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ABSTRACT In CT image reconstruction, the limited angle problem is an ill-posed problem. To solve this
ill-posed problem, the total variation (TV) regularization has been widely used in image reconstruction.
In recent years, an algorithm based on TV regularization and alternating direction multiplier method
has been proposed and named as ADTVM. ADTVM can reconstruct high-quality images for the limited
angle problem. However, ADTVM just considers the homogeneity of image at different directions. In real
application, image possesses different properties at different directions. Therefore, we construct an adaptive
weighted TV (AwTV) regularization and propose the ADM-AwTV method on the basis of ADTVM.
ADM-AwTV is an iterative image reconstruction method which can reveal the anisotropy of image,
adaptively. In each iteration, the weights of different directions can update according to the last reconstruction
image. Experiments on two simulation images and one real projection data show that the proposed method
achieves better reconstruction results than the other iterative image reconstruction methods such as ART-TV
and ADTVM for the limited angle problem.

INDEX TERMS CT image reconstruction, limited angle, alternating direction method of multipliers,
adaptive weighted total variation.

I. INTRODUCTION
Computed tomography (CT) is a technique that uses a spe-
cial device to collect projection data from an object, and
then a reconstruction algorithms is used to obtain a tomo-
graphic image of the object [1]–[3]. The CT image, which
is used to detect the internal structure of target object with-
out damage [4], [5], is differ from the nature image, the
multispectral image and the hyperspectral image that just
can obtain the surface information of target object [6]–
[10]. For the image reconstruction algorithms, they can be
divided into two categories including analytical reconstruc-
tion and iterative reconstruction [11]. The analytic algorithm
needs the completeness of the projection data that must be
enough collected by the CT devices [12], [13]. The filtered
back projection (FBP) algorithm is a classic analytic method
that can quickly and accurately reconstruct the image with

the sufficient projection data [14]–[16]. However, in real
application, the CT devices are often affected by various
factors such as device characteristics, X-ray dose, special
requirements, etc., which cannot collect complete projec-
tion data, that is to say, they can only obtain the projec-
tion data at incomplete angles. The analytic algorithms with
incomplete angles often result in the artifacts with different
shapes, which seriously affect the quality of reconstructed
image [17], [18]. Therefore, the iterative algorithms were
proposed to reconstruct image with the incomplete projection
data in 1970s [19]–[21]. These algorithms can be used to
eliminate the artifacts with different iterative steps, such as
ART (algebraic reconstruction technique) [22] and MLEM
(maximum likelihood expectation maximization) [23], [24].
However, these methods cost much running time for the large
number of iterations.
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In recent years, the compressive sensing (CS) theory
has been widely used in signal or image reconstruc-
tion [25]–[30]. For the signal reconstruction, we can use a
few information to well recover the signal, and some classic
methods includes orthogonal matching pursuit (OMP) [31],
orthogonal least squares (OLS) [32], and lp-minimization
problem [33]. For the image reconstruction, the discrete
image with a small amount of sampling can be accurately
recovered with a CS algorithm, such as prior image con-
strained CS (PICCS) and its improved methods [34]–[36].
The total variation (TV) minimization is a regularization
method that uses the idea of CS theory [37]–[39]. TV is
often used to optimize various image reconstruction algo-
rithms in recent years [40]–[43]. Shahid et al. [44] and
Wang et al [45] proposed some total variationmethods based
on the graph structures, and these methods achieved satisfac-
tory results for tomographic reconstruction. Wang et al. [46]
designed a reweighted anisotropic TV to better solve the
limited-angle CT image reconstruction. Chen et al. [47] gen-
erated a dynamic PET image reconstruction method based on
the low-rank and sparsematrix decomposition. Du et al. [48],
Wang [49], andWang et al. [50] proposed a sparse optimiza-
tion algorithm that combines the total variation minimization
and the alternating direction method, termed ADTVM. With
the idea of alternating direction [51]–[54], ADTVM divides
the image reconstruction problem into several sub-problems.
Firstly, the TV model [55]–[57] is transformed into an
equivalent optimization problemwith constraint through vari-
able substitution. Then, the augmented Lagrange multiplier
method is used to decompose the original problem into
two sub-problems for obtaining analytic solution. Finally,
the alternating direction method is used to minimize the
augmented Lagrangian function and obtain a reconstruction
image. ADTVM can obtain better image for the limited angle
problem. However, the algorithm considers that the image
possesses the same property in different directions, which
cannot effectiveness representation the differences of differ-
ent direction.

