as amin/max
game: minGmaxD LGAN (G,D,X ,O).

3) FULL LOSS OF ScrGAN
The full objective function is defined by:

L = Ex∼p(X )[Lp(x, s)]+ λLGAN (G,D,X ,O) (3)

where λ sets the relative importance of two types of loss
functions. The optimal solution is G∗ = argminGmaxD L,
which is searched via gradient descent optimization. From a
high-level point of view, the discriminator can be seen as a
learnable structured loss function for the generator, unlike the
traditional closed-form losses such as cross entropy or mean
square errors [54]. During training, this structured loss is also
updating its parameters to deal with generator’s adaptation.

D. NETWORK ARCHITECTURE AND TRAINING DETAILS
ScrGAN is illustrated in Figure 6. The dash line marks
steps that are needed during training. For inference, we only
need the generator network and the post-processing module.
For the generative network G, we adapt the U-Net archi-
tecture to have VGG-11’s first eight convolutional layers
as the encoder [25], [55]. For the decoder, we interleave
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FIGURE 6. ScrGAN takes image-scribble pairs and learns to segment building footprints via the joint supervision of pCE
loss and adversarial losses.

five transposed convolutional layers and six convolutional
layers. The entire architecture of G is similar to Iglovikov’s
TernausNet [56], except that we replace all ReLUs with
Leaky ReLUs (with a negative slope of 0.2), which gives a
better performance in our experiments. We used their Kag-
gle Carvana2 pre-trained model to initialize the generator
network’s encoder part. For the decoder part, weights of
the convolutional layers are initialized by sampling from a
normal distribution N (0, 0.02) and batch-norm layers from
N (1, 0.02), as suggested in [44]. For the discriminator net-
work D (Table 2), we use four stride-2 convolutional layers,
one average pooling layer and two fully-connected layers to
build up a simple binary classifier. Following [44], we use
leaky ReLUs with a negative slope of 0.2 and batch normal-
ization in D. A dropout layer with p = 0.2 is added to fight
against over-fitting [57]. For all experiments, we set λ =
0.25 in Equation 3 as we find it gives the best segmentation
performance. We use the Adam optimizer with a batch size
of 2 [58]. The initial learning rate is set to 0.0001 and begins
to linearly decay after 25 epochs until it reaches zero after
another 25 epochs. All major hyper-parameters are chosen
via grid search. Our implementation is based on PyTorch on
a Linux environment with one 12GB NVIDIA GPU card.

IV. EXPERIMENTS
A. DATASETS
The Massachusetts Buildings Dataset consists of 151 aerial
images of the Boston area. Each image is of size
1500×1500 px and covers an area of 2.25 square kilometers.
The entire dataset covers roughly 340 square kilometers. The
ground-truth masks were obtained by rasterizing building

2https://www.kaggle.com/c/carvana-image-masking-challenge

TABLE 2. Architecture of the discriminator network D.

footprints from the OpenStreetMap project.3 As shown
in Figure 1, the dataset covers buildings of various sizes and
shapes in urban and suburban regions. There are two semantic
classes: building and non-building (background). We use the
official split of this dataset: 137 images for training, 4 for
validation and 10 for testing. We further crop each image into
9 non-overlapping patches of 500×500 px, augmenting each
set by 9 times in size. During training, we randomly crop
a patch of 384×384 px from the input image and ground-
truth mask, respectively. For testing, we resize the input to
448×448 px.

B. EVALUATION METRICS
In our experiments, we evaluate models using the following
well-known metrics: 1) intersection over union (IoU) of a
class; 2) precision: the fraction of true positives among all
predictions of a class; 3) recall: the fraction of true positives
over the ground truth of a class; 4) F1 score: the harmonic
average of the precision and recall; 5) pixel accuracy (Acc.):
the fraction of correctly classified pixels over all pixels. For
all evaluation metrics except Acc., we report the individual
score of each class as well as the mean score over two classes.

3https://www.openstreetmap.org/
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C. COMPARISON AGAINST BASELINES
We train several baseline models and evaluate their perfor-
mances using the aforementioned metrics. Some of the base-
lines come from previous literatures while the rest are variants
of ScrGAN by removing certain modules.

1) FULL MASK
Without changing network architecture, we train the
U-Net with the ground-truth masks. Results of this standard
approach can be viewed as the upper-bound of weakly-
supervised learning models. We expect certain degree of
performance degradation when replacing the full masks
with scribbles. Lowering performance gaps between models
trained on these two types of supervision signals is the major
concern of almost all weakly-supervised learning algorithms.

