
Received September 7, 2018, accepted September 27, 2018, date of publication October 5, 2018, date of current version October 29, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2874057

Performance Analysis of Packets Offloading
Scheme Based on Software-Defined Open
HetNets Platform
GUANGZHONG LIU AND JIANXIN JIA
College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China

Corresponding author: Jianxin Jia (jmakg23@163.com)

ABSTRACT Following the huge popularization of smartphones and the ensuing explosion of mobile
data traffic, cellular networks (LTE) are currently overloaded and this is foreseen to worsen in the near
future. While operators continue to rely on their cellular networks to provide wide-area coverage, they
are eager to find complementary alternatives to ease the mobile data traffic pressure, especially in areas
where subscriber density is very high. Recently, different solutions have been proposed to overcome this
problem. Among those solutions, WiFi offloading is the most promising technique for addressing the
mobile data explosion issue. However, the LTE-WiFi heterogeneous (HetNets) feature not only complicates
the traffic offloading scheme design, but also imposes significant challenges in system-level simulations
and evaluations. Lack of innovations in offloading schemes and in simulation techniques will no doubt
slow down the evolving and standardization process of next generation cellular systems. Therefore, in this
paper, based on the software-defined open HetNets platform, we propose an analytical model to analyze
the dual path packets offloading scheme in realistic LTE-WiFi HetNets scenario. Specifically, we first
construct the software-defined open HetNets platform. Based on the open HetNets platform, we propose
an analytical model for packets offloading in LTE/WiFi HetNets scenario, and derive the mean transmission
delay, offloading efficiency, and other metrics of interest, as a function of the key network parameters. The
offloading experiment results have verified the accuracy of our analytical model, which shed new light on
key aspects of the offloading scheme in LTE-WiFi HetNets.

INDEX TERMS LTE-WiFi HetNets, analytic model, offloading scheme, open HetNets platform,
software-defined.

I. INTRODUCTION
We have witnessed an unbelievable growth in telecommu-
nication network traffic, particularly in the mobile network
sector. In a recent report, CISCO has claimed that the global
mobile data traffic has reached 2.5 exabytes per month at the
end of 2014, and it will continue to grow to 24.3 exabyte per
month by 2019. This rapid data traffic growth is driven by the
proliferation of wireless smart devices and the popularity of
media-rich wireless applications [1].

The explosive growth of data traffic brings a great bur-
den to the cellular network (especially in metro areas) and
causes a significant degradation of user experience. To alle-
viate this issue, many new techniques have been intro-
duced for long-term evolution (LTE) and LTE-Advanced
networks, such as massive multiple-input multiple-output
(MIMO), Heterogeneous Networks (HetNets) with WLANs

(i.e., LTE-WiFi HetNets scenario), direct device-to-device
communications, etc. Among these cutting-edge tech-
niques [2], WiFi offloading, which is a cost-effective wireless
access technology, is considered as a promising solution for
addressing the mobile data explosion problem, in which the
mobile data traffic is offloaded through WiFi networks in
spatially overlapped WiFi and cellular networks [3].

In general, the state of the art WiFi offloading tech-
niques can be classified into three main types, which include
the opportunistic offloading, multipath offloading, and the
delayed offloading [4]. For the first offloading type, as shown
in Fig.1 (1), data offloading is conducted only when a user
opportunistically connects to WiFi networks. For the sec-
ond offloading type, as depicted in Fig.1 (2), two packets
transmission paths aremaintained, the packets are transmitted
seamlessly across two network interfaces at the same time by

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

57933

https://orcid.org/0000-0002-2323-2264


G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 1. Illustrations of three WiFi offloading techniques.

means of simultaneous connections. For the third offloading
type, as illustrated in Fig.1 (3), when theWiFi signal coverage
is unavailable, packets transmission is delayed by adding
a delayed period of d . During the delay period, the data
traffic is offloaded to the WiFi network once the connection
becomes available. However, if no connection is available
during the delayed period, the cellular network connection
is constructed to transmit the packets [5]. We can see that
the first offloading type is the special case of the second
offloading type and the third offloading type is the special
case of the first offloading type. In this paper, we mainly
focus on the first type offloading technique and the second
type offloading technique in particular.

Fig.2 illustrates the typical WiFi offloading scenario
in LTE-WiFi HetNets networks where WiFi Access
Points (APs) and cellular eNBs are sparsely deployed. Note
that some APs deployed within the cellular coverage and
some APs are overlaid with the cellular cells. As previ-
ously mentioned, the dual-path offloading and the single
path offloading techniques are considered in this paper. The
detailed procedures of each offloading technique can be
described as follows.

Assume a scenario where a UE starts to establish a data
session to download/upload a file from/to the Internet at
timetthrough the cellular networks (i.e., the blue circle).
As UE moving, for the single path packets offloading, if a
WLAN is available (i.e., the red circle), it establishes the
data session only through the WiFi network. While for the
dual-path offloading, when the UE moves into the overlaid
areas, it simultaneously uses the LTE-WiFi network immedi-
ately [3]. SeveralWiFi offloading studies have been proposed
to describe the above-mentioned offloading techniques in a
mathematical way and have been validated by the network
simulators. However, those simulators were implemented
based on partial 3GPP standard and partial 802.11 standard
for the sake of simplicity. In addition, those simulators use the
virtual Base station (include eNB and WiFi AP) and virtual
UE to conduct the LTE-WiFi HetNets offloading experiment.
Therefore, the experiment results obtained from those simu-
lators are not accurate when it comes to the real scenario.

FIGURE 2. The LTE-WiFi HetNets scenario.

A. MOTIVATION
To this end, a software-defined open HetNets platform
presented in this study is proposed as an innovative
re-configurable platform which overcomes the limitations
of state-of-the-art network simulators to support the WiFi
offloading technique validation in real LTE-WiFi HetNets
scenario. To be specific, the novel HetNets platform is con-
structed based on the software-defined open wireless plat-
form (i.e., for WLAN), which is totally implemented based
on 802.11 protocol, and the software defined open LTE plat-
form, which is totally implemented based on 3GPP protocol,
proposed in our previous research [6], [7]. In order to make
our paper’s main motivation more clearly, we utilize the
motivation flow shown in Fig.3 to summary what we have
presented.

B. OUR CONTRIBUTIONS
To sum up, the goal of this paper is first to construct the
software-defined open HetNets platform, and then to analyze
and characterize the performance of the packets offloading
scheme in LTE-WiFi HetNets scenario. In particular, themain
contributions of our work can be summarized as follows:

• Based on the software-defined open WiFi plat-
form [6] and the software-defined open LTE plat-
form 7] proposed in our previous research, we propose
a software-defined open HetNets platform which is
composed by the enhanced EPC (Evolved Packet
Core), the software-defined open WiFi platform, and
the software-defined open LTE platform. Specifically,
we first construct an initial version enhanced EPC
including four modules which are the Virtual Upper
MAC module, the Offloading Engine module, and two
Offloading Observing Window modules. We then do
some optimizations for the initial version and evolve it

57934 VOLUME 6, 2018



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 3. The motivation flow of why introducing the SD-based HetNets
platform for the WiFi offloading issue.

to the optimal version. Finally, we conduct the pressure
testing experiment for the HetNets platform to check
out the maximum throughput that can be supported
by it.

• Based on the software-defined open HetNets platform,
we construct a simple scenario where the UE can choose
between the WiFi and the LTE technology, and derive
general formulas, as well as simpler approximations,
for the expected transmission delay and offloading effi-
ciency.

• Based on the software-defined open HetNets platform,
the accuracy of the analytical results is verified through
the packets offloading experiment under real LTE/WiFi
HetNets scenario. Specifically, we validate our model in
scenarios where most parameters of interest are taken
from real measured data. The analytical model proposed
in this paper can provide the operator with a powerful
tool for tuning the system parameter in such a way as
to satisfy the users’ transmission requirements while
simultaneously maximizing the network capacity in the
LTE/WiFi HetNets scenario.

C. OUTLINE OF THE PAPER
The remainder of this paper is organized as follows.
We briefly review the related works and the state of the art in
Section II. In section III, the construction process of the soft-
ware defined open HetNets platform is described. In section
IV, based on the software-defined open HetNets platform,
the packets offloading scheme with closed-form expressions
is derived. Section V provides experiment evaluations with
verifications to the analytical results. Finally, Section VI pro-
vides concluding remarks and future directions.

II. RELATED WORK
To alleviate the traffic burden of cellular networks, mobile
operators started adopting data offloading strategies. These
solutions involve diverting part of the data traffic from the
cellular network, to an alternative path. Inmany cases,WiFi is
used to bear this traffic, because there are already a large num-
ber of WiFi access points deployed at homes and throughout
cities (e.g., the scenario shown in Fig.2). These access points
could be owned by the mobile operator itself or could be
accessed upon agreements between operators and other busi-
nesses. Thus, researchers and companies have devised several
mobile data offloading schemes using WiFi. These solutions
usually use only one of simultaneously available networks,
which can be categorized as single-path schemes. As an
alternative approach, data offloading can also be performed
using multipath schemes. In this case, several networks can
be used simultaneously. However, this functionality cannot be
implemented using current standard Internet protocols. Con-
sequently, either new protocols or extensions to existing ones
must be considered [8].

According to the survey reported in Rebecchi et al. [9],
the issue of offloading IP flows originally via cellular net-
works to intermittently-connected WiFi networks has gained
great attention in recent years. There have been considerable
research efforts to exploit the offloading schemes to migrate
data traffic from cellular networks toWiFi networks [10].

A quantitative study on offloading cellular traffic to WiFi
networks has been presented in [11]. Bennis et al. [12] have
developed a distributed cross-system learning framework to
improve the cellular throughput by offloading data traffic
to WiFi networks. Lee et al. [11] conducted experiments
that capture 100 smartphone users’ WiFi usage patterns
to investigate the amount of traffic that can be offloaded.
Gao et al. [13] analyzed the interaction for the amount of
offloading data and the respective compensations among one
cellular network operator and AP owners by using the Nash
bargaining theory. Han et al. [14] propose to exploit oppor-
tunistic WiFi communications for information spreading in
social networks. Their study is based on determining the
minimum number of users that are able to reduce maximally
the amount transmitted through the cellular network. The LTE
offloading into WiFi direct is subject of study in [15]. The
work in [16] is mainly concerned with studying the condi-
tions under which rate coverage is maximized, for random

VOLUME 6, 2018 57935



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

deployment of APs belonging to different networks. Contrary
to most of the other works, Lee et al. [17] consider the
situation in which cellular operators pay for using the AP
from third parties. They use game theory to consider different
issues, such as the amount of data and money a cellular oper-
ator should pay for utilizing the APs. In [18], a solution for
mobile data offloading between 3GPP and non-3GPP (e.g.,
WiFi) access networks is presented. A Wi-Fi based mobile
data offloading architecture that target the energy efficiency
for smartphones was presented in [19]. An interesting work
on determining the number of Wi-Fi APs that need to be
deployed in order to achieve a QoS is presented in [20].

Although all the above-mentioned schemes demonstrated
to work, none of them can use multiple interfaces simultane-
ously. Multipath transmission schemes can utilize multiple
interfaces at the same time. This is especially important
when ongoing transmissions confront changes in their cur-
rently used interface. With current Internet protocols, the
connection will be interrupted and transmitted data will be
likely lost. To avoid this interruption, and leverage the use
of multiple interfaces, several protocols were proposed [8].
Iyengar et al. [21] proposed Concurrent Multipath Transfer
(CMT), an extension to the Stream Control Transmission
Protocol (SCTP) for simultaneous transmission over multiple
interfaces. Koh et al. [22] further improved SCTP to support
traffic handover among interfaces. Hsieh and Sivakumar [23]
developed a protocol called pTCP for multihomed devices.
You et al. [24] presented an interesting multipath reference
architecture. They explained the basics of a generic archi-
tecture and multipath protocols design. Paasch et al. [25]
and Raiciu et al. [26] tested a new protocol called Multipath
TCP (MPTCP) in a LTE/WiFi scenario. They showed the
simultaneous transmission capability of the protocol over real
networks and unmodified applications.

To sum up, although the state of the art solutions improves
the efficiency of offloading in LTE-WiFi HetNets with
respect to the special setting of the offloading related parame-
ters, in these works, however, all users utilize the simulator to
validate their LTE-WiFi HetNets offloading analytical model
and evaluate the experiment results, which may not suitable
when it comes to the realistic scenario. To our best knowl-
edge, the experiment validation for the offloading analytical
model, which based on the realistic LTE-WiFi HetNet sce-
nario (i.e., software defined open HetNets platform) rather
than based on the simulator, has not been proposed in the
literature, which is one of themain contributions of this paper.

III. SOFTWARE-DEFINED OPEN HETNETS PLATFORM
A. SOFTWARE-DEFINED OPEN HETNETS
PLATFORM DESIGN
The main purpose of this section is to describe the archi-
tecture of the novel open HetNets platform. We first
give an overview of those modules integrated in the
platform including Virtual Upper MAC module, Offload-
ing Engine module, and Offloading Observing Window

module. We then analyze the functionalities and the inter-
actions among the Virtual Upper MAC module, Offloading
Engine module and Offloading Observing Window module
in depth.

