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ABSTRACT In this paper, a neural decentralized adaptive quantized dynamic surface control scheme is
proposed for a class of large-scale multi-machine power systems with static var compensator (SVC) and
unknown line-transmission time delays. The main contributions of the proposed method are summarized as
follows: 1) a decentralized dynamic surface quantized control scheme with simple structure is proposed
for the large-scale multi-machine systems with SVC, where the ‘‘explosion of complexity’’ problem
in backstepping method and the complexities introduced by SVC are overcome; 2) the unknown line-
transmission time delays between different generators are considered and dealt with by introducing the
finite-cover lemma with radial basis function neural networks (RBFNNs) approximator, which leads to the
arbitrarily small L∞a tracking performance; 3) the strong nonlinearities, uncertain parameters and external
disturbances of the system are considered and the number of the estimated parameters is greatly reduced
by estimating the weight vector norm of neural networks instead of estimating the weighted vector itself.
It is proved that all the signals in the control system are ultimately uniformly boundedb and can be made
arbitrarily small. Simulation results show the validity of the proposed method.

INDEX TERMS Dynamic surface control (DSC), large-scale multi-machine power system, L∞ tracking
performance, static var compensator (SVC), hysteresis quantizer.

I. INTRODUCTION
With the rapid expansion of the scales of power grid, the con-
trol of large-scale multi-machine power systems has attracted
much attention due to the properties of the strong nonlinear-
ities and multiple coupled characteristics in the large-scale
power systems [1]–[6]. Generally, centralized and decentral-
ized control methods are the main tools to cope with the

aHere, theL∞ norm is defined as ‖x‖∞
1
= sup

t≥0
|x(t)| and we say x ∈ L∞

when ‖x‖∞ exists.
bHere, we say x(t) is ultimately uniformly bounded if there exist positive

constants b and c, independent of t0 ≥ 0, and for every a ∈ (0, c), there
is T = T (a, b), independent of t0, such that ‖x(t0)‖ ≤ a ⇒ ‖x(t)‖ ≤ b,
∀t ≥ t0 + T .

above control problems because the equipments of power
systems are distributed in different areas. In the centralized
control for large-scale power systems, poor knowledge of
different generator parameters and interactions from different
subsystems are the difficulties to cope with. For example,
if each subsystem is distributed distantly, it is difficult for a
centralized controller to gather exact feedback signals from
all the subsystems timely. Also the design and implementa-
tion of the centralized controller are complicated as pointed
out by [7]. Therefore, decentralized control become a pop-
ular method in the controller design for large-scale multi-
machine power systems. Some related results have been
achieved for the power systems such as in [8], a Lyapunov-
based decentralized excitation controller is developed for the
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multi-machine power systems where only the local measure-
ments were considered. On the other hand, the uncertainties
and the unmeasurable parameters of the power systems leads
to the combination of the adaptive control [9], [10] and
decentralized control for the power systems since the first
decentralized adaptive control scheme was proposed in [11].
In [12], a radial basis function neural networks (RBFNNs)
based decentralized adaptive dynamic surface control scheme
is proposed for the multi-machine power system. In [13],
to achieve decentralization, each generator is modeled as an
independent uncertain dynamic subsystem, where the uncer-
tainty is treated as a disturbance and this disturbance repre-
sents the effect from other subsystems. However, the time
delays on the line-transmission are not considered.

It is well known that time delays are common physical
phenomena and widely exist in many practical systems
such as the large-scale multi-machine power systems
(time delays may be as high as dozens or even hundreds
of milliseconds). The existence of time delays may degrade
the control accuracy and even leads to instability of control
systems. Therefore, it is a challenging work to mitigate the
influence of time delays in large-scale multi-machine power
systems. Generally, the most common method to deal with
time delays is the Krasovskii functionals and Razumikhin
functionals such as [14]–[16]. However, the arbitrarily
small tracking performance for all t > 0 was failed to
obtain.

Also, the SVC plays an important role in maintaining
the stability of voltages in the power systems [17], [18]
and improving the transient stability [19]–[21]. When the
SVC is equipped in the power systems, the electrical power
quality can be improved. However, the uncertainties and
complexities of the power systems are enhanced. In addition,
the computer control become more and more important with
the development of Network and information technology.
Hence, in order to realize the computer control for large-scale
multi-machine power systems with SVC the control signals
are required quantized before they go through communica-
tion channels [7], [22]–[26]. A quantizer maps a continuous
signal to a discrete finite set where a piecewise constant
function of time is included. As a new transformed input
of the control systems, the quantizer generates strong non-
linearities and leads to poor tracking performance or even
instability [27]. To our best knowledge, no related results
are available for decentralized adaptive quantized con-
troller design for the large-scale multi-machine power sys-
tems with SVC when the transmission time delays are
considered.

To address the above control problems, in this paper,
a decentralized adaptive quantized control dynamic sur-
face control scheme, which is a recursive and step by
step design procedure with respect to the orders of the
control systems [28], [29], is proposed for the large-
scale power systems with SVC and the transmission
time delays. The main contributions are summarized as
follows:

• By constructing the modified hysteresis quantizer and
introducing the first-order low pass filters as [28]
and [29], a computer-control based decentralized
adaptive dynamic surface control scheme for the large
scale power systems with SVC is firstly proposed, where
the ‘‘explosion of complexity’’ problem in backstepping
methods, the uncertainties and complexities introduced
by SVC are overcome. Also, the structure of the con-
troller is simplified due to the use of the first-order low
pass filter.