2) SEGMENTATION PROPOSAL
Using scribbles as seeds to generate segmentation proposals
for FCN training is a natural strategy. Following [8], we use
the well-known GrabCut [40] interactive segmentation algo-
rithm to generate masks and train our U-Net. Note that these
segmentation proposals usually contain a large amount of
erroneous labels that may potentially lead to inferior segmen-
tation performance. For simplicity, we address this model as
Grab-cut.

3) NORMALIZED CUT LOSS [34]
This algorithm achieves the state-of-the-art performance on
PASCAL-Scribble Dataset [8]. Besides pCE loss, they intro-
duced a relaxed normalized cut loss that aimed to lower
normalized cut energies of the model outputs based on the
observation that lower energies typically correspond to better
semantic segmentations. However, this observation may not
hold very well in aerial image segmentation, as normalized
cut has the bias towards equal segments. Moreover, approx-
imating normalized cut energies in [34] involved computing
fast bilateral filtering using permutohedral lattice [59], which
can be inefficient. In our experiments, we use a GPU ver-
sion of the permutohedral lattice approximation algorithm to
accelerate training processes. In [34], Tang et al. first trained
an FCN with pCE loss only and then fine-tuned the model
by adding the normalized cut loss. This strategy led to a
better segmentation performance. For simplicity, we address
this model as Norm-cut, with three variants: (1) apply pCE
and normalized cut loss when the training begins (no wait);
(2) apply pCE only and then add normalized cut loss after
2 epochs4 (wait 2 epochs); (3) add extra adversarial loss on
no wait (+GAN). In addition, we train a UNet with the pCE
loss alone, i.e. the pCE baseline mentioned in Section I and
report the results (pCE only).

4) CRF POST-PROCESSING
Dense CRF [28] has become one of the most successful post-
processing techniques for semantic segmentation. We report
evaluation metrics before and after CRF post-processing.

4We find 2 epochs yields the best performance.

D. SENSITIVITIES TO SCRIBBLE INSTANCE NUMBER
Scribble annotation is subject to a lot of factors, such as anno-
tators’ experience, scribble length and number. Lin et al. [8]
investigated the sensitivity of their method to scribble quality
by reducing scribble length towards 0 (point). They reported
a decreasing mean IoU score as the length was reduced.
Regarding scribble number, we notice all object instances,
however small or big, need to be annotated with at least one
scribble according to their annotation protocol [8]. In aerial
image interpretation, where objects tend to be small and
densely distributed, is it necessary to annotate all building
instances within a map to obtain quality segmentation? We
find this to be an interesting topic that no one looked into
previously. Using the scribble generation approach, we inves-
tigate how sensitive our model is to the scribble instance
number, by controlling the number of building instances
from which our algorithm generates scribbles. For the Mas-
sachusetts Buildings Dataset, where the number of building
instances within an image can easily exceed 100, we set
seven levels of scribble number: 5%, 10%, 20%, 40%, 60%,
80% and 100%, as shown in Figure 4. We train the baselines
and ScrGAN variants on these levels of scribble annotations
respectively.

As a reference, we also manually annotate this dataset with
scribbles. Our scribble annotations are labeled by 2 anno-
tators. Each image is first labeled by one annotator, and
then examined by the other. Similar to [8], the annotators
are asked to draw scribbles on the regions that they find
confident; building boundaries do not need to be annotated.
As opposed to [8], our annotation follows several subjective
requirements: (1) annotators are allowed to adjust scribble
width up to 5 pixels if needed; (2) annotators can stop annotat-
ing immediately after she/he feels confident that the existing
scribbles would suffice to make good segmentation, which
means not all building instances in the aerial images need to
be annotated; (3) background is not annotated. These rules
are designed to simulate annotations made by non-experts,
as we are interested in investigating whether our model can
take a perceptually acceptable annotation by non-experts and
still produce reasonably quality segmentation. To make a fair
comparison, we use the same sets of automatically generated
background scribbles for all trainings since we find back-
ground annotation is much more inclined to subjectivity than
building annotation due to its diversity.