In recent years, many reconstruction algorithms based on
new TV regularization have been proposed [46], [58], [59].
To reveal the anisotropy of image, we improved the TV reg-
ularization in ADTVM and proposed an adaptive weighted
TV algorithm based on ADMTV, called ADM-AwTV. This
method possesses different weights in different directions,
and the weights are adaptively obtained from each iterative
image to represent different properties of image in different
directions. With the improvement of TV model, some experi-
ments for multiple image reconstruction demonstrate that the
proposed algorithm can obtain better reconstructed accuracy
and faster convergence speed in limited angles comparedwith
two related methods.

The remainder of the paper is organized as fol-
lows: In Section II, we summarize some related theories
including compressed sensing, TV regularization, ADMM.
Then, the proposed ADM-AwTV method is descripted in
Section III. In Section IV, some experiments are conducted on

two phantom images and one real projection data, and some
classical algorithms is used to demonstrate the effectiveness
of the proposedmethod for the limited angle problem. Finally,
in Section V, we draw the conclusions of this paper as well as
an outlook for the future work.

II. RELATED WORKS
In this section, we first introduces the basic theoretical knowl-
edge about CS used in CT image reconstruction. Then,
we introduces the TV regularization and alternating direction
method of multipliers (ADMM) to generate the ADTVM
method.

A. COMPRESSIVE SENSING (CS)
In 2006, Donoho [60] proposed the theory of compressed
sensing. The theory considers that a signal can be recov-
ered by a small number of samples that are very sparse in
high probability and accurately with a series of operations.
In medical CT, the compressed sensing technique can shorten
the acquisition time of projection data, so that the patients
are just exposed to X-rays in a shorter time. Therefore, with
the CS reconstruction methods, the diagnosis process is safer
and more reasonable, and the data storage space and the
transmission time will be reduced.

According to CS, the image reconstruction method can be
defined as the following minimum problem a constraint.

min
f
|9f |l1

s.t. p = Wf (1)

where 9 is the sparse transform and f is the vector of the
target image. The matrixW is a system matrix describing the
X-ray projection measurements. p is the line integral value
sampled by the device—the projected sinogram vector in CT.
Since CS image reconstruction is to reconstruct the sparse
image possessing the minimized l1 norm, it is necessary to
find a sparse transform to sparsely represent the informa-
tion of an image. There are three types of sparse transform
methods including DCT (discrete cosine transform), DWT
(discrete wavelet transform), and DGT (discrete gradient
transform).

In CT image reconstruction, the image approximately
tends to the characteristics of continuous slices, in which the
gradient of the image is sparse, so that we can use the DGT
to represent the reconstructed image, and the minimized total
variation of the image is used to restore the image with high
probability and accuracy.

B. TOTAL VARIATION (TV) REGULARIZATION
Regularization is essentially to address an ill-posed objective
function, which adds a regular term after this function tomake
the ill-posed problem become well-posedness. Image recon-
struction is an inverse problem, while the image reconstruc-
tion based finite angle is an ill-posed problem. Therefore,
the finite reconstruction problem can be effectively solved by
using regularization.
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The linear equations for image reconstruction can be rep-
resented as the following.

Wf = p (2)

Generally, the solution can be obtained by ‖Wf − p‖2.
However, this problem for the finite angle is ill-posed. There-
fore, a penalty is added after the objective function to obtain
a well-posed objective function, and the function can be
denoted as the following.

C� = ‖Wf − p‖22 + α� (f ) (3)

where α > 0 is the regularization parameter. �(f ) is the
regularization function and can be defined as TV.

�(f ) = ‖f ‖TV =
∫
πf

∣∣∇f ∣∣ dxdy = ∫
πf

√
f 2x + f 2y dxdy (4)

where TV is the integral of the gradient value of image. πf is
the range of image. fx and fy are the partial derivative of
image.