The software architecture of the open HetNets platform is
depicted in Fig.4. The picture on the left-hand is the Evolved
Packet Core (EPC) and the picture on the right-hand is the
software defined user equipment (UE). In the EPC side,
the system is divided into two spaces including the kernel
space and the user space. As shown in Fig.4, there are two
modules in kernel space, one is the Upper Protocol Stack
module (i.e., the OS kernel) and the other is the Virtual
Upper MAC module. The Upper Protocol Stack module is
used for IP packets generation, and the Virtual Upper MAC
module is used for receiving the IP packets and then trans-
mitting IP packets to the Offloading Engine module located
in user space through Netlink. Besides, there are three mod-
ules in user space, which are the user application module,
the Offloading Engine module, and the Offloading Observing
Window module. The Offloading Engine module is used for
receiving the IP packets transmitted from the Virtual Upper
MAC module and then deciding which way to transmit those
packets to the Offloading Observing Window module. For
instance, if the Offloading Engine selects path number one,
then it writes the packets to the first transmission ring (i.e.,
TX1) and sends signal SIGRTMIN to the first Offloading
Observing Window module (i.e., Offloading Observing Win-
dow1). After Offloading Observing Window1 receives the
signal notified by the Offloading Engine, it will read the
TX1 and then send the packet to the air through the open
LTE platform (i.e., open LTE MAC and open LTE PHY).
If Offloading Engine selects path number two, then it writes
the packets to the second transmission ring (TX2) and sends
signal SIGRTMIN to the second Offloading Observing Win-
dowmodule (i.e., Offloading ObservingWindow2). After the
Offloading Observing Window2 receives the signal notified
by the Offloading Engine, it will read the TX2 and then
send the packet to the air through the open WiFi platform
(i.e., open WiFi MAC and open WiFi PHY). Inversely, if the
Offloading Observing Window1 receives packets from port2,
then it writes the received packet to the first reception ring
(i.e., RX1) and sends signal SIGRTMIN toOffloading Engine
to notify it is the right time to readRX1. In the sameway, if the
Offloading Observing Window2 receives packets from port1,
then it writes the received packet to the second reception ring
(i.e., RX2) and sends signal SIGRTMIN+1 to Offloading
Engine to notify it is the right time to read RX2. Here,
we give some brief descriptions to the signal mechanism
and the share-memory mechanism (i.e., the light blue rect-
angle shown in Fig.4). Since the Offloading Engine module
and those two Offloading Observing Window modules are
all threads when they are in running status, therefore it is
suitable to use the signal mechanism to conduct the thread
communication. Note that for Offloading Engine module, it
is easy to inform those two Offloading Observing Window
modules by sending signal SIGRTMIN. However, for the

57936 VOLUME 6, 2018



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 4. The software architecture of the open HetNets platform.

Offloading Engine module, it must use the distinguishable
signal to inform the Offloading Engine (i.e., SIGRTMIN
and SIGRTMIN+1). The SIGRTMIN and SIGRTMIN+1 are
two available signals in Linux systems, and those two sig-
nals belong to the available signal set defined in Linux
system. The share memory is allocated between the Offload-
ing Engine module and the Offloading Observing Window
module, it is used for buffering the sending packets from
Offloading Engine and the receiving packets fromOffloading
ObservingWindow. In section III.B and section III.C, we will
give the detailed descriptions for the signal mechanism and
the share-memory mechanism.

The remainder of this section is organized as follows. The
Virtual Upper MAC module is illustrated in section III.A.
In section III.B, we describe the Offloading Engine mod-
ule. In section III.C, we present the Offloading Observing
Window module. The detailed optimization process for the
open HetNets platform is illustrated in section III.D. Finally,

section III.E provides some experiment evaluations to the
optimized open HetNets platform.

B. VIRTUAL UPPER MAC MODULE
In this section, we first focus on analyzing the formation
process of the Upper Protocol Stack packets (i.e., IP packets)
and then demonstrating the detailed implementation process
of two key functions, which are the packets transmission (Tx)
function and the packets reception (Rx) function, located in
the Virtual Upper MAC module.

1) PREFACE
As shown in Fig.5, the functional hierarchical structure of the
open HetNets platform can be divided into eight layers. This
part mainly focuses on the top six layers and the rest two
layers (MAC and PHY) have been researched in our previous
works (i.e., the software defined open WiFi platform [6] and
the software defined open LTE platform [7]).

VOLUME 6, 2018 57937



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 5. Functional hierarchical structure of the open HetNets platform.

The Upper Protocol Stack (i.e., the TCP/UDP layer and the
IP layer), source of packets transmission and destination of
packets reception, is located in the Linux OS (Operating Sys-
tem) kernel. The fourth layer is the Virtual Upper MAC, and
the detailed information of Virtual UpperMAC is highlighted
in Fig.6. The network device driver in Virtual Upper MAC is
a collection of functions that can be compiled as part of the
Linux kernel; it is also a ‘‘C’’ program that controls a network
device. The network device driver is an important part of
Linux network application which follows common network
interface. For each network interface, the network device
driver uses a device data structure called ‘‘struct net_device’’

FIGURE 6. The Virtual Upper MAC module (i.e., the highlighted part).

to identify it. For generally speaking, the network device
is a physical device, such as the Ethernet card. However,
in our open HetNets platform, we construct a virtual net-
work device called ‘‘openhetnet0’’, which means there is no
need to insert any physical equipment. The ‘‘dev_queue_xmit
()’’ and ‘‘netif_rx ()’’ in Fig.6 are two key functions in
the device driver and they are also the interfaces between
the Upper Protocol Stack and the Virtual Upper MAC. The
dev_queue_xmit () is responsible for packets transmission
and the netif_rx () is responsible for packets reception. There-
fore, the main work of device driver function layer is to
implement these two key functions (i.e., Tx and Rx).

2) THE FORMATION OF THE UPPER PROTOCOL
STACK PACKETS
The packets in the Upper Protocol Stack exist in the form
of ‘‘sk_buff’’. The ‘‘sk_buff’’ is an OS kernel data type and
it is also the central nervous system of packets transmis-
sion in Upper Protocol Stack. The formation process of the
Upper Protocol Stack packet (i.e., IP packet) is shown from
Fig.7 to Fig.9.

FIGURE 7. The formation process of the Upper Protocol Stack packet:
(a)after ‘‘alloc_skb ()’’ and before ‘‘skb_reserve ()’’; (b) after
‘‘skb_reserve ()’’.

Fig.7 (a) demonstrates that the OS kernel first utilize the
function ‘‘alloc_skb ()’’ to provide enough data buffer. After
the function ‘‘alloc_skb ()’’ is finished, there will be four
pointers came out, which are the head pointer, the data
pointer, the tail pointer and the end pointer, respectively.
Shown in Fig.7 (a), the first three pointers point to the starting
position of the data buffer and the last one points to the ending
position of the data buffer. Then, the OS kernel uses the
function ‘‘alloc_reserve ()’’ to reserve a padding area and a
tail room. Shown in Fig.7 (b), the padding area is 2 bytes
in length, which is used for alignment. When the function
‘‘alloc_reserve ()’’ fulfil its own mission, the location of data
pointer and tail pointer will be changed. In Fig.7, we can also
see the Len filed of sk_buff is 0 with the reason that now the
data pointer and the tail pointer point to the same position.

57938 VOLUME 6, 2018



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 8. The formation process of the Upper Protocol Stack packet:
(c) when copying the TCP/UDP payload to the data buffer; (d) when
copying the TCP/UDP header to the data buffer.

In another words, the buffer length between the data pointer
and tail pointer equals to the value of Len filed.

Let Lpayload refers to the length of the TCP/UDP payload
and Ltuhdr refers to the length of TCP/UDP header, respec-
tively. As shown in Fig.8, theOS kernel first copies TCP/UDP
payload to the pink part and then copies TCP/UDP header to
the red part. Once the copy process is done, the location of the
data pointer and the value of the Len field will be changed.
The corresponding calculations are shown below.

L1 = Lpayload
L2 = Lpayload + Ltuhdr

sk_buff → data = data+ Lpayload + Ltuhdr (1)

Let Liphdr refers to the length of IP header. As shown in
Fig.9, the OS kernel first copies the IP header to the light
blue part and thenmakes the data pointer points to the starting
position of the IP header. Once the copy process is done,
the location of the data pointer and the value of the Len field
will be changed. The corresponding calculations are shown

FIGURE 9. The formation process of the Upper Protocol Stack packet
when copying the IP header to the data buffer.

as below.

L3 = Lpayload + Ltuhdr + Liphdr
sk_buff → data = data+ Lpayload + Ltuhdr + Liphdr (2)

Based on the above-mentioned procedures, we can note
that the upper protocol packet (IP packet) is made up of three
parts which are the light blue part (i.e., IP header), the red
part (i.e., TCP/UDP header), and the pink part (i.e., TCP/UDP
payload). Till now, we have illustrated the detailed formation
principle of the upper protocol stack packets in the OS kernel.
In next section, wewill give some descriptions for the two key
functions located in the Virtual Upper MAC module.

3) TWO KEY FUNCTIONS IN VIRTUAL UPPER MAC
Packets transmission and reception are two key functions in
the Linux network device driver, and whether these two pro-
cesses are good or bad directly affect the Upper MAC overall
running quality. As shown in Fig.6, the packets transmission
function ‘‘dev_queue_xmit ()’’ is the interface of the packets
transmission from the upper layers to the lower layers. The
packets reception function ‘‘netif_rx ()’’ is the interface of
packets reception from the lower layers to the upper layers.

FIGURE 10. The key code of packets transmission
function‘‘openHetNets_xmit ()’’

In our open HetNets platform, we have implemented those
two key interface functions (i.e., ‘‘openHetNets_xmit ()’’ and
‘‘OpenHetNets_Rx ()’’) defined in the device driver function
layer. Fig.10 depicts the key code of the packets transmis-
sion function ‘‘openHetNets_xmit ()’’. Note that in Fig.10,
the formal parameters in function header are two pointer
variables, of which one points to the arrival upper protocol
stack packet and the other points to the virtual network device
(i.e., openhetnet0). In Fig.10, from line 1 to line 5, we first do
some net device statistic information for CPU. Then, in code
line 9, we utilize Netlink, a favorable method of transmitting
bio-directional data between kernel space and user space,
to transmit the upper protocol stack packets to the Offloading
Engine module.

The function ‘‘OpenHetNets()’’ in Fig.11 is used for pack-
ets reception, the first parameter in the function header is an
unsigned char pointer points to the packet transmitted from
Offloading Engine module, and the second parameter indi-
cates the length of received packet. In code line 1, we define
a ‘‘struct sk_buff’’ type pointer variable ‘‘skb’’ and let this
pointer points to NULL at first. In code line 2, we define a

VOLUME 6, 2018 57939



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 11. The Key code of packets reception function
‘‘OpenHetNets_Rx ()’’.

‘‘struct net_device’’ type pointer variable ‘‘dev’’ and let this
pointer points to the virtual net device ‘‘dev_openhetnet0’’.
In code line 6, we utilize the function ‘‘netdev_alloc_skb ()’’
to allocate amemory buffer and let the pointer ‘‘skb’’ points to
it. If the allocation process is success, based on the principle
shown in Fig.7, we use function ‘‘skb_reserve ()’’ to reserve
a 2 bytes padding area and a tail room. Based on the above-
mentioned procedures, from code line 10 to code line 12,
we make some assignments for three vital member fields
defined in ‘‘struct sk_buff’’ (i.e., skb->protocol, skb->data,
skb->len), whichmust be correctly filled up before the ‘‘skb’’
submits to the upper layers. Finally, in code line 13, we use
the function ‘‘netif_rx (skb) (i.e., the interface function shown
in Fig.6)’’ to submit the received packet to the upper protocol
stack.

C. OFFLOADING ENGINE MODULE
The function caller diagram in Offloading Engine module is
shown in Fig.12. Note that the main function calls other six
functions when in running status. The code files ‘‘signalhan-
dler.h’’ and ‘‘signalhandler.c’’ are used to conduct the signal
notification mechanism between the Offloading Engine mod-
ule and Offloading ObservingWindowmodule, the code files
‘‘sharemem.h’’ and ‘‘sharemem.c’’ are used to process the
share-memory mechanism between the Offloading Engine
module and Offloading Observing Window module, and the
code files ‘‘netlink.h’’ and ‘‘netlink.c’’ are responsible for
the communication between the Virtual Upper MAC module
located in kernel space and the Offloading Engine mod-
ule located in user space. In order to illustrate this mod-
ule’s logical function more clearly, in the next, we give the
detailed descriptions for each code file. Besides, for the con-
venience of easy understanding, we can interpret the Offload-
ing Engine module as the virtual lower MAC module and the
Offloading Observing Window module as the virtual PHY
module in the rest of this section.

The main function of virtual lower MAC module (i.e.,
Offloading Engine module) is shown in Fig.13.

As illustrated in Fig.13, code line 1, we first use func-
tion ‘‘getpid ()’’ to obtain the virtual lower MAC thread
ID (i.e., LowMACPid). Then in code line 3, we utilize
function ‘‘Register_SignalHandler ()’’ to register two signals

FIGURE 12. The function caller diagram in Offloading Engine module.

FIGURE 13. The main function in Offloading Engine module.

(i.e., the received signals transmit from virtual PHY thread)
used by virtual lower MAC thread. The definition of ‘‘Reg-
ister_SignalHandler ()’’ is included in code file ‘‘signalhan-
dler.c’’ and it is shown in Fig.14.

FIGURE 14. The definition of function ‘‘Register_SignalHandler ()’’.

In Fig.14, the function ‘‘signal ()’’ first register the signal
SIGRTMIN as the received signal of virtual lower MAC
thread. Then, the function ‘‘sigemptyset ()’’ empty the orig-
inal signal set in virtual lower MAC thread and initialize the
new registered signal. Finally, function ‘‘sigaddset ()’’ add the
new registered signal to the signal set of virtual lower MAC
thread. Here, we give some explanations to SIGRTMIN.
As shown in Fig.15, we give all the signals defined in Linux
system. Note that there are 64 signals in Fig.15, however,

57940 VOLUME 6, 2018



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 15. The signals used in Linux system.

only 31 can be used by the user thread including number 34
- number 64(i.e., highlighted in red). In our open HetNets
platform, we use two of them including ‘‘(34) SIGRTMIN’’
and ‘‘(35) SIGRTMIN+1’’ as the virtual PHY thread com-
munication ID.

Let us go back to the main function, code line 4
- code line 7 mainly focuses on allocating and ini-
tializing the share-memory. Fig.16 shows the defi-
nition of function ‘‘Init_ShareMem ()’’ and function
‘‘Reset_ShareMemContent ()’’. As we can see, in function
‘‘Init_ShareMem ()’’, the role of function ‘‘shmat()’’ is to
start access to the shared memory and make the connection
between the shared memory and the address space of virtual
lower MAC thread. In function ‘‘Init_ShareMem ()’’, two
transmission rings and two reception rings are respectively
initialized. Then, the main function jump to code line 8.