• The time delays on the transmission lines is consid-
ered and by combining the finite-cover lemma with
the radial basis function neural networks (RBFNNs)
approximator, the traditional Krasovskii functionals and
Razumikhin functions are abandoned when dealing with
the unknown time delays. Then, the unknown time delay
functions are estimated on-line and the arbitrarily small
L∞ tracking performance is achieved by introducing the
initialization technique.

• By estimating theweight vector norm of neural networks
instead of the weight vector itself, the number of the
estimated parameters is greatly reduced, leading to the
reduction of the computational burden.

The remainder of this paper is organized as follows.
In Section 2, the RBFNNs, the hysteresis quantizer, the
mathematical preliminaries and the mathematical model
of large-scale multi-machine systems considering the SVC
and transmission time delays are described. In Section 3,
the decentralized adaptive quantized controller design pro-
cedures are presented by employing the dynamic surface
control method. Section 4 shows the analysis of stability.
Section 5 illustrates the simulation results to demonstrate
the effectiveness of the proposed scheme. The conclusion is
formulated in Section 6.

II. PROBLEM STATEMENT AND PRELIMINARIES
A. MATHEMATICAL MODELS
As shown in [30], the model of large-scale power sys-
tems with SVC is described by the following differential
equations:

δ̇i (t) = ωi − ω0,

ω̇i (t) =
ω0

2Hi
(Pmi − Pei)−

Di
2Hi

ωi (t)+ di,

Ė q́i (t) =
1
T d́oi

[
Efi (t)− Eqi (t)

]
, (1)

where di denotes the external disturbance. Considering the
transmission delays between different generators, the electri-
cal equations are described as:

Efi (t) = keiufi (t) ,

Iqi (t) =
n∑
j=1

E q́i (t)Bij sin
(
δi − δj

(
t − τj/i

))
,

Eqi (t) = E q́i (t)+
(
xdi − x́di

)
Idi (t) = xadiIfi (t) ,
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TABLE 1. The notation for large-scale multi-machine power systems.

Idi (t) = −
n∑
j=1

E q́j (t)Bij cos
(
δi − δj

(
t − τj/i

))
,

Pei (t) =
n∑
j=1

E q́i (t)E q́j
(
t − τj/i

)
Bij sin

(
δi − δj

(
t − τj/i

))
,

Qei (t) = −
n∑
j=1

E q́i (t)E q́j
(
t − τj/i

)
Bij cos(δi − δj

(
t − τj/i

)
)

(2)

and the SVC models are shown as follows [31]:

ḂLi =
1
TCi

(−BLi + BCi + uBi) , (3)

where i = 1, 2, · · · , n with n denoting the number of inter-
connected generators, τj/i, i, j = 1, 2, · · · , n, denoting the
transmission delays from the jth generator to the ith generator.
The notation for large-scale multi-machine power systems
in (1)-(3) is given in Table 1.

B. MODEL FOR EXCITATION CONTROLLER DESIGN
AND LEMMA
Let 1Pei = Pei − Pmi0 with Pmi0 = Pmi to be a constant.
Then, it follows that [30]–[32]

δ̇i (t) = ωi − ω0,

ω̇i = −
Di
2Hi

ωi −
ω0

2Hi
1Pei + di,

1Ṗei (t) = −
1
T d́oi

1Pei (t)+
1
T d́oi

ui

+ hi
(
δi(t), δj

(
t − τj/i

)
, ωj

(
t − τj/i

))
, (4)

where ui is the control signal with

ui = IqiEfi −
(
xdi − x́di

)
IdiIqi − Pmi − T d́oiQeiωi, (5)

and

hi
(
δi(t), δj

(
t − τj/i

)
, ωj

(
t − τj/i

))
= E q́i

n∑
j=1

Ė q́j (t)Bij sin(δi(t)− δj
(
t − τj/i

)
)

−E q́i
n∑
j=1

E q́j (t)Bij cos(δi (t)− δj
(
t − τj/i

)
)ωj

(
t − τj/i

)
.

(6)

being the interconnected terms which satisfies [30]–[32]∣∣hi (δi(t), δj (t − τj/i) , ωj (t − τj/i))∣∣
≤

n∑
j=1,j 6=i

4∣∣∣T ′doj∣∣∣min

|Pei|max
∣∣sin(δi(t)− δj (t − τj/i))∣∣

+

n∑
j=1

|Qei|max
∣∣ωj (t − τj/i)∣∣

≤

n∑
j=1

4p1ij∣∣∣T ′doj∣∣∣min

|Pei|max (|sin(δi(t))| +
∣∣δj (t − τj/i)∣∣)

+

n∑
j=1

p2ij |Qei|max
∣∣ωj (t − τj/i)∣∣

=

n∑
j=1

(γi1j(
∣∣δj (t − τj/i)∣∣)+ γi2 ∣∣ωj (t − τj/i)∣∣). (7)

Therein,

γi1j =


n∑

j=1,j 6=i

4p1ij∣∣∣T ′doj∣∣∣min

|Pei|max , when j = i,

4p1ij∣∣∣T ′doj∣∣∣min

|Pei|max , when j 6= i,

γi2 = p2ij |Qei|max (8)

and p1ij, p2ij are constants with values either 1 or 0.
Let xi1 = δi − δi0, xi2 = ωi − ω0, xi3 = Pei − Pmio,

xi4 = Vmi − Vrefi,

Vmi =

√(
X2iE q́i

)2
+ (X1i)2 + 2X1iX2iE q́i cos xi1

X d́6
, (9)

where Vmi and Vrefi are the accessing point voltage and
the corresponding reference voltage of the SVC, respective;
X1i = x́di + XTi, X d́6i = X1i + X2i + X1iX2i (BLi − BCi) with
X2i being the transmission line reactance and XTi being the
transformer reactance.
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FIGURE 1. Hysteresis quantizer.