C. ADMM
ADMMwas proposed in the 1970s, and it was originally used
to solve partial differential equations. In 2011, Boyd et al.
[61] demonstrate that ADMM is suitable for the optimization
of large-scale distributed problems. It has been widely used
in machine learning for the convex optimization problems
with constraints. ADMM can divide a large problem, which
is difficult to obtain the optimized solution, into several sub-
problems. Then the solution of the original problem can be
obtained by solving these sub-problems, alternately.

ADMM is an augmented Lagrangian multiplier method.
Therefore, an augmented Lagrangian function can be con-
structed, and the alternating direction is used to solve the
function. For example, a convex optimization problem can
be expressed as:

min
x,y

f (x)+ g(y), s.t.Ax + By = b (5)

The Lagrangian function for this problem is:

L(x, y, λ) = f (x)+ g(y)− λT (Ax + By− b)

+
c
2
‖Ax + By− b‖22 (6)

To solve this problem without the alternating direction
method, the Lagrangian function can be solved as follows:{

(xk+1, yk+1) = argmin
x,y

L(x, y; λk )

λk+1 = λk − c(Axk+1 + Byk+1 − b)
(7)

After using the alternating direction method, the optimized
problem can be divided into the following sub-problems:

xk+1 = argmin
x
L(x, y; λk )

yk+1 = argmin
y
L(x, y; λk )

λk+1 = λk − c(Axk+1 + Byk+1 − b)

(8)

D. ADTVM
According to the TV regularization, the optimization function
can be denoted as the following with a constraint.

argmin�(f ) = min ‖f ‖TV
s.t. ‖Wf − p‖ ≤ ε (9)

where ε is a constant indicating the error between the com-
putational projection data and the real projection data.

For the TV optimization problem, it is very difficult to find
the optimization solution. To address this problem, the TV
model can be transformed as a sparse optimization prob-
lem with two difference operators. The alternating direction
method can be used to solve the sparse optimization algorithm
and the ADMTV method can be constructed. Therefore,
the TV optimization problem can be represented as:

argmin ‖f ‖TV = min
∑
i

‖Dif ‖1

s.t. ‖Wf − p‖ ≤ ε (10)

where Di is the difference operator matrix in a direction.
Let ui = Dif , and the sparse optimization problem can be

denoted as:

argmin
∑
i

‖ui‖1

s.t. ‖Wf − p‖ ≤ ε, ui = Dif (11)

The Lagrangian function of the sparse optimization can be
constructed as follows:

L(f , ui, vi, λ)

=

∑
i

(
‖ui‖ − vTi (Dif − ui)+

βi

2
· ‖Dif − ui‖22

)
− λT (Wf − p)+

µ

2
· ‖Wf − p‖22 (12)

where βi and µ are the parameters to control the weight, and
vi and λ are two Lagrangian multipliers vectors.

According to ADMM, the Lagrangian function can be
divided into ‘‘u-subproblem’’ and ‘‘f -subproblem’’ by sep-
arating the variables ui and f .

min
ui

L(ui)

=

∑
i

(
‖ui‖1 − v

T
i (Dif − ui)+

βi

2
· ‖Dif − ui‖22

)
(13)

min
f
L(f )

=

∑
i

(
−vTi (Dif − ui)+

βi

2
· ‖Dif − ui‖22

)
− λT (Wf − p)+

µ

2
· ‖Wf − p‖22 (14)

The ‘‘u-subproblem’’ can be solved using the iterative soft
thresholding function. The ‘‘f -subproblem’’ sets the partial
derivative of f to zero. Then, the optimization solution can
be obtained by updating ui, f and two Lagrangian multipliers
vi and λ, alternately.
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III. METHODOLOGY
For the ill-posed problem in CT image reconstruction, the
classical method is to add a regularization term. The ADTVM
algorithm combines the TV regularization and the ADMM
method, which has a good effect for the limited angle
problem. This method just considers the image has the same
property in different directions. However, in real image,
it generally possesses different properties in different direc-
tions. Therefore, we can set different weights in different
directions to reveal the anisotropy of image. To adap-
tively represent the anisotropy, we propose the ADM-AwTV
method by obtaining the weights of different directions,
adaptively.