E. ANALYSIS OF EXPERIMENTAL RESULTS
Table 3 shows the IoU and Acc. of all models on the Mas-
sachusetts Buildings Dataset. Models trained with Grab-cut
segmentation proposals does not show good performance,
especially in low scribble instance levels (5% and 10%)where
the building IoU is too low to be reliable at all. This is
due to the fact that Grab-cut segmentation proposals con-
tain numerous incorrect labels from computations of low-
level features without considering contexts. This drawback
is enlarged in aerial image segmentation, where high-level
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semantics is extremely useful to distinguish numerous non-
overlapping buildings from the background. As an ablation
study, we investigate loss terms in [34], including pCE loss,
normalized cut loss, and our adversarial loss. Using pCE loss
alone leads to a strong baseline: starting from 5% instance
level (IoU 69.1%), the performance drops as instance level
increases. Remember that we fix background scribble num-
bers (5∼7 background scribbles per image) and vary only the
building scribble instance level from 5% to 100%. We argue
the performance drop is caused by data imbalance since
semantic segmentation via FCN is essentially a classification
task. The data is most well-balanced at 5% instance level,
where the size of building class and the background class
is closest to each other. As we increase scribble instance
level, the building class gradually dominates, causing the
performance drop. Therefore in this case, it is not always
appreciated to incorporate more scribbles for one class alone.
A well-balanced scribble dataset is expected to yield bet-
ter performance than the imbalanced ones. On average, our
proposed ScrGAN surpasses baseline pCE only by a margin
of 4.9% IoU. This is achieved by incorporating the obb-
scribble adversarial loss term in Equation 2, which validates
the effectiveness of introducing adversarial learning.

The normalized cut loss, on the other hand, does not help
improve the performance in our task. Observe the IoU score
drops 6.1% in no wait and 5.5% in wait 2 epochs on average
when applying normalized cut loss. In Figure 7, we demon-
strate the training process of one of our baseline model
Norm-cut (wait 2 epochs). From the top row, we show that
the normalized cut energy decreases as training goes, while
the mean IoU does not improve substantially. Meanwhile
in the bottom row, we present the model prediction of one
randomly chosen training sample. During the first 2 epochs,
pCE loss controls the training and behaves reasonably well
(Iteration 1000). However, after the normalized cut loss is
introduced, it gradually dominates the training and produces
fuzzy boundaries, preventing pCE loss from going down.
We argue this is because the normalized cut term treats each
pixel as a vertex and tries to reconcile global cut, which
inevitably counteracts pCE loss, causing inconsistency near
the boundaries.We observe similar behaviors on allNorm-cut
variants, no matter how we adjust the weight of normalized
cut loss term. To mitigate this issue, a potential modification
is to instead use superpixels as vertices. This is beyond the
scope of this work and will be investigated in the future work.
Finally, we add the proposed adversarial loss term to the
Norm-cut (no wait) model and observe a minor performance
increase overall. The regularization effect of adversarial loss
appears to mitigate the fuzziness issue to some extent. We
further compare the precision, recall and F1 scores between
ScrGAN and no wait and display the results in Figure 8.
It shows the superior performance of ScrGAN, especially in
terms of recall.

The proposed ScrGAN model surpasses all baseline mod-
els in IoU scores at all scribble instance levels. The best
one achieves a mean IoU of 73.2% and Acc. of 90.4%

FIGURE 7. Training process of the baseline model Norm-cut (wait
2 epochs) [34].

after CRF post-processing, which is lower than the mask-
supervised model by only 5.2% in IoU and 2% in Acc. With
only 5% scribble instances, our model still achieves a mean
IoU of 70.8%. We believe this is a reasonable gap between
mask-supervised and scribble-supervised models. Compared
with all scribble-supervised baselines including the current
state-of-the-art [34], our ScrGAN not only has better quan-
titative performance, but also undermines building instance
separation issues to a large extent (bottom row in Figure 9).
Moreover, ScrGANperforms steadily under different scribble
instance levels, suggesting its strong robustness towards data
imbalance.

In Table 3, we report experimental results before and after
applying CRF post-processing [28]. Unlike PASCAL, build-
ing footprint segmentation on the Massachusetts Buildings
Dataset does not benefit from this technique considerably.
On average, the performance is boosted by the margin less
than 1% in IoU and less than 0.5% in Acc. This suggests
using low-level color/spatial features alone may not suffice
in complex aerial imagery settings.