C. HYSTERESIS QUANTIZER DESCRIPTION
In this paper, the hysteresis quantizer is employed and
described as follows [33], [34].

Qi (ui) =



pi,j, if
pi,j

1+ δi
< ui ≤ pi,j,

Q−i ≥ pi,j or Q
−

i ≤ pi,j
pi,j ≤ ui <

pi,j
1− δi

,

(1+ σi) pi,j, if pi,j < ui ≤
pi,j

1− δi
,

Q−i ≥ (1+ σi) pi,j,

or
pi,j

1− δi
≤ ui < pi,j+1,

Q−i ≤ (1+ σi) pi,j,

0, if 0 ≤ ui ≤
pi,1

1+ δi
or

pi,1
1+ δi

< ui < pi,1,

Q−i = 0,
−Qi (−ui) , if ui < 0,

(10)

where δi =
1−εi
1+εi

and pi,j = aiε
1−j
i , j = 1, 2, 3 · · · with 0 <

εi < 1, ai > 0. The parameter ai determines the size of the
dead-zone forQi (ui), and εi is a measure of quantization den-
sity.The smaller the εi is, the coarser the quantizer is. In (10),
Q−i (t) is the latest value of Qi before the time instant t and
Q−i (0) := 0. Mathematically, Q−i (t) = 0 for t ∈

[
0,Ti,1

]
and Q−i (t) = Qi

(
ui
(
Ti,h

))
for t ∈

(
Ti,h,Ti,h+1

]
, where

Ti,h (h = 1, 2, 3, · · · ) with 0 ≤ Ti,1 < Ti,2 < Ti,3 < · · · ≤
+∞ denote the time instants when Qi (ui) make transitions.
The maps of (10) for ui ≥ 0 are plotted in FIGURE 1.
Here, let the maximum values of ai(t) and εi(t) be āi and

ε̄i and the minimum values be ai
¯

and εi
¯

. Then, we have

0 < ai
¯

≤ ai(t) ≤ āi, 0 < εi
¯

≤ εi(t) ≤ ε̄i < 1, ∀t ≥ 0.

(11)

We emphasize that different with the logarithmic quan-
tizer in [37], the hysteresis quantizer (10) in this paper
has additional quantization levels and can reduce chattering

because whenever the output of the quantizer takes a transi-
tion between two different values, some dwelling time will
elapse before a new transition occurs.
As shown in [30]–[32] by using (5)-(9), and the hysteresis

quantizer in (10), (4) can be rewritten as

ẋi1 = xi2,

ẋi2 = fi2 (x̄i2)− gi2xi3 + di,

ẋi3 = fi3 (x̄i3)+ gi3Q (ui)

+ hi(xi1, xj1τ
(
t − τj/i

)
, xj2τ (t − τj/i))

yi1 = xi1, (12)

ẋi4 = gi4Q
(
u
′

Bi

)
+ fi4 (x̄i4) ,

yi2 = xi4, (13)

where yi1 and yi2 are the outputs of multi-machine
power systems and the SVC equipments, respectively;
x̄il = [xi1, · · · , xil]T , i = 1, · · · , n, l = 2, · · · , 4,
fi2 (x̄i2) = −

Di
2Hi

xi2, fi3 (x̄i3) = − 1
T d́oi

xi3, gi2 =
ω0
2Hi

, gi3 =
1

T d́oi
, gi4 =

X1iX2i
TCiX d́6i

, u
′

Bi = −xi4uBi with uBi being the input
signal of SVC equipment,

fi4 (x̄i4) = −
sin xi1X1iX2i(

xi4 + Vrefi
) (
X d́6i

)2 xi2E q́i
−
X1iX2i

(
xi4 + Vrefi

)
X d́6i

1
Tci

(−BLi + BCi)

+
X2
2iE q́i + X1iX2i cos xi1(
xi4 + Vrefi

) (
X d́6i

)2
×

(
−

Xd6i
TdoiX d́6i

E q́i +
1
Tdoi

Xdi − X d́i
X d́6i

cos xi1

)
+
X2
2ixi3 + X1iX2iVsi cos δi

TdoiVmi
(
X d́6i

)2 ui

with Xd6i = X3i + X2i +X3iX2i (BLi − BCi), X3i = xdi + XTi.
To proceed, the following assumptions and Lemma are

necessary:

A1: The reference signal yri are smooth and bounded func-
tions with yri(0) at a designer’s disposal; [yri, ẏri, ÿri]T

belongs to a compact set �r for all t ≥ 0.
A2: There exists some positive constants gmin and gmax such

that gmin ≤ gij ≤ gmax, i = 1, 2, · · · , n, j = 2, 3.