A. AWTV REGULARIZATION
According to the TV regularization, the difference operators
of the TV model has the same value, which indicates that this
TVmodel possesses the isotropy for the reconstructed image.
To represent the anisotropy of image, we propose an adaptive
weighted TV for image reconstruction, and the AwTV can be
defined as the following.

9 (f ) = ‖f ‖AwTV =
∫
πf

∣∣∇f ∣∣Aw dxdy
=

∫
πf

√
(Ax fx)2 + (Ayfy)2dxdy (15)

where Ax and Ay are the adaptive weights of x-direction and
y-direction. To reduce the computational complexity, we use
the summation of the absolute of different difference values
in different directions to simplify the AwTV model, and we
can obtain the new representation of AwTV.

9 (f ) = ‖f ‖AwTV =
∫
πf

∣∣∇f ∣∣Aw dxdy
≈

∫
πf

|Ax fx | + |Ayfy|dxdy (16)

For the discrete model, the AwTv can be denoted as the
following.

9 (f ) = ‖f ‖AwTV = ||A1D1f ||1 + ||A2D2f ||1

=

2∑
i=1

||AiDif ||1 (17)

where i is the difference direction. Ai is a diagonal matrix and
its diagonal elements denote the adaptive weights. Di is the
difference operator matrix.
For a 2-dimension image, each diagonal value in the adap-

tive matrix is defined as:

A1,i = ω(gi,j, gi−1,j) (18)

A2,i = ω(gi,j, gi,j1) (19)

where the weight function can be denoted as

ω(a, b) = e
−(a−b)2

σ2 (20)

where σ is a parameter to control the smoothness of edge and
the resolution of the reconstructed image. If σ is too large, the
weights may tend to have the similar value, and the quality
of reconstruction image based AwTV will be similar to the
normal TV. If σ is too small, the weights may be very small in
a direction, and the reconstruction image may generate some
artifacts. Therefore, it is very important to select a proper
value.

B. ADM-AWTV MODEL
According to AwTV and ADMTV, we combine AwTV and
ADMM to construct the ADM-AwTVmethod. The objection
function can be denoted as:

f ∗ = argmin ‖f ‖ AwTV

= argmin
2∑
i=1

||AiDif ||1

s.t. p = Wf (21)

where D1 and D2 denote two difference operator matrices
on the horizontal and vertical directions. A1 and A2 are the
adaptive weights on the horizontal and vertical directions.

Let Bi = AiDi, the objective function of (21) can be
rewritten as the following.

f ∗ = argmin ‖f ‖ AwTV

= argmin
2∑
i=1

||Bif ||1

s.t. p = Wf (22)

where Bi is the adaptive weighted difference operator, which
can reveal the anisotropy of reconstruction image.

C. OPTIMIZATION
For the optimization problem of the ADM-AwTV, we can
use ADMM to obtain the optimized solution. Let ui = Bif ,
the problem of (22) can be denoted as

min
2∑
i=1

||ui||1

s.t. p = Wf , ui = Bif (23)

With this sparse optimization problem, we can construct the
Lagrangian function of (23) as:

L(f , ui, vi, λ)

=

∑
i

(
‖ui‖ − vTi (Bif − ui)+

βi

2
· ‖Bif − ui‖22

)
− λT (Wf − p)+

µ

2
· ‖Wf − p‖22 (24)

where βi and µ are the parameters. vi and λ are two
Lagrangian multipliers vectors.

With the Lagrangian function, we can divide the sparse
optimization problem of (24) into two subproblems, and they
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can represented as

min
ui

L(ui)

=

∑
i

(
‖ui‖1 − v

T
i (Bif − ui)+

βi

2
· ‖Bif − ui‖22

)
(25)

min
f
L(f )

=

∑
i

(
−vTi (Dif − ui)+

βi

2
· ‖Dif − ui‖22

)
− λT (Wf − p)+

µ

2
· ‖Wf − p‖22 (26)

To obtain the optimized solution, we adopt the alter-
nate iteration method to solve the subproblems. For the
‘‘u-subproblem’’, we use the iterative soft thresholding func-
tion to solve the l1 optimization problem, which is a shrink-
age operator shrinkage(u, a) = max{|u| − a, 0}sign(u),
where sign(u) is the sign function. Then, we can obtain the
(k + 1)-th iteration of (25).