In code line 8, function ‘‘Set_LowMACID ()’’ use the
obtained thread ID in code line 2 to set the virtual
lower MAC thread ID. Then, in code line 9, Netlink
socket is ready for startup and if it successfully initial-
izes, the main function jumps to the key function ‘‘Sin-
gle_Netlink_Packet_Handler_Thread ()’’ shown in code line
16. The function in code line 16 is a ‘‘bridge’’ (i.e., the pink
arrow line in Fig.4) which connects the virtual upper MAC
module and the virtual lower MAC module, and the detailed
information of this function is shown in Fig.17.

In Fig.17, the ‘‘while (1)’’ statement and the function
‘‘Recv_from_KernelPeer ()’’ (i.e., the dark blue rectangle
shown in Fig.17) demonstrates that the virtual lower MAC
thread continuously receive the packets form the virtual upper
MAC. The counter can start to add 1 once a packet arrives
in virtual lower MAC, then based on the arrival packet’s
number, the virtual lower MAC (i.e., Offloading Engine)
decide which path to select. For example, if the counter’s
value is an odd number, then virtual lower MAC selects path
number two (i.e., the green rectangle shown in Fig.17) and
writes this packet to TX2, otherwise, it selects path number
one (i.e., the red rectangle shown in Fig.17) and writes this
packet to TX1. The signal notification scheme is included in

FIGURE 16. The definition of function ‘‘Init_ShareMem ()’’ and function
‘‘Reset_ShareMemContent ()’’.

FIGURE 17. Definition of function
‘‘Single_Netlink_Packet_Handler_Thread()’’.

function ‘‘Write_TxRing ()’’, and the definition of function
‘‘Write_TxRing ()’’ is depicted in Fig.18.

As shown in Fig.18, the share-memory use the ring struc-
ture to store the packets transmitted form virtual upper MAC.
If the arrival packet is successfully put into the ring, then
the virtual lower MAC thread utilizes function ‘‘Send_Signal
()’’ (i.e., the green rectangle shown in Fig.18) to notify (i.e.,
the red arrow lines in Fig.4) virtual PHY (1,2) thread it is
the right time to read the TX (1,2). Also, we can see that the
first formal parameter in function header is a function called
‘‘Get_PHYID ()’’, this function is used to obtain the virtual

VOLUME 6, 2018 57941



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 18. The definition of function ‘‘Write_TxRing ()’’.

PHY thread ID (i.e., Offloading Observing Window 1 or 2).
The second formal parameter in function ‘‘Get_PHYID ()’’
is a signal ID used by virtual lower MAC thread.

Till now, we have finished the analyzing process for the
Offloading Engine module (i.e., virtual lower MACmodule).
In next section, we will focus on analyzing the Offload-
ing Observing Window module (i.e., four purple rectangles
shown in Fig.4) of the open HetNets platform.

D. OFFLOADING OBSERVING WINDOW MODULE
Fig.19 demonstrates the function caller diagram in Offload-
ing Observing Window module (i.e., virtual PHY module).
Like virtual lowerMACmodule, the virtual PHYmodule also
calls other six functions when in startup status. As previously
mentioned, code files ‘‘signalhandler.h’’ and ‘‘signalhan-
dler.c’’ are used to conduct the signal notification mechanism
between the virtual lower MAC module and the virtual PHY
module, and code files ‘‘sharemem.h’’ and ‘‘sharemem.c’’
are used to process the share-memory mechanism between
them. Different from the virtual lowerMACmodule, the code
files ‘‘UDP_Trxer.h’’ and ‘‘UDP_Trxer.c’’ in virtual PHY
module are responsible for the communication between the
remote UE’s virtual PHY thread and the local virtual PHY
thread. To be specific, based on Fig.4, the communication
path between the remote UE’s virtual PHY thread and the
local virtual PHY thread is ‘‘open HetNets platform’s virtual
PHY thread – port1/port2 – open WiFi platform /open LTE
platform – UE’s virtual PHY thread. To illustrate this mod-
ule’s logical function more clearly, in the next, we give the
detailed descriptions for each code file. Here, we make some
further explanations for the virtual PHY thread. As shown
in Fig.4, those two virtual PHY threads are two concurrent

FIGURE 19. The function caller diagram in Offloading Observing Window
module.

FIGURE 20. The main function in Offloading Observing Window module.

UDP threads, and each of them follows a one-to-one match
with the registered signal shown in Fig.15 (i.e., those high-
lighted signals that could be used by user thread). Therefore,
the maximum possible number of threads allowed to run
concurrently in our open HetNets platform is 31 (i.e., signal
(ID 34)-signal (ID 64) in Fig.15). In section III.E, we will
exploit the concurrent mechanism to improve the throughput
of the open HetNets platform.

The main function of virtual PHY module is shown
in Fig.20, as illustrated in code line 1, function ‘‘getpid
()’’ is used to get the virtual PHY thread ID (i.e., PHYid).
Unlike virtual lower MAC module, in code line 3, function
‘‘Register_SignalHandler ()’’ register only one notification
signal (i.e., the received signal transmit from virtual lower
MAC thread) used by virtual PHY thread with the reason that
there is only one virtual lower MAC module. The definition
of ‘‘Register_SignalHandler ()’’ is included in code file ‘‘sig-
nalhandler.c’’ and it is shown in Fig.21.

FIGURE 21. The definition of function ‘‘Register_SignalHandler ()’’ in
virtual PHY module.

57942 VOLUME 6, 2018



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

According to Fig.21, we can observe that the function
‘‘Register_SignalHandler ()’’ defined in virtual PHY module
is the same with that defined in virtual lower MAC module.
Specifically, in code line 1, function ‘‘signal ()’’ first regis-
ter the signal SIGRTMIN as the received signal of virtual
PHY thread. Then, the function ‘‘sigemptyset ()’’ empty the
original signal set in virtual PHY thread and initialize the
new registered signal. Finally, function ‘‘sigaddset ()’’ add
the new registered signal to the signal set of virtual PHY
thread. Based on above mentioned processes, the main func-
tion jump to code line 4, function ‘‘Init_ShareMem()’’ in
code line 4 mainly responsible for allocating and initializing
the share-memory and this function is same as that define in
virtual lower MAC module. As the main function continues
to execute, function ‘‘Set_PHYID ()’’ in code line 5 uses the
obtained thread ID to set the virtual PHY ID. Then, the main
function calls function ‘‘Init_UDP_Trxer’’ shown in code
line 6, and the UDP TX & RX threads are ready for startup.
If the UDP TX & RX threads are successfully initialize,
the main function jumps to the key function ‘‘UDP_Listening
()’’ shown in code line 7. The function in code line 7 is a
‘‘peer-to-peer bridge’’ which can make connection between
the UDP thread located in the open HetNets platform and
the UDP thread located in UE. The detailed information of
function ‘‘UDP_Listening ()’’ is shown in Fig.22.

FIGURE 22. The definition of function ‘‘UDP_Listening ()’’.

In Fig.22, the ‘‘for’’ statement and the function ‘‘recvfrom
()’’ in light blue rectangle demonstrates that the virtual PHY
thread continuously receive the packets from its peer side by
port (1, 2). If the received byte number larger than 0, then
virtual PHY thread writes the arrival packets to RX(1, 2) ring
and send signal to virtual lower MAC thread to notify it is the
right time to read the RX(1, 2) ring. The signal notification
scheme is included in function ‘‘Write_RxRing ()’’, and the
definition of ‘‘Write_RxRing ()’’ is demonstrated in Fig.23.

As shown in Fig.23, the share-memory use the ring struc-
ture to store the packets transmitted form UE side. If the
arrival packet is successfully put into the RX ring, then the
virtual PHY thread utilizes function ‘‘Send_Signal ()’’ (i.e.,
the green rectangle shown in Fig.23) to notify (i.e., the dark

FIGURE 23. The definition of function ‘‘Write_RxRing ()’’.

blue arrow lines in Fig.4) virtual lower MAC thread it is the
right time to read the RX ring (1,2). Also, we can see that the
first formal parameter in function header is a function called
‘‘Get_MACID ()’’, this function is used to obtain the virtual
lower MAC thread ID (i.e., Offloading Engine). The second
formal parameter in function ‘‘Get_PHYID ()’’ is a signal ID
used by virtual PHY thread.

Till now, we have finished the analyzing process for the
Offloading Observing Window module (i.e., virtual PHY
module). In next section, we will first run the HetNets plat-
form to see whether it can work correctly and then do some
optimizations for it.

E. SOFTWARE DEFINED OPEN HETNETS
PLATFORM OPTIMIZATION
Based on the above-mentioned analysis, in this section,
we first conduct the packet transmission experiment to check
out whether the open HetNets platform can work correctly.
Then, we do some optimizations for the HetNets platform’s
software architecture to improve its overall throughput.

To be specific, the packet transmission experiment plan
is shown in Fig.24, we deploy 3 software-defined devices
including the software-defined open WiFi platform (i.e.,
the yellow bidirectional arrow line in Fig.4) [6], the software-
defined open LTE platform (i.e., the light green bidirectional
arrow line in Fig.4) [7], and the software-defined user equip-
ment (UE) in our laboratory. As illustrated in Fig.25, each
software-defined device is composed by the USRP B210 and
the INTELNUL. The reason for choosing INTELNUC is that
it is a high-performance hardware platform with small-size
appearance (i.e., 21 Centimeters in length and 11 centimeters
in width), which cannot occupy much area and the reason
for choosing the USRP as the RF front-end is that it is

VOLUME 6, 2018 57943



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

TABLE 1. The experiment parameters.

FIGURE 24. The experiment plan which is corresponding to the
architecture shown in Fig.4.

FIGURE 25. The software-defined device composed by USRP-B210 and
INTEL NUC.

a high-performance and repeated programming device. Let
the EPC locate on a server with two ethernet interfaces
(i.e., eth0 and eth1), one interface connects to the software-
defined openWiFi platform and the other connects to the soft-
ware defined open LTE platform. Based on the experiment
plan, we then give the detailed experiment parameters shown
in Table 1.

Based on the above-mentioned experiment plan and exper-
iment parameters table, we carry out the following experi-
ment procedures:

FIGURE 26. The shooting screen of physical layer statistic information
shown in software defined UE when it connects to the software defined
open HetNets platform.

(1). We first implement the Virtual Upper MAC module,
the Offloading Engine module, and the Offloading Observing
Window module into the server.

(2). We then compile and run the software-defined open
WiFi platform, the software-defined open LTE platform, and
the software-defined UE.

(3). After those three software-defined devices success-
fully startup, we connect soft UE to another two devices (i.e.,
software-defined open WiFi platform and software-defined
open LTE platform). Then, inUE side, we can see the physical
layer statistic information shown in Fig.26 appears, and it is
demonstrating that the soft UE has connected to the software
defined open HetNets platform.

(4). Then, in server side, we compile and initialize the
Virtual Upper MAC module, the Offloading Engine module,
and the Offloading Observing Window module. The detailed
processes are shown from Fig.27-Fig.28.

As shown in Fig.27, the little dark blue rectangle highlights
the Virtual Upper MAC window, in this window, we first

57944 VOLUME 6, 2018



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 27. The shooting screens related to the initialization information of Virtual-Upper-MAC, Offloading-Engine,
Offloading-Observing-Window1, and Offloading-Observing-Window2 in software defined UE.

FIGURE 28. The shooting screens related to the initialization information of Virtual-Upper-MAC, Offloading-Engine,
Offloading-Observing-Window1, and Offloading-Observing-Window2 in software defined open HetNets platform.

input the commands ‘‘make clean’’ and ‘‘make’’ to com-
pile Virtual Upper MAC module. Then we input commands
‘‘insmod open_hetnet.ko’’, ‘‘ifconfig openhetnet0 up’’, and
‘‘ifconfig openhetnet0 192.168.9.1’’ to insert the virtual
lowerMACmodule to OS kernel and configure the ip address
of virtual interface ‘‘openhetnet0’’ to ‘‘192.168.9.1’’ (i.e.,
the information highlighted in bigger light blue rectangle).
The little dark green rectangle highlights the Offloading

Engine window, in this window, we first input the commands
‘‘make clean’’ and ‘‘make’’ to compile Offloading Engine
module (i.e., virtual lower MAC module), and then we input
commands ‘‘./Offloading Engine’’ to initialize it (i.e., the ini-
tialization information highlighted in bigger light green rect-
angle). The little purple rectangle and red rectangle highlight
those two Offloading Observing Window modules (i.e., two
virtual PHY modules), in those two windows, we first input

VOLUME 6, 2018 57945



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 29. The shooting screens related to the startup information of Virtual-Upper-MAC, Offloading-Engine,
Offloading-Observing-Window1, and Offloading-Observing-Window2 in software defined UE.

the commands ‘‘make clean’’ and ‘‘make’’ to compile them
and then we input commands ‘‘./Offloading Observing Win-
dow1’’ and ‘‘./Offloading Observing Window2’’ to initialize
them (i.e., the initialization information highlighted in pink
rectangle and yellow rectangle).

In the open HetNets platform, we conduct the same ini-
tialization works as that in UE side. As shown in Fig.28,
there are four shooting screens, which are respectively the
Virtual Upper MAC window highlighted by little dark blue
rectangle, Offloading Engine window highlighted by little
dark green rectangle, and two Offloading ObservingWindow
highlighted by purple rectangle and red rectangle. The com-
mand in the bigger light blue rectangle demonstrates that the
ip address of the virtual net device in the HetNets platform has
been configured as ‘‘192.168.99.2’’. Another three rectangles
including the bigger green rectangle, pink rectangle, and
yellow rectangle have demonstrated the HetNets platform has
been successfully initialized.