Lemma 1 [35], [36]: Suppose f (x) : �x ⊂ R be a smooth
function with �x ⊂ Rn being a compact set. Let x(t − τ ) be
uniformly continuous with respect to t , where τ ∈ [0, τm]
is an unknown constant time delay with τm denoting the
maximum value of τ . Then, for any given δ0 > 0, there exists
a finite partition of [0, τm], independent of t , 0 ≤ t1 < t2 <
· · · < tk ≤ τm, from which a point τ̄ ∈ {t1, · · · , tk}, can
be extracted, such that |f (x (t − τ))− f (x (t − τ̄ ))| < δ0,

∀t ≥ 0.
Remark 1: Since the reference signal yri is always bounded

and gi,j, j = 2, 3 are unknown positive constants, the
assumption A1 and A2 are reasonable [36]–[39].
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D. RADIAL BASIS FUNCTION NEURAL
NETWORKS (RBFNNS)
The RBFNNs in [40] are used as the continuous functional
approximator with the following form

fij
(
ξij
)
= ϑ∗Tij ψij

(
ξij
)
+ εij

(
ξij
)
, (14)

where fij
(
ξij
)
are continuous functions, ξij ∈ Rn are the inputs

of RBFNNs; ϑ∗ij ∈ R
M is an M-dimensional optimal weight

vector withM being the number of the neural nodes, satisfy-

ing ϑ∗ij = argmin
ϑ∈RM

{
sup
ξ∈�ξ

∣∣∣ϑ∗Tij ψij (ξij)− fij (ξij)∣∣∣
}
; ψij

(
ξij
)
:

Rn → RM is nonlinear vector function and ψij
(
ξij
)
=[

ψij,1
(
ξij
)
, · · · , ψij,M

(
ξij
)]T ;ψij,k (ξij), is the basis function

called Gauss function with ψij,k
(
ξij
)
= exp

(
−
||ξij−ζij,k ||

2

2η2ij

)
,

ζj, k = 1, . . . ,M , being the center of the basis functions;
ηij denotes the width of the basis functions; εij

(
ξij
)
is the

approximation error satisfying∣∣εij (ξij)∣∣ ≤ εijm (15)

with εim > 0 being the maximum vale of εij
(
ξij
)
.

The control objective is to propose a neural decentral-
ized adaptive quantized dynamic surface excitation control
scheme for a class of large-scale multi-machine power sys-
temswith SVC such that the power angles, the speed, the elec-
trical power and the accessing voltage of the SVC converge
to desired values with theL∞ norm of the tracking error even
if the large-scale power systems encounter the unexpected
disturbances and all the signals of the closed-loop system are
ultimately uniformly bounded.

III. DESIGN PROCEDURES OF THE DECENTRALIZED
NEURAL ADAPTIVE QUANTIZED DYNAMIC SURFACE
CONTROL (QDSC)
In this section, the dynamic surface (DSC) technique
will be employed for the controller design. Because each
subsystem (10) is third-order, three steps are needed based
on the rules of DSC technique. Similarly, because each
subsystem (11) is first-order, only one step is needed. There-
fore, four steps are included in the procedures of the controller
design as follows.
Step 1: Let si1 be the first surface error and defined as

si1 = xi1 − yri. (16)

Then, the time derivative of si1 yields

ṡi1 = xi2 − ẏri. (17)

Consider the following quadratic function

V1 =
1
2

n∑
i=1

s2i1. (18)

Then, the time derivative of V1 can be expressed as

V̇1 =
n∑
i=1

si1[(xi2 − x2di)− ẏri + x2di] (19)

with x2di being the virtual control signal to be designed.
From (19), the virtual control law is suggested to choose as

x2di = −ki1si1 + ẏri, (20)

where ki1 is positive design parameter.
Let x2di pass through a first-order low pass filter, a new

variable zi2 can be obtained as follows.

~i2żi2 + zi2 = x2di (21)

with ~i2 being a time constant of the low pass filter.
Step 2: Let si2 be the second surface error and defined as

si2 = xi2 − zi2 − ci2 (22)

with ci2 being a constant design parameter to guarantee the
L∞ performance. Consider the following quadratic function

V2 =
n∑
i=1

(
1

2gi2
s2i2 +

1
2γi2

ν̃2i2

)
, (23)

where ν̃i2 = ν̂i2 − ν
∗

i2 with ν̂i2 being the estimation of ν∗i2
which will be defined below. Then, the time derivative of V2
yields

V̇2 =
n∑
i=1

[si2(−xi3 +
1
gi2

(fi2 (x̄i2)+ di − żi2))+
1
γi2
ν̃i2
·

ν̂i2],

(24)

where γi2 is a positive design parameter.
Here, the RBFNNs is employed to approximate the

unknown continuous functions on the compact sets �ξ i2 as
follows.

1
gi2

(fi2 (x̄i2)+ di − żi2)+
3
2
si2 = ϑ∗Ti2 ψi2 (ξi2)+ εi2 (ξi2)

(25)

with ϑ∗i2 being the optimal weighted vector as in (14), ξi2 =
(xi1, xi2, zi2) ∈ <3, |εi2 (ξi2)| ≤ εi2m. Let ν∗i2 =

∥∥ϑ∗Ti2 ∥∥2. By
using the Young’s inequalities, it follows that

si2ϑ∗Ti2 ψi2 (ξi2) ≤
α2i2ν

∗

i2ψ
T
i2ψi2s

2
i2

2
+

1

2α2i2
, (26)

si2εi2 (ξi2) ≤
1
2
s2i2 +

1
2
ε2i2m (27)

with αi2 being a positive design parameter and εi2m denoting
the upper boundary of the approximation error described
in (15).

Substituting (25)-(27) into (24), it follows that

V̇2 ≤
n∑
i=1

[si2(− (xi3 − x3di)− x3di

+
α2i2ν

∗

i2ψ
T
i2ψi2si2
2

)−
1
2
s2i2 +

1
2
ε2i2m

+
1

2α2i2
+

1
γi2
ν̃i2
·

ν̂i2] (28)
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with x3di being the virtual control signal to be designed.
From (28), the virtual control law is suggested to choose
as

x3di = ki2si2 +
α2i2ν̂i2ψ

T
i2ψi2si2
2

(29)

with ki2 being a positive design parameter. Then, the adap-
tive law for the estimation of the unknown parameter ν∗i2 is
designed as

·

ν̂i2 = γi2

(
α2i2ψ

T
i2ψi2s

2
i2

2
− σi2ν̂i2

)
, (30)

where γi2 and σi2 are positive design parameters.
Let x3di pass through the first-order low pass filter to

generate a new variable zi3.