uk+1i = shrinkage(Bki f
k
− vki /βi, 1/βi)

= max

{∣∣∣∣∣Bki f k− vkiβi
∣∣∣∣∣− 1
βi
, 0

}
sign(Bki f

k
−
vki
βi
) (27)

For the ‘‘f -subproblem’’, we set the partial derivative of f to
zero, and the iteration function of (26) can be denoted as:

f k+1 =

(∑
i

βi(Bki )
TBkii + µW

TW

)+

×

(∑
d

∑
i

(
(Bki )

T vki + βi(B
k
i )
T uk+1i

)
+W Tλk + µW T p

)
(28)

For the Lagrangianmultipliers vectors of (24), the updating
in each iteration can be represented as:

vk+1i = vki − βi
(
(Bki )

T f k+1 − uk+1i

)
λk+1 = λk − µ

(
Wf k+1 − p

)
(29)

For the adaptive weighted difference operator of (22),
the updating is defined as:

Bk+1i = Ak+1i Di (30)

The adaptive weights of (18) and (19) are denoted as the
following updating.

Ak+11,j = ω(g
k+1
i,j , g

k+1
i−1,j) (31)

Ak+12,j = ω(g
k+1
i,j , g

k+1
i,j−1) (32)

where gk+1 is the 2- dimension form of f k+1.

IV. EXPERIMENTS AND RESULTS
In this section, we will evaluate the performance of
the ADM-AwTV algorithm under several limited angles.
To demonstrate the effectiveness of our method, we will
compare the proposed method with several other algorithms
based on TV regularization including ART-TV and ADTVM,
and the algorithms are conducted with the toolbox from
http://web.eecs.umich.edu/∼fessler/irt/irt/. At the same time,
we will conduct some experiments on two simulation images
and a real projection data. All the algorithms in the experi-
ment were programmed using MATLAB language. The run-
ning software was MATLAB R2017b, and all experiments
use the fan beam to obtain the projection matrix.

A. EVALUATION INDEX
In the simulation experiment, we use the Shepp-Logan phan-
tom constructed by the computer as the original image
(ground truth), and input the sinusoidal image generated
by the phantom to each reconstruction algorithm. To evalu-
ate the reconstruction effect of each algorithm, we calculate
the root mean square error (RMSE), peak signal-to-noise
ratio (PSNR), and structural similarity index (SSIM) between
the reconstructed image and the original image [55]. The root
mean square error is defined as follows:

RMSE =

√√√√√ N∑
i=1

(
xi_rec − xi_ori

)2
N

(33)

where N is the total number of pixels in the original image,
xi_rec and xi_ori represent the i-th pixel values of the recon-
structed image and the original image, respectively. The
smaller the RMSE value is, the reconstructed image is closer
to the original image, and the better the reconstruction
result is.

The PSNR is defined as follows:

PSNR = 10 log10

[
(2n − 1)2

RMSE2

]
(34)

where n is the gray level of the image, it is 256 in general.
The larger the PSNR value is, the reconstructed image is more
similar to the original image.

The definition of SSIM is as follows:

SSIM =
(2µAµB + c1)(2σAB + c2)

(µ2
A + µ

2
B + c1)(σ

2
A + σ

2
B + c2)

(35)

where µA and µB are the average pixel values of the
reconstruction image and the original image, respectively.
σA and σB are the variances of the reconstruction image
and the original image, respectively. σAB is the covariance
between the reconstruction image and the original image. c1
and c2 are the constants used to stabilize the formula, and
c1 = (k1L)2, c2 = (k2L)2, L is the dynamic range of pixel
values, k1 = 0.01, k2 = 0.03. The value of SSIM is from 0
to 1. If the value is closer to 1, the reconstructed image has
more similar structure to the original image.
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B. SIMULATION EXPERIMENTS
The system parameters that need to be used in the simulation
experiment are listed in Table 1.

TABLE 1. Simulation system parameters.

1) SIMULATION IMAGE 1
To compare the reconstruction quality of various algorithms,
we can obtain the reconstruction image at three limited angles
including 90◦, 120◦ and 150◦, and the results are shown
in Figure 1.