(5). Based on above-mentioned procedures, in UE side,
we input command ‘‘ping 192.168.9.2’’ to send packets
to HetNets platform. Then, four screens appear in UE,
which are the Virtual Upper MAC startup screen, Offload-
ing Engine startup screen, and two Offloading Observing
Window startup screens. The detailed information is shown
in Fig.29, note that the little dark blue rectangle indicates the
Virtual Upper MAC startup screen, the little dark green rect-
angle indicates the Offloading Engine startup screen, the lit-
tle purple rectangle indicates the first Offloading Observing

Window startup screen, and the little red rectangle indicates
the second Offloading Observing Window startup screen.
The bigger light blue rectangle shows that the sending pack-
ets have passed the Virtual Upper MAC and gone to the
‘‘Offloading Engine’’. After then, the messages ‘‘Read Tx
Ring1’’ and ‘‘Read Tx Ring2’’ appear in the pink rectangle
and yellow rectangle have demonstrated that those two vir-
tual PHY threads have received the packets transmitted from
virtual lower MAC (i.e., Offloading Engine) and have sent
those packets to HetNets platform. Moreover, the messages
‘‘Write Rx Ring1’’ and ‘‘Write Rx Ring2’’ appear in the pink
rectangle and yellow rectangle also demonstrated that those
two virtual PHY threads have received the reply packets from
HetNets platform.

Following Fig.29, another four screens appear in Het-
Nets platform, which are the Virtual Upper MAC startup
screen, Offloading Engine startup screen, and two Offloading
Observing Window startup screens. The detailed information
is shown in Fig.30, note that the little dark blue rectangle
indicates the Virtual Upper MAC startup screen, the little
dark green rectangle indicates the Offloading Engine startup
screen, the little purple rectangle indicates the first Offloading
Observing Window startup screen, and the little red rect-
angle indicates the second Offloading Observing Window
startup screen. Moreover, the bigger light green rectangle,
the pink rectangle, and the yellow rectangle demonstrate the
HetNets platform has received the packets transmitted from
UE (i.e., ‘‘Write Rx Ring1’’ in pink rectangle and ‘‘Write

57946 VOLUME 6, 2018



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 30. The shooting screens related to the startup information of Virtual-Upper-MAC, Offloading-Engine,
Offloading-Observing-Window1, and Offloading-Observing-Window2 in software defined open HetNets platform.

Rx Ring2’’ in yellow rectangle -> ‘‘Send_to_KernelPeer’’
in light green rectangle -> Virtual Upper MAC -> Upper
Protocol Stack) and sent the reply packets to UE (i.e., Upper
Protocol Stack -> Virtual Upper MAC -> ‘‘Msg from kernel
netlink’’ in light green rectangle -> ‘‘Read Tx Ring1’’ in pink
rectangle and ‘‘Read Tx Ring2’’ in yellow rectangle).

Till now, we have done the packets transmission experi-
ment andwe can draw the conclusion the current version open
HetNets platform can work correctly. Note that there are two
virtual PHY thread (i.e., Offloading ObservingWindow1 and
Offloading Observing Window2) in our current version Het-
Nets platform, and each of them is one-to-one match to an
available signal defined in Linux system. Besides, as a matter
of experience, we can say that the more threads run, the better
throughput achieved by HetNets platform. However, when
the thread number larger than a specific value, the system
performance will be degraded with the reason that there
will be causing tremendous overhead by running numerous
threads. Therefore, it is necessary to figure out the optimal
thread number through performance testing experiment.

As shown in Fig.15, there are 31 signals can be used by user
thread (i.e., from 34-64). Based on this principle, we gradu-
ally increase the virtual PHY thread number from 2 – 30 by
step length 2, then we respectively evaluate each version Het-
Nets platform. For instance, under the condition virtual PHY
thread number equals to 4, we use the throughput testing tool
‘‘iperf’’ to conduct the performance testing experiment and
collect the experiment data obtained by those two ethernet

FIGURE 31. Practical downlink throughputs achieved by eth0 (lines) and
eth1(markers) under different number of UDP sessions (i.e., the virtual
PHY thread).

interfaces (i.e., eth0 and eth1 shown in Fig.24). We conduct
ten times performance testing experiment and then we can
draw the following statistic figure shown in Fig.31.

As seen in Fig.31, the practical downlink throughput
volume increase with increasing the theoretical downlink
throughput (i.e., from ‘‘iperf = 100 Mbit/s’’ to ‘‘iperf =
1000 Mbit/s’’). For example, when we set the theoretical
throughput to 600Mbits/s (i.e., ‘‘iperf= 600Mb/s’’), the prac-
tical throughputs obtained by eth0 and eth1 are respectively
37Mbytes/s, which is almost equal to the theoretical downlink
throughput. From Fig.31, we can observe that each curve fol-
lows a trend that when the virtual PHY thread number lower

VOLUME 6, 2018 57947



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 32. The optimized software defined open HetNets platform.

than 8, the throughput increases with increasing the virtual
PHY thread; however, when the virtual PHY thread number
larger than 8, the throughput decreases with continuing to
increase the virtual PHY thread. Therefore, we can conclude
that the HetNets platform has the best performance when the
virtual PHY thread number equals to 8.

Based on the above-mentioned analyses, we re-design
the HetNets platform’s software architecture. As shown in
Fig.32, we implement 8 virtual PHY threads, the first four
virtual PHY threads (i.e., from 1 - 4) are responsible for
communicating with open WiFi platform through eth0 and
the last four virtual PHY threads (i.e., from 5 - 8) are respon-
sible for communicating with open LTE platform through
eth1. Moreover, we can note that there are eight groups TX
rings and RX rings, the first four sets are correspondent
to the first four virtual PHY threads and the last four sets

are correspondent to the last four virtual PHY threads. For
each sending packet transmitted from the virtual upper MAC,
the Offloading Engine module uses equation ‘‘counter%8’’ to
decide which path to deliver this packet. For example, if the
remainder equals to (1-7), then the packet will be put into
TX (1-7), if the remainder equals to 0, then packet will be
put into TX8. In the receiver, we do the inverse process for
the arrival packets. Furthermore, in order to guarantee the
in-sequence reception, we allocate a large array in Offloading
Engine module. Then, those received packets will be first
buffered in this array and then be sorted before they submitted
to the virtual upper MAC.

Based on the optimized architecture shown in Fig.32,
we carry out the packet transmission experiment to validate
the correctness of the optimization version HetNets platform.
specifically, we conduct the same experiment procedures

57948 VOLUME 6, 2018



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 33. The shooting screens related to the initialization information of Virtual-Upper-MAC, Offloading-Engine, and eight
Offloading-Observing-Windows (i.e., from1-8) in software defined UE after optimized.

FIGURE 34. The shooting screens related to the initialization information of Virtual-Upper-MAC, Offloading-Engine, and eight
Offloading-Observing-Windows in software defined open HetNets platform after optimized.

as described previously. Then we respectively collect some
milestone shooting screens from software-defined HetNets
platform and software-defined UE.

Fig.33 and Fig.34 respectively demonstrate the shooting
screens in soft UE and in HetNets platform, the yellow rect-
angle highlights the Virtual Upper MAC window, the pink
rectangle highlights theOffloading Enginewindow, and those
eight light blue rectangles highlight eight Offloading Observ-
ing Windows. Note that the IP address of soft UE is set
to ‘‘192.168.9.1’’ and the IP address of HetNets platform
is configured to ‘‘192.168.9.2’’. According to these screens

information, we can learn that the soft UE and the HetNets
platform have been successfully initialized. Then, in UE side,
we input command ‘‘ping 192.168.9.2’’ to send packets to
HetNets platform. After then, we can obtain another two
figures shown in Fig.35 and Fig.36.

As depicted in Fig.35, eight light blue rectangles repre-
sent eight concurrent transmission/reception paths in UE. For
example, the message ‘‘Read Tx Ring’’ in the light blue
rectangle shows the transmission path of the ARP request
packet and the ICMP request packets, and the message
‘‘Write Rx Ring’’ demonstrates the reception of the ARP

VOLUME 6, 2018 57949



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 35. The shooting screens related to the startup information of Virtual-Upper-MAC, Offloading-Engine, and eight
Offloading-Observing-Windows in software defined UE after optimized.

FIGURE 36. The shooting screens related to the startup information of Virtual-Upper-MAC, Offloading-Engine, and eight
Offloading-Observing-Windows in software defined open HetNets platform after optimized.

answer packets and the ICMP rely packets. Similarly, eight
light blue rectangles in Fig.36 represent eight concurrent
transmission/reception paths in HetNets platform, those eight
concurrent transmission/reception paths carry out the inverse
processes opposite to the soft UE.

F. SOFTWARE DEFINED OPEN HETNETS
PLATFORM EVALUATION
In section III.E, we have conducted the optimization process
for the open HetNets platform. As illustrated in Fig.24, since
the HetNets platform is composed by the software-defined

openWiFi platform, the software-defined open LTE platform,
and the enhanced EPC which is located in the server. There-
fore, it is necessary to carry out the evaluation process for
this HetNets platform (i.e., the dash line rectangle shown in
Fig.24). In another word, in this section, we want utilize the
pressure testing to check out the actual maximum downlink
throughput that can be supported by the HetNets platform.

Theoretically speaking, there will be a discrepancy
between the theoretical downlink throughput and the actual
downlink throughput obtained by the open WiFi platform
and the open LTE platform with the reason that there will be

57950 VOLUME 6, 2018



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 37. The actual throughput obtained by the open WiFi platform and the open LTE platform when the theoretical downlink throughput is set to
100Mbits/s (i.e., ‘‘iperf = 100 Mbit/s’’), openhetnet0 (i.e., the virtual interface) = 12.50MBytes/s (captured by speedometer), eth0 = 6.67MBytes/s
(captured by speedometer), and eth1 =6.70 MBytes/s (captured by speedometer).

FIGURE 38. The actual throughput obtained by the open WiFi platform and the open LTE platform when the theoretical downlink throughput is set to
200Mbits/s (i.e., ‘‘iperf = 200 Mbit/s’’), openhetnet0 (i.e., the virtual interface) = 25.10MBytes/s (captured by speedometer), eth0 = 13.40MByte/s
(captured by speedometer), and eth1 = 13.50 MBytes/s (captured by speedometer).

some throughput lost incurred by the current version WiFi
platform’s ability and the current version LTE platform’s
ability.

To carry out the evaluation experiment, we give the follow-
ing experiment procedures:

(1). Based on the experiment plan shown in Fig.24, in the
server side, we first compile and run the Virtual Upper MAC
module, the Offloading Engine module, and eight Offloading
Observing Window modules. We then run the speedometer,
which is the network throughput observation tool, to observe
the practical throughput obtained by openhetnet0, eth0,
and eth1.

(2). We respectively compile and run the software-defined
open WiFi platform and the software-defined open LTE
platform. Then, in these two startup platforms, we respec-
tively input the command ‘‘iperf –u –s –i 1’’ to run
iperf, which is the network performance testing tool,
to observe the actual throughput obtained by these two
platforms.

(3). Based on the above-mentioned procedures, in the
server side, we conduct ten sets of experiments by setting
ten different theoretical downlink throughputs. To be specific,
in the first group experiment, we input the command ‘‘iperf
–u –c 192.168.9.1 –b 100Mbs/s –t 1000 –i 1’’ to set the theo-
retical downlink throughput equals to 100Mbits/s, then based
on the speedometer and the accrual throughput obtained by
these two platforms, we can obtain the following experiment
statistics information shown in Fig.37

(4). For another nine groups experiments, we conduct the
same procedures as that in the first group experiment. After
then, we can respectively obtain another nine statistic fig-
ures which are shown from Fig.38-Fig.46.

The measured downlink throughputs are depicted in Fig.37
– Fig.46. For each figure, it includes two sub-figures of which
the one on the left-side is the theoretical downlink throughput
observation screen captured by speedometer, the other on
the right-side is the actual downlink throughput obtained
by the open WiFi platform and by the open LTE platform.

VOLUME 6, 2018 57951



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 39. The actual throughput obtained by the open WiFi platform and the open LTE platform when the theoretical downlink throughput is set to
300Mbits/s (i.e., ‘‘iperf = 300 Mbit/s’’), openhetnet0 (i.e., the virtual interface) = 37.20MBytes/s (captured by speedometer), eth0 = 19.80MBytes/s
(captured by speedometer), and eth1 = 20.00 MBytes/s (captured by speedometer).

FIGURE 40. The actual throughput obtained by the open WiFi platform and the open LTE platform when the theoretical downlink throughput is set to
400Mbits/s (i.e., ‘‘iperf = 400 Mbit/s’’), openhetnet0 (i.e., the virtual interface) = 49.80MBytes/s (captured by speedometer), eth0 = 26.60MBytes/s
(captured by speedometer), and eth1 = 26.90 MBytes/s (captured by speedometer).

The red rectangle, dark blue rectangle, and pink rectangle in
speedometer screen respectively highlights three observation
windows which are related to openhetnet0, eth0, and eth1.
From the speedometer screen, we can observe an interesting
phenomenon that the sum of the two Ethernet interfaces
(i.e., eth0 and eth1) theoretical downlink throughput is larger
than the theoretical downlink throughput of openhetnet0.
However, for generally speaking, the sum of the two Eth-
ernet interfaces theoretical downlink throughput should be
equals to the theoretical downlink throughput of openhetnet0,
the reason contribute to this unexpected phenomenon is that
in the virtual upper MAC module, each packet is added a
virtual MAC header, therefore the size of the packet arrives
at the Ethernet interface is larger than the size of the packet
arrives at ‘‘openhetnet0’’. The red circles and blue circles in
the right-side sub-figures are respectively refer to the actual
downlink throughput in WiFi platform and in LTE platform.