~i3żi3 + zi3 = x3di (31)

with ~i3 being a time constant of the low pass filter.
Step 3: Let si3 be the third surface error and defined as

si3 = xi3 − zi3 − ci3 (32)

with ci3 being a constant design parameter similar as ci2
defined in (22). Then, the time derivative of si3 yields

ṡi3 = gi3[Q (ui)+
1
gi3

(fi3 (x̄i3)

+ hi
(
xi1, xj1

(
t − τj

)
, xj2(t − τj)

)
− żi3)]. (33)

With respect to Q (ui), define

ιi1 (t) =


Q (ui)
ui

, if |ui| ≥ a(t),

1, if |ui| < a(t),
(34)

ιi2 (t) =

{
0, if |ui| ≥ a (t) ,
Q (ui)− ui, if |ui| < a (t) ,

(35)

where a (t) is defined in (11). Then, it follows that

Q (ui) = ιi1 (t) ui + ιi2 (t) . (36)

From FIGURE 1, it arrives at

1− δ ≤
Q (ui)
ui
≤ 1+ δ, if |ui| ≥ a(t), (37)

|Q (ui)− ui| < a, if |ui| < a(t). (38)

Considering (37), (38), (11) and the relationship δi =
1−εi
1+εi

,
one has

ιi1 (t) ≥ λi, ιi2 (t) ≤ ā, ∀t ≥ 0, (39)

where λi > 0, satisfies

λi =
2εimin

1+ εimin
. (40)

From Lemma 1, there exists a point τej/i ⊂ {t1, · · · ,
tm}, j = 1, ..n, such that hi

(
xi1, xj1τ

(
t − τj/i

)
,

xj2τ
(
t − τj/i

))
= hi

(
xi1, xj1

(
t − τej/i

)
, xj2

(
t − τej/i

))
+ ei

with |ei| ≤ δi0. Then, (33) can be rewritten as
n∑
i=1

si3ṡi3

≤

n∑
i=1

gi3si3[ui +
1
gi3

(fi3 (x̄i3)− żi3 + ei

+

n∑
j=1

(γi1j(
∣∣xj1 (t − τej/i)∣∣)+ γi2 ∣∣xj2 (t − τej/i)∣∣)] (41)

holds. Noted that,
n∑
i=1

n∑
j=1

(γi1j(
∣∣xj1 (t − τej/i)∣∣)+ γi2 ∣∣xj2 (t − τej/i)∣∣)

=

n∑
i=1

n∑
j=1

(γj1i(
∣∣xi1 (t − τei/j)∣∣)+ γj2 ∣∣xi2 (t − τei/j)∣∣).

Then, similar to Step 2, the RBFNNs are utilized to approx-
imate the unknown continuous functions on the compact
set �ξ i3 as follows

1
gi3

fi3 (x̄i3)− żi3 +
1

2gi3
si3

+

n∑
j=1

(γj1i(
∣∣xi1 (t − τei/j)∣∣)+ γj2 ∣∣xi2 (t − τei/j)∣∣)

= ϑ∗Ti3 ψi3 (ξi3)+ εi3 (ξi3) (42)

with ϑ∗i3 being the optimal weighted vector as in (14), and

ξi3 = (xi1, xi2, xi3, xi1(t − t1), . . . , xi1(t − tm),

xi2(t − t1), . . . , xi2(t − tm), zi3) ∈ <4+2m.

Consider the following quadratic function

V3 =
n∑
i=1

(
1

2gi3
s2i3 +

1
2γi3

ν̃2i3 +
λi

2γι
ι̃2i

)
, (43)

where ν̃i3 = ν̂i3 − ν∗i3 and ι̃i = ι̂i − ι∗i with ν̂i3 and ι̂i
being the estimations of ν∗i3 and ι

∗
i =

1
λi
, respectively. Then,

substitute (42) into (41), it follows that

si3ṡi3 ≤ gi3[si3(ιi1 (t) ui + ιi2 (t)+
α2i3ν

∗

i3ψ
T
i3ψi3si3
2

)

+
1
2
ε2i3m +

1

2α2i3
+

1
2
δ2i0]. (44)

Let ν∗i3 =
∥∥ϑ∗Ti3 ∥∥2, and using the Young’s inequalities,

we have

si3ei ≤
1
2
s2i3 +

1
2
δ2i0, (45)

si3ϑ∗Ti3 ψi3 (ξi3) ≤
α2i3ν

∗

i3ψ
T
i3ψi3s

2
i3

2
+

1

2α2i3
, (46)

si3εi3 (ξi3) ≤
1
2
s2i3 +

1
2
ε2i3m (47)
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with αi3 being a positive design parameter and εi3m being the
upper boundary of the approximation error. Then, the time
derivative of V3 yields

V̇3 ≤
n∑
i=1

[si3(ιi1 (t) ui + ιi2 (t)+
α2i3ν

∗

i3ψ
T
i3ψi3si3
2

)

+
1
2
ε2i3m +

1

2α2i3
+

1
2
δ2i0 +

1
γi3
ν̃i3
·

ν̂i3 +
1
γι
ι̃i ˙̂ιi] (48)

To stabilize each subsystem, the actual control laws ui are
chosen as

ui = −
si3v̄2i1

|si3v̄i| + %i1
, (49)

where %i1 is a positive design parameter.