FIGURE 1. Reconstruction results of different algorithms for three limited
angles with 100 iterations on the simulation image 1, where the first to
third column are for the limited angles of 90◦, 120◦, and 150◦,
respectively; the first row is the reconstruction results of ART-TV,
the second row is the reconstruction results of ADTVM, and the third row
is the reconstruction results of ADM-AwTV.

According to Figure 1, the classic ART-TV algorithm has
serious artifact in the reconstruction image at the limited
angle of 90◦. With the increasing of angle, the degree of arti-
fact will gradually decrease, and the artifact is not completely
eliminated even when the angle is increased to 150◦. Com-
pared with ART-TV, the reconstruction effect of ADTVM
at limited angles has a certain improvement, but the recon-
struction image still has artifacts at different limited angles.
This artifacts also decrease when the scan angle increases.

When the limited angle reaches 150◦, the reconstruc-
tion image just has slight artifacts. Under the same lim-
ited angles, the proposed ADM-AwTV method shows the
best reconstruction results than the other methods, because
ADM-AwTV considers the anisotropy of image and con-
structs the adaptive weights on different directions.

To analyze the results of each algorithm, Table 2 shows
the RMSE of each reconstruction image at different limited
angles with 100 iterations.

TABLE 2. RMSE of different methods at different limited angles.

TABLE 3. PSNR of different methods at different limited angles.

TABLE 4. SSIM of different methods at different limited angles.

According to Table 2, 3, and 4, the RMSE of ADM-AwTV
is significantly smaller than ART-TV and ADTVM under
the same limited angles, because AwTV can better reveal
the anisotropy of image than the traditional TV. In addition,
the PSNR and SSIM of ADM-AwTV are also superior to
other two algorithms.

Figure 2 shows the RMSE of three algorithms with respect
to the number of iterations at limited angles of 90◦, 120◦, and
150◦ with 100 iterations.
In Figure 2, it can be clearly seen from the partial enlarged

detail that our method has faster convergence characteristics
than the other algorithms. The RMSE decreases with the
increasing of the number of iterations, and the ADM-AwTV
has the smallest RMSE compared with ART-TV and
ADMTV.

The center profile contrast experiment is usually used to
compare the difference between the reconstructed image and
the original image, and the center profile includes transverse
center profile and longitudinal center profile. Figure 3 shows
the center profiles of the reconstruction image in Figure 1.
The results show the center profiles of the proposed method
is the best similar to the original center profile at different
limited angles.
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FIGURE 2. RMSE of ART-TV, ADTVM, and ADM-AwTV with respect to different numbers of iteration at different limited angles on the simulation
image 1. From the first to third column, the limited angle is set to 90◦, 120◦, and 150◦. The second row is the partial enlarged detail of the first row.

FIGURE 3. Center profiles of the reconstruction image with various algorithms at different limited angles on the simulation image 1. The first row is the
transverse center profile comparison, and the second row is the longitudinal center profile comparison. From the first to third column, they are the
reconstruction image at the limited angles of 90◦, 120◦, and 150◦, respectively.

2) SIMULATION IMAGE 2
To further reveal the effectiveness of the proposed methods,
we used another simulation image to conduct the experiment

and termed it as simulation experiment 2. We also uses three
limited angles, including 90◦, 120◦, and 150◦, to perform the
image reconstruction with different methods in Figure 4.
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FIGURE 4. Reconstruction results of different algorithms for three limited
angles with 100 iterations on the simulation image 2, where the first to
third column are for the limited angles of 90◦, 120◦, and 150◦,
respectively; the first row is the reconstruction results of ART-TV,
the second row is the reconstruction results of ADTVM, and the third row
is the reconstruction results of ADM-AwTV.

From Figure 4, with the increasing of the scanning angle,
the artifacts are gradually weakened. When the scanning
angle is small, the reconstruction results of ART-TV have
serious artifacts, and even the limited angle is 150◦, there
still exists a large number of artifacts in the reconstruction
image. TheADMTVandADM-AwTVmethods generate bet-
ter results than ART-TV in all conditions. Under the limited
angle of 150◦, ADM-AwTV and ADMTV obtains the similar
reconstruction image. However, the reconstruction image of
ADM-AwTV is superior to ADMTV and there is almost
no artifacts for ADM-AwTV at the small scanning angle
of 90◦, which indicates that the proposed method has better
performance of image reconstruction under a small scanning
angle.