The results in Fig.37, Fig.38, and Fig.39 show that when
the theoretical downlink throughput lower than or equals to

400 Mbits/s (i.e., ‘‘iperf<= 400 Mbits/s’’), the actual down-
link throug-hphput lost ratio is approximately lower than
10%. Specificall-y, as shown in Fig.37, when the theoretical
downlink throughp-uts of eth0 = 6.67MBytes/s and eth1 =
6.70Mbytes/s, the actua-l downlink throughputs of openWiFi
platform are in the range of [5.9, 6.9] MBytes/s and the actual
downlink throughputs of open LTE platform are in the range
of [5.6, 6.6] MBytes/s. For calculation conveniently, we use
the median of the range to cal-culate the throughput lost ratio
incurred by the WiFi platform and by the LTE platform, then
we can obtain the throughput lo-st ratio of openWiFi platform
is (6.67-6.4)/6.67=0.04, and the throughput lost ratio of open
LTE platform is (6.7-6.1)/6.7 = 0.09. Based on the same
calculation procedures, in Fig. (38,39,40), we can respec-
tively obtain the throughput lost ratios of ope-nWiFi platform
are [0, (19.8-19.15)/19.8=0.033, (26.6-25.1)/26.6=0.056],
and the throughput lost ratios of open LTE platfor-m
are [(13.5-13)/13=0.03, (20-18.7)/20=0.065, (26.9-24.5)/
26.9= 0.089].

57952 VOLUME 6, 2018



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 41. The actual throughput obtained by the open WiFi platform and the open LTE platform when the theoretical downlink throughput is set to
500Mbits/s (i.e., ‘‘iperf = 500 Mbit/s’’), openhetnet0 (i.e., the virtual interface) = 63.10MBytes/s (captured by speedometer), eth0 = 33.60MBytes/s
(captured by speedometer), and eth1 = 33.80 MBytes/s (captured by speedometer).

FIGURE 42. The actual throughput obtained by the open WiFi platform and the open LTE platform when the theoretical downlink throughput is set to
600Mbits/s (i.e., ‘‘iperf = 600 Mbit/s’’), openhetnet0 (i.e., the virtual interface) = 76.60MBytes/s (captured by speedometer), eth0 = 40.70MBytes/s
(captured by speedometer), and eth1 = 40.90 MBytes/s (captured by speedometer).

Then, from Fig.41 to Fig.46, we can easy observe
that the actual downlink throughput lost ratio increases
promptly with the theoretical downlink throughput increases.
To be specific, thro-ugh the calculation, we can obtain
the throughput lost ratios of open WiFi platform and
open LTE platform in Fig.(41-46) are r-espectively equal
to [(33.6-23.5)/33.6=0.3,(40.7-26.85)/40.7=0.34, (48.3-
25.95)/48.3=0.46, (53.8-26.95)/53.8=0.49, (54-25.6)/54=
0.53, (54.28-26.45)/54.28=0.51] and [(33.8-17.5)/33.8=0.48,
(40.9-21.4)/40.9=0.048, (48.6-24.45)/48.6=0.5, (54-26.5)/
54=0.51, (54.2-25.7)/54.2=0.53, (54.56-21.4)/54.56=0.61].

Based on the above-mentioned analyses, we can kindly
conclude that the maximum actual downlink throughput
which can be supported by our HetNets platform is approxi-
mately equals to 396Mbits/s.

IV. PACKETS OFFLOADING ANALYTICAL MODEL BASED
ON SOFTWARE DEFINED OPEN HETNETS PLATFORM
In this section, based on the open HetNets platform described
in previous section, we propose the packets offloading ana-
lytical model which is shown as below. The first state link

in Fig.47 can be understood as the openWiFi platform shown
in Fig.24 and the second state link can be thought as the open
LTE platform.
As illustrated in previous section, the non-delayed single

path traffic offloading (i.e., the first case shown in Fig.1) is
a special case of the simultaneously dual path offloading.
Therefore, in this section, we first propose the analytical
model for the non-delayed single path offloading scheme and
then propose the analytical model for the dual path offloading
scheme.

A. THE NON-DELAYED SINGLE PATH OFFLOADING
SCHEME
For analyzing conveniently, we model the non-delayed single
path offloading scheme as a Markov chain shown in Fig.47.
The symbols SPj,CE refers to the stationary probability of
UE only in cellular coverage and there are jpackets in the
transmission queue (i.e., j-1waiting and one being transmitted
over cellular network), and SPj,WI refers to the stationary
probability of UE only in WiFi coverage and there are j
packets in the transmission queue. In addition, the variables

VOLUME 6, 2018 57953



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 43. The actual throughput obtained by the open WiFi platform and the open LTE platform when the theoretical downlink throughput is set to
700Mbits/s (i.e., ‘‘iperf = 700 Mbit/s’’), openhetnet0 (i.e., the virtual interface) = 90.20MBytes/s (captured by speedometer), eth0 = 48.30MBytes/s
(captured by speedometer), and eth1 = 48.60 MBytes/s (captured by speedometer).

FIGURE 44. The actual throughput obtained by the open WiFi platform and the open LTE platform when the theoretical downlink throughput is set to
800Mbits/s (i.e., ‘‘iperf = 800 Mbit/s’’), openhetnet0 (i.e., the virtual interface) = 100.00MBytes/s (captured by speedometer), eth0 = 53.80MBytes/s
(captured by speedometer), and eth1 = 54.00 MBytes/s (captured by speedometer).

ξC refers to the packet Poisson arrival rate at UE in cellular
network coverage and ξW is the packet Poisson arrival rate at
UE in WiFi coverage. The variables θCE be the service rate
while in cellular network coverage and θWI be the service
rate while in WiFi coverage. Furthermore, the variables βC
denotes the rate of leaving the cellular state and βW denotes
the rate of leaving theWiFi state. Then, based on the variables
notation and the Markov chain, we can obtain the balance
equations shown below:

j = 0 : SP0,CE (ξC + βC ) = SP0,WIβW + SP1,CEθCE
SP0,WI (ξW + βW ) = SP1,WI θWI + SP0,CEβC

j > 0 : SPj,CE (ξC + βC + θCE )

= SPj−1,CEξC + SPj+1,CEθCE + SPj,WIβW
SPj,WI (ξW + βW + θWI )

= SPj−1,WI ξW + SPj+1,WI θWI + SPj,CEβC (3)

Based on the above-defined stationary probability (i.e.,
SPj,CE and SPj,WI ) and reference [27], we then give the

probability generating functions (PGF), which are shown
below, for the WiFi state and cellular state.

GCE (Z ) =
∞∑
j=0

SPj,CEZ j

GWI (Z ) =
∞∑
j=0

SPj,WIZ j

|Z | ≤ 1 (4)

We rewrite the first sub-equation in equation (3) and mul-
tiply Z0, then we can get equation (5):

SP0,CE (ξC + βC + θCE )

= SP0,WIβW + SP1,CEθCE + SP0,CEθCE

SP0,CEZ0(ξC + βC + θCE )

= SP0,WIβWZ0
+ SP1,CEθCEZ0

+ SP0,CEθCEZ0 (5)

57954 VOLUME 6, 2018



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 45. The actual throughput obtained by the open WiFi platform and the open LTE platform when the theoretical downlink throughput is set to
900Mbits/s (i.e., ‘‘iperf = 900 Mbit/s’’), openhetnet0 (i.e., the virtual interface) = 101.00MBytes/s (captured by speedometer), eth0 = 54.00MBytes/s
(captured by speedometer), and eth1 = 54.20 MBytes/s (captured by speedometer).

FIGURE 46. The actual throughput obtained by the open WiFi platform and the open LTE platform when the theoretical downlink throughput is set to
1000Mbits/s (i.e., ‘‘iperf = 1000 Mbit/s’’), openhetnet0 (i.e., the virtual interface) = 102.00MBytes/s (captured by speedometer), eth0 = 54.56MBytes/s
(captured by speedometer), and eth1 = 54.28 MBytes/s (captured by speedometer).

In the same way, we rewrite the third sub-equation in equa-
tion (3) and multiply Z j, and then we can obtain equation (6):

SPj,CE (ξC + βC + θCE )

= SPj−1,CEξC + SPj,WIβW + SPj+1,CEθCE
SPj,CEZ j(ξC + βC + θCE )

= SPj−1,CEξCZ j + SPj,WIβWZ j + SPj+1,CEθCEZ j

j > 0 (6)

Based on the second sub-equation in equation (5) and the
second sub-equation in equation (6), we sum all j’s (i.e.,
j = 1, 2, 3, . . .). After some derivations we get the following
equation (7), the detailed derivation process is illustrated in
Appendix A. The symbol SE in equation (7) is the abbrevia-
tion of the word ‘‘sub-equation’’.

(ξC + βC + θCE )GCE (Z ) = SE1 + SE2 + SE3 + SE4
SE1 = ξCZGCE (Z )

SE2 = βWGWI (Z )

SE3 =
θCE

Z
(GCE (Z )− SP0,CE )

SE4 = SP0,CEθCE (7)

Repeating the same process for the second sub-equation
in equation (3) and the fourth sub-equation in equation (3),
we can obtain equation (8) (i.e., for WiFi state):

(ξW + βW + θWI )GWI (Z ) = SE1 + SE2 + SE3 + SE4

SE1 = ξWZGWI (Z )

SE2 = βCGCE (Z )

SE3 =
θWI

Z
(GWI (Z )− SP0,WI )

SE4 = SP0,WI θWI (8)

Note that equation (7) and equation (8) define a system of
equations in GCE (Z ) and GWI (Z ), from which we can get the

VOLUME 6, 2018 57955



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 47. The 2-dimensional Markov chain for non-delayed single path offloading scheme.

following equation (9):

f (Z )GCE (Z ) = SE1 + SE2
SE1 = SP0,WIβW θWIZ
SE2 = SP0,CEθCE [βWZ

+ξWZ (1− Z )− θWI (1− Z )] (9)

The function f (Z ) in equation (9) can be replaced by
equation (10).

f (Z ) = SE1 + SE2 + SE3 + SE4
SE1 = ξCξWZ3

SE2 = −(βCξW + βW ξC + ξCξW + ξCθWI + ξW θCE )Z2

SE3 = (βCθWI + βW θCE + θCEθWI + ξCθWI + ξW θCE )Z

SE4 = −θCEθWI (10)

Yechiali and Naor [27] have proven that the polynomial
in equation (10) has only one root in the open interval (0,1).
Here, we denote this root as Z0and set Z = Z0into equa-
tion (10), then we can obtain equation (11):

SE1+SE2= 0
SE1= SP0,WIβW θWIZ0
SE2= SP0,CEθCE [βWZ0+ξWZ0(1−Z0)−θWI (1−Z0)]

(11)

Based on Fig.47, we can obtain another balance equation
by a vertical cut between states containing j and j+ 1 packet.

SPj,CEξC + SPj,WI ξW
= SPj+1,CEθCE + SPj+1,WI θWI (j = 0, 1, 2, · · ·∞)

(12)

57956 VOLUME 6, 2018



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

Thenwe sum (12) over all j’s (i.e., from j = 1 to∞), we can
obtain

ξSP·,CEξC + SP·,WI ξW
= (SP·,CE − SP0,CE )θCE + (SP·,WI − SP0,WI )θWI

SP·,CE =
∞∑
j=0

SPj,CE , SP·,WI =
∞∑
j=0

SPj,WI (13)

Then, let two variables θAVE and ξAVEbe defined as:

ξAVE = SP·,CEξC + SP·,WI ξW
θAVE = SP·,CEθCE + SP·,WI θWI (14)

Based on equation (14), equation (13) can be rewritten as
equation (15), the detailed derivation process from equation
(13) to equation (15) is illustrated in Appendix B.

SP0,CEθCE + SP0,WI θWI = θAVE − ξAVE (15)

Then, based on equation (11) and equation (15), after
some calculations, we can obtain equation (16). The detailed
derivation process from equation (11) and equation (15) to
equation (16) is illustrated in Appendix C.

SP0,CE =
βW (θAVE − ξAVE )Z0

θCE (1− Z0)(θWI − ξWZ0)

SP0,WI =
βC (θAVE − ξAVE )Z0

θWI (1− Z0)(θCE − ξCZ0)
(16)

In addition, based on equation (9) and equation (15),
we can further obtain:

GCE (Z )

=
[βW (θAVE − ξAVE )Z + SP0,CEθCE (1− Z )(ξWZ − θWI )]

f (Z )
GWI (Z )

=
[βC (θAVE − ξAVE )Z + SP0,WI θWI (1− Z )(ξCZ − θCE )]

f (Z )
(17)

We then define two new variables E[NWI ] and E[NCE ]
shown in equation (18), where the E[NWI ] refers to the
average number of packets will be transmitted by WiFi and
E[NCE ] refers to the average number of packets will be
transmitted by LTE (i.e., the cellular network).

E[NWI ] =
∞∑
j=0

jSPj,WI ,E[NCE ] =
∞∑
j=0

jSPj,CE (18)

FIGURE 48. The 1-dimensional Markov chain for simultaneous dual path
offloading scheme.

Let’s go further step, we can find equation (18) has the
following relationship with equation (19).

G′CE (Z )|Z=1 = E[NCE ] =
∞∑
j=0

jSPj,CE

G′WI (Z )|Z=1 = E[NWI ] =
∞∑
j=0

jSPj,WI (19)

Then, it is easy to conclude that the average number of
packets in UE is:

E[N ] = E[NCE ]+ E[NWI ] (20)

We then insert Z = 1 in equation (17) and sum up those
two sub-equations, we can get the average number of packets
in system is (21), as shown at the bottom of this page.

Then, based on the Little’s law E[N ] = ξAVEE[T ] [28],
we can obtain average packet transmission delay in
non-delayed single path (i.e., special case for dual path)
mobile data offloading is (22), as shown at the bottom of this
page.

B. THE SIMULTANEOUS DUAL PATH
OFFLOADING SCHEME
For the simultaneous dual path offloading scheme, we utilize
the 1-dimensional Markov chain shown in Fig.48 to analyze
it. The dark blue circle refers to the number of packets arrived
in UE isj (0< j < n)), with one packet being transmitted by
WiFi and the other packet being transmitted by LTE. The red
arrow line denotes the packet Poisson arrival rate at UE in
overlaid area (i.e., the overlaid area shown in Fig.48, which
is composed by WiFi and LTE) is ξW + ξC . The green arrow
line denotes the service rate in the overlaid area is θCE + θWI .