v̄i1 = ι̂iv̄´i1, (50)

and

v̄´i1 = −ki3si3 −
α2i3ν̂i3ψ

T
i3ψi3si3
2

(51)

with ki3 being a design parameters. The adaptive laws for the
unknown parameter ν∗i3 and ι̂i are selected as

·

ν̂i3 = γi3

(
α2i3ψ

T
i3ψi3s

2
i3

2
− σi3ν̂i3

)
, (52)

·

ι̂i = γι

(
si3v̄´i − σι ι̂i

)
, (53)

where γi3, γι σi3, and σι are positive design parameters.
Step 4: Let si4 be the third surface error and defined as

si4 = xi4 − Vrefi, (54)

where si4 denotes the tracking error between the accessing
point voltageVmi and the reference voltageVrefi in SVC. Then
the time derivative of si4 yields

ṡi4 = gi4Q
(
u´Bi
)
+ fi4 (x̄i4)− V̇refi. (55)

Similar to (34)-(40), one has

Q
(
u´Bi
)
= ιi3 (t) u´Bi + ιi4 (t) (56)

with

ιi3 (t) =


Q
(
u´Bi
)

u´Bi
, if

∣∣∣u´Bi∣∣∣ ≥ a(t),
1, if

∣∣∣u´Bi∣∣∣ < a(t),

(57)

ιi4 (t) =

0, if
∣∣∣u´Bi∣∣∣ ≥ a (t) ,

Q
(
u´Bi
)
− u´Bi, if

∣∣∣u´Bi∣∣∣ < a (t) .
(58)

Consider the following quadratic function

V4 =
n∑
i=1

(
1

2gi4
s2i4 +

1
2γi4

ν̃2i4 +
λi

2γι´
ι̃2́i

)
(59)

where ν̃i4 = ν̂i4 − ν∗i4 and ι̃
′

i = ι̂
′

i − ι
′
∗
i , with ν̂i4 and ι̂

′

i being
the estimations of ν∗i4 and ι

′
∗
i =

1
λ
′

i
, respectively and will be

introduced below. Then, time derivative of V4 is

V̇4 =
n∑
i=1

(
si4 −

1
gi4

V̇refi +
fi4 (x̄i4)
gi4

+ [ιi3 (t) ui4

+ιi4 (t)+
1
γi4
ν̃i4
·

ν̂i4 +
1
γι´
ι̃´i

·

ι̂´i

)
. (60)

Then, similar to Step 2 and Step 3, the RBFNNs are utilized
to approximate the unknown continuous functions on the
compact set �ξ i4 as follows

1
gi4

[
fi4 (x̄i4)− V̇refi

]
+

1
2
si4 = ϑ∗Ti4 ψi4 (ξi4)+ εi4 (ξi4)

(61)

with ξi4 =
(
x̄i4,$i2, $̇i2, ei2, V̇refi

)
∈ �ξ i4 ⊂ <

8. Let ν∗i4 =∥∥ϑ∗Ti4 ∥∥2 and using the Young’s inequalities, we obtain

si4ϑ∗Ti4 ψi4 (ξi4) ≤
α2i4ν

∗

i4ψ
T
i4ψi4s

2
i4

2
+

1

2α2i4
, (62)

si4εi4 (ξi4) ≤
1
2
s2i4 +

1
2
ε2i4m (63)

with αi4 being a positive design parameter and εi4m
being the upper boundary of the approximation error.
Substituting (61)-(63) into (60), it follows that

V̇4 ≤
n∑
i=1

si4

[(
ιi3 (t) u

′

Bi + ιi4 (t)
)
+
α2i4ν

∗

i4ψ
T
i4ψi4si4
2

]

+
1
2
ε2i4m +

1

2α2i4
+

1
γi4
ν̃i4
·

ν̂i4 +
1
γι´
ι̃´i

·

ι̂´i. (64)

Then, the control law for the accessing point voltage of SVC
and the adaptive laws for the estimations of ν̂i4 and ι̂´i are
chosen as follows

u´Bi = −
si4v̄2i2

|si4v̄i2| + %i2
, (65)

where %i2 is a positive design parameter and

v̄i2 = ι̂´iv̄
´

i2, (66)

v̄´i2 = −ki4si4 −
α2i4ν̂i4ψ

T
i4ψi4si4
2

, (67)

·

ν̂i4 = γi4

(
α2i4ψ

T
i4ψi4s

2
i4

2
− σi4ν̂i4

)
, (68)

·

ι̂´i = γι´

(
si3v̄´i4 − σι´ι̂

´
i

)
(69)

with ki4, γi4, γι´, σι´ and σi4 are positive design parameters.
Remark 2: It should be noted that the utilization of the

design parameters cij in (22) and (32) guarantees the arbi-
trarily small L∞ performance of the tracking error as shown
in the next section. Here, the arbitrarily small L∞ perfor-
mance implies the norms of the tracking errors of each gen-
erator sup

t>0
‖Si1‖∞ can be arbitrarily small for all t > 0,

by properly choosing the design parameters. Obviously, the
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L∞ performance of the tracking error improves tracking
performance of the control systems compared with the tra-
ditional backstepping methods [13], [40]–[44].
Remark 3: In this paper, the norms of M -dimensional

optimal weight vectors, such as ν∗i2, ν
∗

i3 and ν
∗

i4 withM being
the number of neural nodes, are estimated. Therefore, the
number of the estimated unknown neural nodes is dramat-
ically reduced from M to only one, leading to the com-
putational burden being greatly reduced and the proposed
method are more suitable for real time control compared
with [43] and [44].
Remark 4: It should be noted that the objective of this