TABLE 5. RMSE of different algorithms under limited angles.

To analyze the quantitative results, Table 5, 6 and 7 display
the RMSE, PSNR and SSIM of each image reconstructed
algorithm at different limited angles with 100 iterations.

From Table 5, 6, and 7, we can draw the same conclu-
sion as the simulation image 1. The reconstruction result of
ADM-AwTV is better than that of ART-TV and ADTVM in
most conditions.

TABLE 6. PSNR of different algorithms under limited angles.

TABLE 7. SSIM of different algorithms under limited angles.

Figure 5 shows the relationship of RMSE and the number
of iterations. In the partial enlarged figure, ADM-AwTV and
ADMTV have better RMSE than ART-TV, and the proposed
ADM-AwTV method achieves the best results at the limited
angles of 90◦, 120◦, and 150◦.
To better show the difference between the reconstruc-

tion and the original image, the center profiles of Figure 4
are shown in Figure 6. The center profiles of ART-TV
method exists a larger difference than that of the original
image. The proposed method generates the best similar trans-
verse and longitudinal center profiles to the ground truth
image.

C. REAL PROJECTION DATA
For the difference of the projection data of the simulation
image, the real projection data is obtained by scanning the
real object with the CT system. The real projection data of this
paper is from the scanning of a certainmechanical component
with the industrial CT system. Therefore, the parameters
of the CT system are different from the system parameters
used in the previous simulation experiments, and the system
parameters are listed in Table 8.

TABLE 8. System parameters for an industrial CT system.

The projection datum of the limited angles are extracted
from the completed sonogram that is obtained by select-
ing 1024 angles at equal intervals under the scanning angle
of 360◦ for a real mechanical component with an industrial
CT system, and the size of the projection data is 1024×1024.
For the limited angle problem, we continuously select some
angles from the 1024 angles according to the ratio of different
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FIGURE 5. RMSE of ART-TV, ADTVM, and ADM-AwTV with respect to different numbers of iteration at different limited angles on the simulation
image 2. From the first to third column, the limited angle is set to 90◦, 120◦, and 150◦. The second row is the partial enlarged detail of the first row.

FIGURE 6. Center profiles of the reconstruction image with various algorithms at different limited angles on the simulation image 2. The first row is
the transverse center profile comparison, and the second row is the longitudinal center profile comparison. From the first to third column, they are
the reconstruction image at the limited angles of 90◦, 120◦, and 150◦.

limited angles to 360◦. Therefore, 90◦ is about 256 angles,
120◦ is approximate to 341 angles, and 150◦ is approximate
to 427 angles.

In Figure 7, it shows the reconstruction results of the three
algorithms with 100 iterations at different limited angles.
From the reconstruction results, it can be seen that the
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FIGURE 7. Reconstruction results of different algorithms for three limited
angles with 100 iterations on the real projection data, where the first to
third column are for the limited angles of 90◦, 120◦, and 150◦,
respectively; the first row is the reconstruction results of ART-TV,
the second row is the reconstruction results of ADTVM, and the third row
is the reconstruction results of ADM-AwTV.

reconstruction results of ADTVM and ADM-AwTV are bet-
ter than that of ART-TV under the same limited angle.
ART-TV has larger black artifacts at a limited angle, which
seriously affects the quality of reconstructed images. The
proposed ADM-AwTV method has better edges and weaker
artifacts at the limited angles of 90◦ and 150◦, especially in
the outer edge regions of the mechanical component.

V. CONCLUSION
In this paper, we propose a CT image reconstruction algo-
rithm based on ADMM and AwTV regularization and test
the algorithm for the limited angle problem. Our algorithm
is an improved algorithm of ADTVM, and we construct an
adaptive weighted TV model which can adaptively reveal the
anisotropic of image. In each iteration, the weights on dif-
ferent directions can update based on the last reconstruction
image. The experiments on two simulation images and a real
projection data demonstrate that the proposed algorithm has
better reconstruction result than other algorithms for the lim-
ited angle problem. Although the proposed method achieves
better results on the simulation image, it doesn’t generate an
obvious superiority for the real projection. Therefore, we will
further improve the robustness of the TVmodel for the future.
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