E[N ] = E[NCE ]+ E[NWI ]

=
ξAVE

θAVE − ξAVE
+

[θCE (θWI − ξW )SP0,CE + θWI (θCE − ξC )SP0,WI − (θCE − ξC )(θWI − ξW )]
(βC + βW )(θAVE − ξAVE )

(21)

E[T ] =
1

θAVE − ξAVE
+

[θCE (θWI − ξW )SP0,CE + θWI (θCE − ξC )SP0,WI − (θCE − ξC )(θWI − ξW )]
(βC + βW )(θAVE − ξAVE )ξAVE

(22)

VOLUME 6, 2018 57957



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

Based on Fig.48, we can obtain the balance equation for
this 1-dimensional Markov chain is:{
SP0(ξw + ξc) = SP1(θWi + θCE ) (j = 0)
SPj−1(ξw + ξc) = SPj(θWi + θCE ) (0 ≤ j ≤ n,m = ±∞)

(23)

It is obviously equation (24) is true.

n∑
j=0

SPj = 1 (n = +∞) (24)

Then, for derivation conveniently, let us define a variable k
shown in equation (25), which denotes the ratio between the
packets arrival rate and the packets service rate.

k =
ξW + ξC

θWi + θCE
(25)

Based on the above-mentioned analysis, we can obtain the
average number of packets in the system is:

E(N ) =
n∑
j=0

SPj (n = +∞)

= (k + 2k2 + 3k2 + · · · )− (k2 + 2k3 + 3k4 + · · · )

= k + k2 + k3 + · · ·

=
k

1− k
=

ξC + ξW

θWI + θCE − ξC − ξW
(26)

Based on the Little’s law E[N ] = ξC + ξW E[T ], we can
obtain average packet transmission delay in simultaneous
dual path mobile data offloading is:

E(T ) =
1

ξC + ξW
(E(N ))

=
1

θWI + θCE − ξC − ξW
(27)

C. THE OFFLOADING EFFICIENCY
Finally, an important parameter that can be quantitatively
characterize data offloading is the offloading efficiency OE,
defined as the ratio of the amount of transmitted data through
WiFi interface against the total amount of transmitted data.
The higher offloading efficiency means better performance
for both the UE and the network side. Therefore, knowing
this parameter is especially important when it comes to cal-
culating how much a UE will have to pay, knowing that the
charges for using Internet access are not the same for WiFi as
are for cellular network.

Let tw(tc) refers to the total time during which data
are transmitted through the WiFi (cellular) interface. Then,
we can define the offloading efficiency to be the percentage
of data transmitted through the WiFi network, we have the
following expression for it:

OE =
θWI tWI

θCE tC + θWI tWI
(28)

V. EXPERIMENTATION AND EVALUATION
In this section, based on the software defined open HetNets
platform, we carry out the packets offloading experiment to
verify the analytical results (i.e., the transmission delay and
the offloading efficiency) illustrated in section IV. Specifi-
cally, we mainly focus on the impact of the packets arrival
rate in the soft UE side, the off-period of openWiFi platform,
the system utilization of open WiFi platform, and the sys-
tem utilization of open LTE platform for the offloading per-
formance. An experiment of such scenario afore-mentioned
is illustrated in Fig.49 and the detailed experiment param-
eters are shown in Table I. Note that in Fig.49, each
software-defined device (i.e., the software-defined UE, the
software-defined open WiFi platform, and the software-
defined open LTE platform) is composed by one NUC and
one USRP. Here, we let the soft UE as the transmitter and let
the open HetNets platform as the receiver. Then, based on the
experiment plan and the experiment parameters, we conduct
three group experiments. In each group experiment, we first
keep the packets arrival rate in soft UE unchanged, the system
utilization of open WiFi platform unchanged, and the system
utilization of open LTE platform unchanged, and then change
the off-period of openWiFi platform to evaluate the main per-
formance metrics including the average transmission delay
and the offloading efficiency. To be specific, in section V.A,
we present the first group experiment and the evaluation
process. Then, in section V.B we give the description for
the second group experiment and evaluation process. Finally,
in section V.C, we conduct the third group experiment and
make some evaluation comments.

FIGURE 49. The experiment plan for performance testing.

A. PERFORMANCE UNDER THE FIRST GROUP
EXPERIMENT PARAMETER SETTING
In this sub-section, we conduct the first group experiment to
evaluate the analytical results proposed in section IV. Specif-
ically, we carry out the following experiment procedures.

57958 VOLUME 6, 2018



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

(1). We deploy three software defined devices and one
server in our laboratory. Each software device is composed
by the INTEL NUC and USRP.

(2). In the server side, we implement ten modules (i.e.,
the enhanced EPC) into it, which includes the virtual
upper MAC module, the virtual lower MAC module (i.e.,
the Offloading Engine module), and eight virtual PHY mod-
ules (i.e., eight Offloading Observing Window modules).

(3). For those three software defined devices including
software defined UE, software defined open WiFi platform
and software defined open LTE platform, we respectively
compile and run them.

(4). In the server side, we open a command window and
type the command ‘‘iperf –s –u –i’’ to set it to the server
mode. The iperf is a network performance testing tool, which
can test the maximum uplink (i.e., from client to server)
TCP/UDP bandwidth, the maximum downlink (i.e., from
server to client) TCP/UDP bandwidth, the average trans-
mission delay, and etc. Here, we give the explanation of
each parameter in this command. The first parameter ‘‘-s’’
indicates that this server is configured to the server mode.
The second parameter ‘‘-u’’ indicates that transmitter must
use the UDP session to transmit packets to this server. The
third parameter ‘‘-i’’ indicates that the time interval of out-
putting the testing report in the server side is 1 second.
Similarly, in the soft UE side, we open a command window
and type the command ‘‘iperf -c -u 192.168.9.1 -i 1 -t 1800
-b 100M’’. We give the explanation of each parameter in this
command. The first parameter ‘‘-c’’ indicates that the soft
UE is configured to the client mode. The second parameter
‘‘-u’’ indicate that this UE use the UDP session to transmit
packets to this server. The third parameter ‘‘-i’’ indicates
that the time interval of outputting testing report in the UE
side is 1 second. The fourth parameter ‘‘-t 1800’’ indicates
that the total observing time interval is 1800 seconds (i.e.,
30 minutes). The fifth parameter ‘‘-b 100M indicates that the
theoretical uplink bandwidth (i.e., from client to server) is set
to 100 Mbps.

(5). Based on the above-mentioned procedures, in the open
WiFi platform and open LTE platform, we respectively run
the network speed testing tool ‘‘speedometer’’ (i.e., the pink
words shown in Fig.49) to observe the obtained throughput
in those two platforms over time.

(6). In order to observe the opportunistic single-path pack-
ets transmission performance, we keep the packets arrival
rate in UE side unchanged and keep the system utilization
of open WiFi platform and open LTE platform unchanged,
we change the off period of openWiFi platform. For example,
we turn off the openWiFi platform in the twenty-fifthminutes
(i.e., set the off period of open WiFi platform to 5 min-
utes). In another words, from twenty-fifth minutes to thirty
minutes, there is only one path to transmit the on-the-fly
packets received from the soft UE (i.e., only the LTE path
and no WiFi offloading assistance). Moreover, we utilize the
threadmechanism to control the system utilization in the open
WiFi platform and in the open LTE platform. To be specific,

we can increase the system utilization by turning on some
threads, we can decrease the system utilization by turning
off some threads, and we can observe the system utilization
information by inputting the command ‘‘top -c’’ in Linux
system.

(7). In each minute, we gather the experiment reports
including the average transmission delay and the practi-
cal throughput, and calculate the offloading efficiency (i.e.,
the total transmitted data through the open WiFi platform
divide by the total transmitted data through the open WiFi
platform and the open LTE platform). Based on the exper-
iment results, we draw the following three statistic charts
which are shown from Fig.50-Fig.52.

1) AVERAGE TRANSMISSION DELAY
Fig.50 (a), Fig.51 (a), and Fig.52 (a) demonstrate the average
transmission delay under the first group experiment param-
eter setting (i.e., the packets arrival rate in UE side is set
to 100Mbits/s, the execution time of ‘‘iperf’’ = 30 minute,
the system utilization of open WiFi platform = 10%, and
the system utilization of open LTE platform = 10%), and
under the condition that the off period of open WiFi platform
change from 5 minutes to 15 minutes. We can see the average
transmission delay of the single one path (i.e., during the
WiFi off period and there is only the LTE path exists) is
always larger than the dual path (both the WiFi path and
the LTE path exist) with the reason that offloading some
data traffic to WiFi platform can relieve the burden of the
LTE platform thus it can reduce the average transmission
delay. For example, as shown in Fig.50(a), when the ‘‘iperf’’
execution time period locate between the first minute and the
twenty-fifth minute (i.e., the dual path), the average trans-
mission delay is lower than 2s; when the time period locate
between the twenty-fifth minute and the thirtieth minute (i.e.,
the single path), the average transmission delay is larger than
2s. For Fig.51(a) and Fig.52(a), we can see the same trend
as that shown in Fig.50(a). Besides, we can observe that the
theoretical transmission delay is roughly aligned with exper-
iment results in all considered cases. The reason for some
deviations between the theoretical and experiment results is
due to the fact that in the analytical model we always adopt
some assumptions to derive the theoretical results. Therefore,
when it comes to the real experiment results, the deviations
are inevitable.

2) THROUGHPUT OBTAINED IN OPEN WIFI PLATFORM
Fig.50 (b), Fig.51 (b), and Fig.52 (b) depict the throughput
obtained in the open WiFi platform under the first group
experiment parameter setting, and under the condition that
the off period of open WiFi platform change from 5 minutes
to 15 minutes. From those three figures, we can observe that
when in the dual path offloading state, the actual through-
put obtained in the open WiFi platform is approximately
equal to 80 Mbits/s. Since we have set the theoretical uplink
throughput in the soft UE side to100 Mbits/s, therefore, it is
easy to estimate the actual throughput obtained in the open

VOLUME 6, 2018 57959



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 50. Experiment (solid lines) and theoretical (markers) results when the packets arrival rate in UE side is 100Mbits/s (i.e.,
‘‘iperf’’ = 100Mbits/s), the execution time of ‘‘iperf’’ = 30 minute, the system utilization of open WiFi platform and open LTE platform
= 10%, and the off period of open WiFi platform = 5 minute. (a) The average transmission delay; (b) The throughput obtained in the
open WiFi platform; (c) The throughput obtained in the open LTE platform; (d) The offloading efficiency.

FIGURE 51. Experiment (solid lines) and theoretical (markers) results when the packets arrival rate in UE side is 100Mbits/s (i.e.,
‘‘iperf’’ = 100Mbits/s), the execution time of ‘‘iperf’’ = 30 minute, the system utilization of open WiFi platform and open LTE
platform = 10%, and the off period of open WiFi platform = 10 minute. (a) The average transmission delay; (b) The throughput
obtained in the open WiFi platform; (c) The throughput obtained in the open LTE platform; (d) The offloading efficiency.

LTE platform is approximately equal to 20 Mbits/s, and the
experiment results shown in Fig.50(c)-Fig.52(c) have proven
what we have analyzed. Beside the dual path offloading

state, when in the single one path state (i.e., during the open
WiFi platform off period), the actual throughput in the WiFi
platform is equal to 0Mbits/s and the actual throughput in

57960 VOLUME 6, 2018



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 52. Experiment (solid lines) and theoretical (markers) results when the packets arrival rate in UE side is 100Mbits/s
(i.e., ‘‘iperf’’ = 100Mbits/s), the execution time of ‘‘iperf’’ = 30 minute, the system utilization of open WiFi platform and open
LTE platform = 10%, and the off period of open WiFi platform = 15 minute. (a) The average transmission delay; (b) The
throughput obtained in the open WiFi platform; (c) The throughput obtained in the open LTE platform; (d) The offloading
efficiency.

the LTE platform almost equals to 100Mbits/s, which bring a
great burden to the cellular platform.

3) THROUGHPUT OBTAINED IN OPEN LTE PLATFORM
Fig.50 (c), Fig.51 (c), and Fig.52 (c) illustrate the throughput
obtained in the open LTE platform under the first group
experiment parameter setting, and under the condition that
the off period of open WiFi platform change from 5 minutes
to 15 minutes. Based on those three figures, we can see that
when in the dual path offloading state, the actual throughput
obtained in the open LTE platform is approximately equal
to 20 Mbits/s, this experiment results are corresponding to
the results shown in Fig.50(b)-Fig.52(b) (i.e., the sum is
100 Mbits/s). Moreover, as described above, when in the
single one path state (i.e., during the open WiFi platform
off period), the actual throughput in the open LTE platform
almost equals to 100Mbits/s,

4) OFFLOADING EFFICIENCY
Fig.50 (d), Fig.51 (d), and Fig.52 (d) demonstrate the offload-
ing efficiency under the first group experiment parameter
setting, and under the condition that the off period of open
WiFi platform change from 5 minutes to 15 minutes. Note
that the offloading efficiency of the dual path (i.e., both the
WiFi path and the LTE path exist) is always larger than
the single one path (i.e., during the WiFi off period and
there is only the LTE path exists) with the reason that the
offloading efficiency is calculated based on the total pack-
ets transmitted through the WiFi platform divided by the

total packets transmitted through the WiFi platform and the
open LTE platform. For instance, as illustrated in Fig.52(d),
when the ‘‘iperf’’ execution time period locate between the
first minute and the fifteenth minute (i.e., the dual path),
the offloading efficiency is equal to 0.8; when the time period
locate between the sixteenth minute and the thirtieth minute
(i.e., the single path), the offloading efficiency is lower than
0.7. For Fig.50 (d) and Fig.51 (d), we can observe the same
trend as that shown in Fig.52 (d). Moreover, we can observe
that the theoretical transmission delay is roughly aligned
with experiment results in all considered cases. The reason
for some deviations between the theoretical and experiment
results is due to the fact that the performance of open WiFi
platform and open LTE platform are still need to be further
improved.

B. PERFORMANCE UNDER THE SECOND GROUP
EXPERIMENT PARAMETER SETTING
In this sub-section, we carry out the second group experiment
to evaluate the analytical results proposed in section IV. The
experiment procedures are the same as that described in
section V.A. Based on the second group experiment results,
we draw the following three statistic graphs which are shown
from Fig.53-Fig.55.