paper is not to use RBFNNs to exactly approximate the
unknown continuous functions (25), (42) and (61), but to
make the output of the control system precisely tracks the
desired trajectory or in other word, to make the tracking
error of the control system satisfies the desired requirement.
It implies that if the tracking error of the control system is
bigger than the desired requirement, the design parameters
γi2, γi3, γi4, σi2, σi3, σi4, in the adaptive laws (30), (52) and
(68) can be changed. Then, the on-line estimation values of
the norm of NNs weights vectors will be updated.
Remark 5:When the time delay functions are approximate

by RBFNNs, the time-delay states xij(t − t1), · · · , xij(t − tk )
are used as the input vector of RBFNNs, where t1, · · · , tk is
a finite partition of [0, τm] satisfying 0 ≤ t1 < t2 < · · · <
tk ≤ τm as shown in Lemma 1. Fortunately, we do not need to
memory all the previous states, only very limitedly previous
states are needed with respect to the current time t , which
implies if k = 10, only 10 states are needed to be stored
with respect to the current time. Therefore, the time-delay
approximator may not lead to the requirement of unaccept-
able storage space.
Remark 6: To make the proposed dynamic surface control

scheme more implementable, the design parameters could be
chosen as the following steps. Firstly, the time constants of the
first-order low-pass filters ~ij, i = 1, 2; j = 2, 3, should be
chosen a smaller value within the practically allowable range
from 0.001 to 0.1. Secondly, when the value of Bi0 is selected
by using (93), the value of αi0 could be chosen according
to (101) and (102). Thirdly, by using the value of αi0 obtained
in Step 2 and according to (105), the design parameters ki1,
ki2, ki3, ki4, γi2, γi3, γi4, γι, γι´, σi2, σi3, σi4, σι, and σι´ could
be chosen.

IV. ANALYSIS OF STABILITY AND TRACKING
PERFORMANCE
In this section, the analysis of stability for the multi-machine
power systems and the tracking performance of power angles
will be presented. To this end, define yi2e and yi3e as follows.

yi2e = zi2 − x2di
= zi2 − (−ki1si1 + ẏri − si1) , (70)

yi3e = zi3 − x3di

= zi2 −

(
ki2si2 +

α2i2ν̂i2ψ
T
i2ψi2si2
2

)
(71)

with x2di and x3di being given by (20) and (29), respectively.
From (21) and (70), we have

żi2 =
x2di − zi2
~i2

=
−yi2e
~i2

. (72)

Similarly, from (31) and (71), one has

żi3 =
x3di − zi3
~i3

=
−yi3e
~i3

. (73)

Then, the time derivatives of (70) and (71) arrive at

ẏi2e =
−yi2e
~i2
+ Bi2 (si1, si2, yi2e, ẏri, ÿri) , (74)

ẏi3e =
−yi3e
~i3
+ Bi3(si1, si2, si3, yi2e, yi3e,

ν̂i2,$i1, $̇i1, $̈i1, yri, ẏri, ÿri), (75)

where

Bi2 = ki1ṡi1 − ÿri + ṡi1, (76)

Bi3 = −[ki2ṡi2 +
α2i2ν̂i2ψ

T
i2ψi2ṡi2
2

+
α2i2

·

ν̂i2ψ
T
i2ψi2si2
2

+α2i2ν̂i2ψ
T
i2si2(

2∑
i=1

∂ψi2

∂xl
ẋil +

∂ψi2

∂si2
)], (77)

are continuous functions.
Theorem 1: Consider the closed-loop control systems

including the transformedmulti-machine power systems with
SVC and transmission time delays, hysteresis quantizer (10),
first-order low-pass filters (21), (31), actual control law (65),
and adaptive laws (30) (52)and (68). The positive definite
Lyapunov function are defined as

V =
4∑
i=1

Vi +
1
2

n∑
i=1

y2i2e +
1
2

n∑
i=1

y2i3e (78)

with V1, V2, V3 and V4 being defined in (18), (23), (43)
and (59), respectively. Suppose that the given positive con-
stant εilm in (27) and (47) satisfied |εil (ξil)| ≤ εilm, l =
2, 3, 4, in the compact set �ξ i2, �ξ i3, and �ξ i4, respectively.
For the bounded initial conditions and a given positive con-
stant p, if

V (0) ≤ p, (79)

then, all the variables such as si1, si2, si3, si4, νi2, νi3, νi4,
in the closed-loop systems are ultimately uniformly bounded
by appropriately choosing the design parameters ki1, ki2, ki3,
ki4, γi2, γi3, γi4, γι, γι´, σi2, σi3, σi4, σι and σι´. Also, the con-
trolled power system can adaptively and promptly return to
stability when it encounters the unexpected faults. In addition,
the L∞ norm of the tracking errors of the power angles can
be arbitrarily small by properly choosing the above design
parameters.