Table 3 presents results of models trained with human
scribble annotations in the manual column. In general,
we find these models resemble those trained with higher
scribble instance levels (60%, 80%, 100%) and suffer from
data imbalance as well. It indicates our annotators behave
conservatively when it comes to terminating the annotation.
ScrGAN achieves a 70.4% mean IoU using human scribble
annotations, suggesting our model has the potential for real-
world aerial image interpretation tasks.

F. LIMITATIONS AND DISCUSSIONS
In ScrGAN, we introduce the OBB-based shape prior to a
U-Net segmentation model via adversarial learning. The
shape is a simple rectangle, which is easy to generate
yet somewhat unrealistic since building footprints can take
various geometric shapes. The flexibility of adversarial
learning enables us to incorporate a structured loss via the
discriminator network. This loss is implicitly enforced to
make generator’s predictions resemble obb-scribble masks.
As shown in Figure 9, our ScrGAN alleviates boundary
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TABLE 3. Experimental results on the Massachusetts Buildings Dataset. For each cell, the first row is in the format of IoU [Acc.] and the second row
(background IoU, building IoU), all in percentage.

FIGURE 8. Precision, recall and F1 scores between no wait and ScrGAN.

separation issue significantly and outperforms all baselines
in terms of evaluation metrics such as IoU. However, bound-
ary straightness characteristics of obb-scribble masks is not
well preserved in our predictions. The resulting segmentation
masks have blobby shapes. We argue it is more challeng-
ing to preserve straight boundaries in this case, even for
the strongly-supervised method (3rd column in Figure 9).
An intuitive extension of ScrGAN is to consider more
advanced shape priors such as convex hull or even customized
prior in a semi-supervised learning setting. Moreover, note
that our generator is a simplified version of the original
U-Net. This suggests it can be easily upgraded intomore pow-
erful architectures such as DeepLab [27] and deep residual
networks [60], thus yield better segmentation performance

without bells and whistles. We leave this to the future work.
In the current python implementation, where all reported
models use the same U-Net architecture, we achieve a GPU
inference time of 130 ms per image, compared to a CPU
inference time of 3500 ms per image on a commercial-level
laptop with an Intel Core i7-4700HQ CPU, 16 GB RAM and
a 4GB NVIDIA GTX 860M GPU. This indicates that a GPU
implementation has an edge over the CPU one in terms of
testing speed. In Figure 10, we show several failure cases of
ScrGAN, where dot noise (also known as checkboard arte-
facts [61]) is somehow introduced into the model prediction.
We argue this may result from the use of transposed con-
volutional layers in our architectures, causing the instability
of adversarial learning. In future work, we plan to examine
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FIGURE 9. Our results on the Massachusetts Buildings Dataset test set illustrates ScrGAN helps alleviate building instance separation issue, thus achieves
better segmentations. The bottom row is a zoomed-in look of the red boxes in the row above. See also Table 3 for quantitative results.

FIGURE 10. Failure cases of ScrGAN.

alternative architectures and techniques such as using nearest-
neighbor upsampling layers and PatchGAN [45], [54] to
resolve this issue.

V. CONCLUSION
We have presented a weakly-supervised learning method for
aerial building footprint segmentation based only on scribble
annotations. Traditional strongly-supervised methods sub-
stantially rely on costly and time-consuming pixel-level mask
annotation of the entire set of training images. In this work,
we have explored a simple alternative: annotate images
with scribbles and train a deep neural network to predict

building footprint segmentation directly.We observe that pre-
vious scribble-supervised methods are likely to cause build-
ing instance separation issue, i.e. model predictions contain
large building blobs instead of separated building instances.
We propose an adversarial learning architecture to overcome
this issue. First, we generate obb-scribble masks (with neg-
ligible computational overhead) given image-scribble pairs.
It has promising characteristics including boundary straight-
ness and instance separation, characteristics that we would
like the model prediction to possess. Second, we take a U-Net
as a generator network and design a discriminative network
to regularize the generator so that its output gradually rese-
meble obb-scribble masks. We have conducted a number of
experiments to verify the effectiveness of our ScrGANmodel,
including sensitivities toward scribble instance number. Our
model is proved to have better segmentation performance
compared with a variety of baselines including the state-of-
the-art scribble-supervised algorithms on PASCAL Scribble
Dataset. We believe scribble-based methods can substan-
tially shorten annotation time and have the potential to be
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applicable for many other types of aerial image interpretation
tasks such as aerial object detection and crop management.
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