1) AVERAGE TRANSMISSION DELAY
Fig.53 (a), Fig.54 (a), and Fig.55 (a) demonstrate the aver-
age transmission delay under the second group experiment

VOLUME 6, 2018 57961



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 53. Experiment (solid lines) and theoretical (markers) results when the packets arrival rate in UE side is 200Mbits/s (i.e.,
‘‘iperf’’ = 200Mbits/s), the execution time of ‘‘iperf’’ = 30 minute, the system utilization of open WiFi platform and open LTE
platform = 15%, and the off period of open WiFi platform = 5 minute. (a) The average transmission delay; (b) The throughput
obtained in the open WiFi platform; (c) The throughput obtained in the open LTE platform; (d) The offloading efficiency.

FIGURE 54. Experiment (solid lines) and theoretical (markers) results when the packets arrival rate in UE side is 200Mbits/s
(i.e., ‘‘iperf’’ = 200Mbits/s), the execution time of ‘‘iperf’’ = 30 minute, the system utilization of open WiFi platform and open
LTE platform = 15%, and the off period of open WiFi platform = 10 minute. (a) The average transmission delay; (b) The
throughput obtained in the open WiFi platform; (c) The throughput obtained in the open LTE platform; (d) The offloading
efficiency.

parameter setting (i.e., the packets arrival rate in UE side is
set to 200Mbits/s, the execution time of ‘‘iperf’’= 30 minute,
the system utilization of open WiFi platform = 15%, and

the system utilization of open LTE platform = 15%), and
under the condition that the off period of open WiFi plat-
form change from 5 minutes to 15 minutes. Compared with

57962 VOLUME 6, 2018



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 55. Experiment (solid lines) and theoretical (markers) results when the packets arrival rate in UE side is 200Mbits/s
(i.e., ‘‘iperf’’ = 200Mbits/s), the execution time of ‘‘iperf’’ = 30 minute, the system utilization of open WiFi platform and open LTE
platform = 15%, and the off period of open WiFi platform = 15 minute. (a) The average transmission delay; (b) The throughput
obtained in the open WiFi platform; (c) The throughput obtained in the open LTE platform; (d) The offloading efficiency.

FIGURE 56. Experiment (solid lines) and theoretical (markers) results when the packets arrival rate in UE side is 300Mbits/s
(i.e., ‘‘iperf’’ = 300Mbits/s), the execution time of ‘‘iperf’’ = 30 minute, the system utilization of open WiFi platform and open LTE
platform = 20%, and the off period of open WiFi platform = 5 minute. (a) The average transmission delay; (b) The throughput
obtained in the open WiFi platform; (c) The throughput obtained in the open LTE platform; (d) The offloading efficiency.

Fig.50 (a)-Fig.52 (a), we see that the average transmission
delay of both the single path and the dual path fol-
low ((Fig.53(a)-Fig.55(a)) > (Fig.50(a)-Fig.52(a)), this is
because with the packets arrival rate in the UE side increase

(i.e., increase to 200 Mbits/s), the average transmission delay
increases accordingly. Furthermore, the theoretical transmis-
sion delay is roughly aligned with experiment results in all
considered cases. The reason for some deviations between the

VOLUME 6, 2018 57963



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 57. Experiment (solid lines) and theoretical (markers) results when the packets arrival rate in UE side is 300Mbits/s
(i.e., ‘‘iperf’’ = 300Mbits/s), the execution time of ‘‘iperf’’ = 30 minute, the system utilization of open WiFi platform and open LTE
platform = 20%, and the off period of open WiFi platform = 10 minute. (a) The average transmission delay; (b) The throughput
obtained in the open WiFi platform; (c) The throughput obtained in the open LTE platform; (d) The offloading efficiency.

theoretical and experiment results is same as that illustrated
in previous section.

2) THROUGHPUT OBTAINED IN OPEN WIFI PLATFORM
Fig.53 (b), Fig.54 (b), and Fig.55 (b) depict the throughput
obtained in the open WiFi platform under the second group
experiment parameter setting, and under the condition that
the off period of open WiFi platform change from 5 minutes
to 15 minutes. According to these three figures, we can note
that when in the dual path offloading state, the actual through-
put obtained in the open WiFi platform is approximately
equal to 140 Mbits/s and therefore the actual throughput
obtained in the open LTE platform is approximately equal to
60 Mbits/s. Compared with the results shown in Fig.50(b)-
Fig.52(b) (i.e., 80Mbits/s obtained in WiFi and 20Mbites/s
obtained in LTE), the actual throughput ratio is decrease (i.e.,
140/60 < 80/20). The reason contributes to it is that the
system utilization of open WiFi platform and open LTE plat-
form has increased from 10% to 15%. Beside the dual path
offloading state, when in the single one path state, the actual
throughput in the WiFi platform is equal to 0Mbits/s and
the actual throughput in the LTE platform almost equals to
200Mbits/s.

3) THROUGHPUT OBTAINED IN OPEN LTE PLATFORM
Fig.53 (c), Fig.54 (c), and Fig.55 (c) illustrate the throughput
obtained in the open LTE platform under the second group
experiment parameter setting, and under the condition that
the off period of open WiFi platform change from 5 minutes

to 15 minutes. From the three figures, we can see when in the
dual path offloading state, the actual throughput obtained in
the open LTE platform is approximately equal to 60 Mbits/s,
this experiment results are corresponding to the results shown
in Fig.53(b)-Fig.55(b) (i.e., the total is 200 Mbits/s). Besides,
as mentioned above, when in the single one path state,
the actual throughput in the open LTE platform almost equals
to 200Mbits/s.

4) OFFLOADING EFFICIENCY
Fig.53 (d), Fig.54 (d), and Fig.55 (d) demonstrate the offload-
ing efficiency under the second group experiment parame-
ter setting, and under the condition that the off period of
open WiFi platform change from 5 minutes to 15 minutes.
Based on the three figures, we can find the offloading effi-
ciency of both the single path and the dual path follow
(Fig.53 (d)-Fig.55 (d)) < (Fig.50 (d)-Fig.52 (d)). This is
because with the system utilization increase, the offloading
efficiency decreases accordingly. Moreover, the theoretical
transmission delay is roughly aligned with experiment results
in all considered cases. The reason for some deviations
between the theoretical and experiment results is same as that
mentioned in previous section.

C. PERFORMANCE UNDER THE THIRD GROUP
EXPERIMENT PARAMETER SETTING
In this sub-section, we carry out the third group experiment
to evaluate the analytical results proposed in section IV.
The experiment procedures are the same as that described

57964 VOLUME 6, 2018



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

FIGURE 58. Experiment (solid lines) and theoretical (markers) results when the packets arrival rate in UE side is 300Mbits/s
(i.e., ‘‘iperf’’ = 300Mbits/s), the execution time of ‘‘iperf’’ = 30 minute, the system utilization of open WiFi platform and open
LTE platform = 20%, and the off period of open WiFi platform = 15 minute. (a) The average transmission delay; (b) The
throughput obtained in the open WiFi platform; (c) The throughput obtained in the open LTE platform; (d) The offloading
efficiency.

in section V.A and section V.B. Based on the third group
experiment results, we draw the following three statistic fig-
ures which are shown from Fig.56-Fig.58.

1) AVERAGE TRANSMISSION DELAY
Fig.56 (a), Fig.57 (a), and Fig.58 (a) depict the average
transmission delay under the third group experiment param-
eter setting (i.e., the packets arrival rate in UE side is set
to 300Mbits/s, the execution time of ‘‘iperf’’ = 30 minute,
the system utilization of open WiFi platform = 20%, and
the system utilization of open LTE platform = 20%), and
under the condition that the off period of open WiFi plat-
form change from 5 minutes to 15 minutes. Compared with
Fig.50 (a)-Fig.52 (a) and Fig.53 (a)-Fig.55 (a), we observe
that the average transmission delay of both the single
path and the dual path follow ((Fig.56 (a)-Fig.58(a)) >
(Fig.53 (a)-Fig.55 (a)) > (Fig.50 (a)-Fig.52 (a)), this is
because with the packets arrival rate in the UE side increase
(i.e., increase to 300 Mbits/s), the average transmission delay
increase accordingly. Furthermore, the theoretical transmis-
sion delay is roughly aligned with experiment results in all
considered cases. The reason for some deviations between the
theoretical and experiment results is same as that described in
previous section.

2) THROUGHPUT OBTAINED IN OPEN WIFI PLATFORM
Fig.56(b), Fig.57 (b), and Fig.58 (b) demonstrate the through-
put obtained in the open WiFi platform under the third group
experiment parameter setting, and under the condition that the
off period of open WiFi platform change from 5 minutes to

15 minutes. According to these three figures, we can see that
when in the dual path offloading state, the actual throughput
obtained in the open WiFi platform is approximately equal
to 200Mbits/s and therefore the actual throughput obtained in
the open LTE platform is approximately equal to 100Mbits/s.
Compared with the results shown in Fig.53(b)-Fig.55(b) (i.e.,
160Mbits/s obtained in WiFi and 40Mbites/s obtained in
LTE) and in Fig.50 (b)-Fig.52(b) (i.e., 80Mbits/s obtained in
WiFi and 20Mbites/s obtained in LTE), the actual throughput
ratio is decrease (i.e., 200/100< 140/60< 80/20). The reason
contributes to this phenomenon is that the system utilization
of open WiFi platform and open LTE platform has increased
from 10% to 20%. Beside the dual path offloading state, when
in the single one path state, the actual throughput in the WiFi
platform is equal to 0Mbits/s and the actual throughput in the
LTE platform almost equals to 300Mbits/s.

3) THROUGHPUT OBTAINED IN OPEN LTE PLATFORM
Fig.56 (c), Fig.57 (c), and Fig.58 (c) show the throughput
obtained in the open LTE platform under the third group
experiment parameter setting, and under the condition that
the off period of open WiFi platform change from 5 min-
utes to 15 minutes. Based on the three figures, we can see
when in the dual path offloading state, the actual throughput
obtained in the open LTE platform is approximately equal
to 100 Mbits/s, this experiment results are corresponding
to the results shown in Fig.56(b)-Fig.58(b) (i.e., the total
is 300 Mbits/s). Besides, as mentioned above, when in the
single one path state, the actual throughput in the open LTE
platform almost equals to 300Mbits/s.

VOLUME 6, 2018 57965



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

4) OFFLOADING EFFICIENCY
Fig.56 (d), Fig.57 (d), and Fig.58 (d) demonstrate the offload-
ing efficiency under the third group experiment parameter
setting, and under the condition that the off period of open
WiFi platform change from 5minutes to 15minutes. Based on
the three figures, we can find the offloading efficiency of both
the single path and the dual path follow (Fig.53 (d)-Fig.55 (d))
< (Fig.56 (d)-Fig.58 (d)) < (Fig.50 (d)-Fig.52 (d)), which is
an unexpected result. Strictly speaking, the offloading effi-
ciency should decrease with the system utilization increase
(i.e., the trend should be (Fig.56 (d)-Fig.58 (d)) < (Fig.53
(d)-Fig.55 (d))< (Fig.50 (d)-Fig.52 (d))), the offloading effi-
ciency decreases accordingly. One possible reason to explain
this result is that maybe both the open WiFi platform and
the open LTE platform have reached their uplink throughput
capacity limit and therefor causing the unexpected offload-
ing efficiency degradation. Besides, we can see the theoret-
ical transmission delay is roughly aligned with experiment
results in all considered cases. The reason for some deviations
between the theoretical and experiment results is same as that
mentioned in previous section.

VI. CONCLUSION
In order to depict the packets offloading scheme in LTE/WiFi
HetNets scenario, in this paper, we analyze the key perfor-
mance metrics for single path and dual path packets offload-
ing with closed-form expressions based on software-defined
open HetNets platform. To be specific, we first construct
the software defined open HetNets platform. Based on
software-defined open HetNets platform, we then propose
an analytical model which has been derived for evaluating
the packets offloading performance in terms of the pack-
ets transmission delay and offloading efficiency as func-
tions of relevant system parameters. These expressions show
that the packet arrival rate in UE and the WiFi connection
duration have great influences on the packets offloading
performance. Experiment results verify the accuracy of the

proposed analytical model and closed-form theoretical anal-
yses, which provide guidance for maximizing the network
resource utilization efficiency as well as optimizing pack-
ets offloading performance in densely deployed LTE/WiFi
HetNets.

Currently, the current version software-defined open WiFi
platform and open LTE platform could not perfectly assist the
enhanced EPC due to the MAC functions and PHY functions
in those two platforms are still need to be further improved.
Therefore, in the future, we will continue evolve the MAC
and PHY functions in our novel openWiFi platform and open
LTE platform, which we hope to further improve the HetNets
platform’s performance.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers for
their helpful comments and suggestions for our work.

APPENDIX A
DERIVATION FROM EQUATION (5) AND
EQUATION (6) TO EQUATION (7)
The derivation process from the second sub-equation in (5)
and the second sub-equation in (6) to equation (7) is, (29), as
shown at the bottom of this page.

APPENDIX B
DERIVATION FROM THE SECOND ITEM IN
EQUATION (13) TO EQUATION (15)
Based on equation (14), the detailed derivation process from
equation (13) to equation (15) is (31), as shown at the top of
the next page.

ξAVE

= (SP·,CE − SP0,CE )θCE + (SP·,WI − SP0,WI )θWI
⇒ ξAVE=SP·,CEθCE−SP0,CEθCE+SP·,WI θWI−SP0,WI θWI
⇒ ξAVE=SP·,CEθCE+SP·,WI θWI−SP0,CEθCE−SP0,WI θWI
⇒ ξAVE = θAVE − SP0,CEθCE − SP0,WI θWI
⇒ SP0,CEθCE + SP0,WI θWI = θAVE − ξAVE (30)

{
SP0,CEZ0(ξC + βC + θCE ) = SP0,WIβWZ0

+ SP1,CEθCEZ0
+ SP0,CEθCEZ0, (j = 0)

SPj,CEZ j(ξC + βC + θCE ) = SPj−1,CEξCZ j + SPj,WIβWZ j + SPj+1,CEθCEZ j, (j > 0)

left = (ξC + βC + θCE )(SP0,CEZ0
+ SP1,CEZ1

+ · · · + SPj,CEZ j + · · · SPn,CEZn)(n = ∞)

= (ξC + βC + θCE )GCE (Z )

right = (
∞∑
j=0

SPj,WIβWZ j)+ (
∞∑
j=1

SPj−1,CEξCZ j)+ (SP0,CEθCEZ0
+ SP1,CEθCEZ0

+

∞∑
j=1

SPj+1,CEθCEZ j)

= (βWGWI (Z ))+ ((SP1−1,CEξCZ0)Z + (SP2−1,CEξCZ1)Z + · · · (SPn−1,CEξCZn−1)Z )

+ (SP0,CEθCEZ0
+
SP1,CEθCEZ0Z + SP1+1,CEθCEZ1Z + · · · SPn+1,CEθCEZn

Z
)

= (βWGWI (Z ))+ (ξCZGCE (Z ))+ (SP0,CEθCE +
θCE

Z
(GCE (Z )− SP0,CE ))

= (SE2)+ (SE1)+ (SE4 + SE3)

left = right (29)

57966 VOLUME 6, 2018



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

θAVE − ξAVE − SP0,CEθCE
θWI

βW θWIZ0 + SP0,CEθCE [βWZ0 + ξWZ0(1− Z0)− θWI (1− Z0)] = 0

⇒ (θAVE − ξAVE − SP0,CEθCE )βWZ0 + SP0,CEθCE [βWZ0 + ξWZ0(1− Z0)− θWI (1− Z0)] = 0

⇒ θAVEβWZ0 − ξAVEβWZ0 − SP0,CEθCEβWZ0 + SP0,CEθCE [βWZ0 + ξWZ0 − ξWZ2
0 − θWI + θWIZ0] = 0

⇒ SP0,CEθCE [βWZ0 + ξWZ0 − ξWZ2
0 − θWI + θWIZ0 − βWZ0]+ θAVEβWZ0 − ξAVEβWZ0 = 0

⇒ SP0,CEθCE [βWZ0 + ξWZ0 − ξWZ2
0 − θWI + θWIZ0 − βWZ0] = ξAVEβWZ0 − θAVEβWZ0

⇒ SP0,CE =
βWZ0(ξAVE − θAVE )

[ξWZ0 − ξWZ2
0 − θWI + θWIZ0]θCE

=
βWZ0(ξAVE − θAVE )

[(1− Z0)(ξWZ0 − θWI )]θCE

⇒ SP0,CE =
βWZ0(θAVE − ξAVE )

[(1− Z0)(θWI − ξWZ0)]θCE
(31)

APPENDIX C
DERIVATION FROM EQUATION (11) AND EQUATION (15)
TO EQUATION (16)
The detailed derivation process from equation (11) and equa-
tion (15) to equation (16) is shown below. We use equation
(15) to replace the SP0,WI in equation (11), then we can obtain
the solutions of SP0,WI and SP0,CE .

Specifically, the calculation process for SP0,CE is shown
below:
Then, using the same calculation, we can get the solution of
SP0,WI .

REFERENCES
[1] P.-Y. Kong and G. K. Karagiannidis, ‘‘Backhaul-aware joint traffic offload-

ing and time fraction allocation for 5G HetNets,’’ IEEE Trans. Veh. Tech-
nol., vol. 65, no. 11, pp. 9224–9235, Nov. 2016.

[2] Q. Chen, G. Yu, H. Shan, A. Maaref, G. Y. Li, and A. Huang, ‘‘Cellular
meetsWiFi: Traffic offloading or resource sharing?’’ IEEE Trans. Wireless
Commun., vol. 15, no. 5, pp. 3354–3367, May 2016.

[3] D. Suh, H. Ko, and S. Pack, ‘‘Efficiency analysis of WiFi offloading
techniques,’’ IEEE Trans. Veh. Technol., vol. 65, no. 5, pp. 3813–3817,
May 2016.

[4] H. Ko, J. Lee, and S. Pack, ‘‘Performance optimization of delayed WiFi
offloading in heterogeneous networks,’’ IEEE Trans. Veh. Technol., vol. 66,
no. 10, pp. 9436–9447, Oct. 2017.

[5] S.-I. Sou and Y.-T. Peng, ‘‘Performance modeling for multipath mobile
data offloading in cellular/Wi-Fi networks,’’ IEEE Trans. Commun.,
vol. 65, no. 9, pp. 3863–3875, Sep. 2017.

[6] J. Jia, G. Liu, D. Han, and J. Wang, ‘‘A novel packets transmission scheme
based on software defined open wireless platform,’’ IEEE Access, vol. 6,
pp. 17093–17118, 2018.

[7] J. Jia, G. Liu, D. Han, and J. Wang, ‘‘Towards studying the two-tier intra-
frequency X2 handover based on software-defined open LTE platform,’’
IEEE Access, vol. 6, pp. 39643–39684, 2018.

[8] M. A. P. González, T. Higashino, and M. Okada, ‘‘Radio access
considerations for data offloading with multipath TCP in cellu-
lar/WiFi networks,’’ in Proc. Int. Conf Inf. Netw. (ICOIN), Jan. 2013,
pp. 28–30.

[9] F. Rebecchi, M. D. de Amorim, V. Conan, A. Passarella, R. Bruno,
and M. Conti, ‘‘Data offloading techniques in cellular networks: A sur-
vey,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 2, pp. 580–603, 2nd
Quart., 2015.

[10] S. Dimatteo, H. Pan, H. Bo, and V. K. O. Li, ‘‘Cellular traffic offloading
throughWiFi networks,’’ in Proc. IEEE 8th Int. Conf Mobile Adhoc Sensor
Syst. (MASS), Oct. 2011, pp. 192–201.

[11] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong, ‘‘Mobile data offloading:
How much can WiFi deliver?’’ IEEE/ACM Trans. Netw., vol. 21, no. 2,
pp. 536–550, Apr. 2013.

[12] M. Bennis, M. Simsek, A. Czylwik, W. Saad, S. Valentin, and
M. Debbah, ‘‘When cellular meets WiFi in wireless small cell networks,’’
IEEE Commun. Mag., vol. 51, no. 6, pp. 44–50, Jun. 2013.

[13] L. Gao, G. Iosifidis, J. Huang, L. Tassiulas, and D. Li, ‘‘Bargaining-based
mobile data offloading,’’ IEEE J. Sel. Areas Commun., vol. 32, no. 6,
pp. 1114–1125, Jun. 2014.

[14] B. Han, P. Hui, V. S. A. Kumar, M. V. Marathe, J. Shao, and
A. Srinivasan, ‘‘Mobile data offloading through opportunistic communi-
cations and social participation,’’ IEEE Trans. Mobile Comput., vol. 11,
no. 5, pp. 821–834, May 2012.

[15] A. Pyattaev, K. Johnsson, S. Andreev, and Y. Koucheryavy, ‘‘3GPP LTE
traffic offloading onto WiFi direct,’’ in Proc. IEEE Wireless Commun.
Netw. Conf. Workshops, Apr. 2013, pp. 135–140.

[16] S. Singh, H. S. Dhillon, and J. G. Andrews, ‘‘Offloading in heterogeneous
networks: Modeling, analysis, and design insights,’’ IEEE Trans. Wireless
Commun., vol. 12, no. 5, pp. 2484–2497, May 2013.

[17] J. Lee, Y. Yi, S. Chong, and Y. Jin, ‘‘Economics of WiFi offloading: Trad-
ing delay for cellular capacity,’’ in Proc. IEEE Conf. Comput. Commun.
Workshops, Apr. 2013, pp. 357–362.

[18] D. Kim, Y. Noishiki, Y. Kitatsuji, and H. Yokota, ‘‘Efficient ANDSF-
assisted Wi-Fi control for mobile data offloading,’’ in Proc. 9th Int. Wire-
less Commun. Mobile Comput. Conf., Jul. 2013, pp. 343–348.

[19] A. Y. Ding et al., ‘‘Enabling energy-aware collaborative mobile data
offloading for smartphones,’’ in Proc. IEEE Int. Conf. Sens., Commun.
Netw., Jun. 2013, pp. 487–495.

[20] J. Kim, N.-O. Song, B. H. Jung, H. Leem, and D. K. Sung, ‘‘Placement of
WiFi access points for efficient WiFi offloading in an overlay network,’’
in Proc. IEEE 24th Annu. Int. Symp. Pers. Indoor Mobile Radio Commun.,
Sep. 2013, pp. 3066–3070.

[21] J. R. Iyengar, P. D. Amer, and R. Stewart, ‘‘Concurrent multipath transfer
using SCTPmultihoming over independent end-to-end paths,’’ IEEE/ACM
Trans. Netw., vol. 14, no. 5, pp. 951–964, Oct. 2006.

[22] S. J. Koh,M. J. Chang, andM. Lee, ‘‘MSCTP for soft handover in transport
layer,’’ IEEE Commun. Lett., vol. 8, no. 3, pp. 189–191, Mar. 2004.

[23] H.-Y. Hsieh and R. Sivakumar, ‘‘A transport layer approach for achieving
aggregate bandwidths on multi-homed mobile hosts,’’ Wireless Netw.,
vol. 11, nos. 1–2, pp. 99–114, Jan. 2005.

[24] T. You, C. Park, H. Jung, T. T. Kwon, and Y. Choi, ‘‘Multipath transmission
architecture for heterogeneous wireless networks,’’ in Proc. ICTC, 2011,
pp. 26–31.

[25] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure, ‘‘Explor-
ing mobile/WiFi handover with multipath TCP,’’ in Proc. ACM SIG-
COMMWorkshop Cellular Netw., Oper., Challenges, Future Design, 2012,
pp. 31–36.

[26] C. Raiciu, D. Niculescu, M. Bagnulo, and M. J. Handley, ‘‘Opportunistic
mobility with multipath TCP,’’ in Proc. 6th Int. WorkshopMobiArch, 2011,
pp. 7–12.

[27] U. Yechiali and P. Naor, ‘‘Queuing problems with heterogeneous arrivals
and service,’’ Oper. Res., vol. 19, no. 3, pp. 722–734, 1971.

[28] S. M. Ross, Stochastic Processes, 2nd ed. Hoboken, NJ, USA: Wiley,
1996.

VOLUME 6, 2018 57967



G. Liu, J. Jia: Performance Analysis of Packets Offloading Scheme Based on Software-Defined Open HetNets Platform

GUANGZHONG LIU received the B.S. degree
from Southwest Jiaotong University and the Ph.D.
degree from the China University of Mining
and Technology. He is currently a Professor of
computer science and engineering with Shanghai
Maritime University. His specific research inter-
ests include underwater acoustic communication
technology, mobile networking, wireless commu-
nication, and network security.

JIANXIN JIA received the B.S. degree in com-
puter science and technology from the Qingdao
University of Technology and the M.S. degree in
computer science and engineering from Shanghai
Maritime University, where he is currently pur-
suing the Ph.D. degree. In 2013, he received
the Qualification Certificate of Computer and
Software Technology Proficiency as a Database
System Engineer, the Qualification Certificate of
Computer and Software Technology Proficiency

as a Networking Engineer, the Qualification Certificate of Computer and
Software Technology Proficiency as a Software Designer in 2014, the Qual-
ification Certificate of Computer and Software Technology Proficiency as
a Software Testing Engineer in 2015, and the Honorable Certificate related
to the Qualification Certificate of Computer and Software Technology Pro-
ficiency (top 3 in Zhejiang province) in 2016. His main research interests
include wireless communication, distributed computing, mobile networking,
underwater acoustic communication technology, and cloud security.

57968 VOLUME 6, 2018


	INTRODUCTION
	MOTIVATION
	OUR CONTRIBUTIONS
	OUTLINE OF THE PAPER

	RELATED WORK
	SOFTWARE-DEFINED OPEN HETNETS PLATFORM
	SOFTWARE-DEFINED OPEN HETNETS PLATFORM DESIGN
	VIRTUAL UPPER MAC MODULE
	PREFACE
	THE FORMATION OF THE UPPER PROTOCOL STACK PACKETS
	TWO KEY FUNCTIONS IN VIRTUAL UPPER MAC

	OFFLOADING ENGINE MODULE
	OFFLOADING OBSERVING WINDOW MODULE
	SOFTWARE DEFINED OPEN HETNETS PLATFORM OPTIMIZATION
	SOFTWARE DEFINED OPEN HETNETS PLATFORM EVALUATION

	PACKETS OFFLOADING ANALYTICAL MODEL BASED ON SOFTWARE DEFINED OPEN HETNETS PLATFORM
	THE NON-DELAYED SINGLE PATH OFFLOADING SCHEME
	THE SIMULTANEOUS DUAL PATH OFFLOADING SCHEME
	THE OFFLOADING EFFICIENCY

	EXPERIMENTATION AND EVALUATION
	PERFORMANCE UNDER THE FIRST GROUP EXPERIMENT PARAMETER SETTING
	AVERAGE TRANSMISSION DELAY
	THROUGHPUT OBTAINED IN OPEN WIFI PLATFORM
	THROUGHPUT OBTAINED IN OPEN LTE PLATFORM
	OFFLOADING EFFICIENCY

	PERFORMANCE UNDER THE SECOND GROUP EXPERIMENT PARAMETER SETTING
	AVERAGE TRANSMISSION DELAY
	THROUGHPUT OBTAINED IN OPEN WIFI PLATFORM
	THROUGHPUT OBTAINED IN OPEN LTE PLATFORM
	OFFLOADING EFFICIENCY

	PERFORMANCE UNDER THE THIRD GROUP EXPERIMENT PARAMETER SETTING
	AVERAGE TRANSMISSION DELAY
	THROUGHPUT OBTAINED IN OPEN WIFI PLATFORM
	THROUGHPUT OBTAINED IN OPEN LTE PLATFORM
	OFFLOADING EFFICIENCY


	CONCLUSION
	REFERENCES
	Biographies
	GUANGZHONG LIU
	JIANXIN JIA