Proof: please see the APPENDIX for the details.
Remark 7: As shown in [45], when the NNs is used to

approximate the unknown nonlinear function in an adaptive
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FIGURE 2. The relationship among the three compacts.

control scheme, there are three compact sets: initial compact
set �0 = {V (0), yr (0) |V (0) is finite, yr (0) ∈ �r }, bounding
compact set � = {V (t) |V (t) ≤ p }, where p can be sufficient
large value defined in (79), and the steady state compact
�S = {V (t)

∣∣∣ lim
t→∞
‖xi1 − yri‖ ≤

√
C∗
αi0
}, where C∗ and αi0

defined in (104) and (105), respectively. The relationship
among the three compact sets is illustrated in FIGURE 2.
Therefore, with respect to the compact set over the NNs
approximations �ξi2 , �ξi3 , and �ξi2 , stable adaptive neural
network controllers can be easily constructed if the compact
sets over the NNs approximations are chosen large enough to
cover for bounded initial conditions [45].
Remark 8: For the control system, the norm of weight

vector υ∗ij =
∥∥∥ϑ∗ij∥∥∥2 is estimated instead of the weight vec-

tor itself and the estimated norms of optimal weight vector
are updated on-line by using the adaptive laws (30), (52)
and (68). According to (30), (52) and (68), the different
choices of neural network basis functions and number of
neurons lead to different estimated values ν̂ij, different values
of approximation error εij and its corresponding maximum
value of εijm. The larger values of approximation error will
make the value of C∗ in (105) become larger, then, the track-
ing error si1 and si4 become larger due to (118). Generally,
the larger number of neurons leads to the smaller approxima-
tion error when the same neural network basis functions are
chosen.
Remark 9: By using the proposed control scheme,

the Krasovskii functions in [14] and [15] that are used to deal
with time delays and the conservative assumptions of upper
bound functions on the time delay functions have been totally
abandoned. This leads to the achievement of the arbitrarily
small L∞ norm of the tracking error as shown in this paper.
On the contrary, the utilization of Krasovskii functions makes
it impossible to obtain the arbitrarily small L∞ norm of the
tracking error due to the existence of the Krasovskii functions
in transient performance analysis.

The design parameters of virtual control laws and final
control laws are selected as k11 = 3.2, k21 = 4.2; k12 = 2,
k22 = 4, 3; k13 = 5, k23 = 4.5; k14 = 5.1, k24 = 4.3; the
time constants of the low-pass filter at each step are selected
as ~12 = ~22 = 0.005, ~13 = ~23 = 0.01; the design
parameters of the adaptive laws are selected as r12 = 3,
σ12 = 0.001; r13 = 3, σ23 = 0.0005; r14 = 5, σ24 = 0.0001.

FIGURE 3. Two-machine excitation systems with SVC equipment.

TABLE 2. System parameters of the two-machine excitation systems with
SVC equipment.

For RBFNNs approximators in (25), the Gaussian functions
are chosen as

ψ12 (ξ12) = exp

[
−
(
ξ12 − ζ1j

)T (
ξ12 − ζ1j

)
η21j

]
,

ψ22 (ξ22) = exp

[
−
(
ξ22 − ζ2j

)T (
ξ22 − ζ2j

)
η22j

]
,

and 21 neural nodes with the centers of the basis functions ζ1j
and ζ2j are evenly spaced in [−63,+63] × [−314,+314] ×
[−1,+1] and width η1j = η2j = 1, for j = 1, . . . , 21, are
selected. For RBFNNs approximators in (42), the Gaussian
functions are chosen as

ψ13 (ξ13) = exp

[
−
(
ξ13 − ζ3j

)T (
ξ13 − ζ3j

)
η23j

]
,

ψ23 (ξ23) = exp

[
−
(
ξ23 − ζ4j

)T (
ξ23 − ζ4j

)
η24j

]
,

17 nodes with the centers of the basis functions ζ3j and ζ4j are
evenly spaced in [−63,+63]× [−314,+314]× [−2,+2]×
[−1,+1] and the width η3j = η4j = 1, for j = 1, . . . , 17, are
selected. For RBFNNs approximators in (61), the Gaussian
functions are chosen as

ψ14 (ξ14) = exp

[
−
(
ξ14 − ζ5j

)T (
ξ14 − ζ5j

)
η25j

]
,

ψ24 (ξ24) = exp

[
−
(
ξ24 − ζ6j

)T (
ξ24 − ζ6j

)
η26j

]
,

15 nodes with the centers of the basis functions ζ5j and ζ6j are
evenly spaced in [−63,+63]×[−314,+3144]×[−1,+1]×
[−1,+1]× [−1,+1]× [−1,+1]× [−2,+2] and the width
η5j = η6j = 1, for j = 1, . . . , 15, are selected.
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To illustrate the effectiveness of proposed control scheme
for two-machine excitation system with SVC, two different
cases such as keeping the desired operation points and elim-
inating three-phase short-circuit fault are considered. It is
assumed that three-phase short-circuit fault occurs on one
of the transmission lines between Generator #1 and Gener-
ator #2. The persistent external disturbance of 50% is used,
i.e., d1 = d2 = 0.5 p.u..
Case 1: the operating points are

δ10 = 60.25◦, ω10 = 314.15, Pm10 = 1.08 p.u.,

Vref 1 = 0.95 p.u.

δ20 = 60.12◦, ω20 = 314.15, Pm20 = 1.02 p.u.,

Vref 2 = 0.91 p.u.

To achieve the L∞ norm of the tracking error, the initial
values of system states and its corresponding design param-
eters are selected as xi1(0) = 1.2, yri(0) = 1.2, xi2(0) = 0.6,
ci2 = 0.6, xi3(0) = 0.3, ci3 = 0.3. The control objective
in Case 1 is to design the control laws ui in (49) and uBi
in (65), such that the L∞ tracking performance of power
angles can be achieved and the power angles δ1, δ2, the speed
ω10, ω20, the electrical power Pe1, Pe2, are kept in a small
neighborhood of the operating points. The simulation results
of Case 1 are shown in FIGUREs. 4 -10 2-8. FIGURE. 4
illustrates the power angle tracking errors of the proposed
QDSC, the traditional backstepping scheme with control law
i.e.

u = TSVC {−ksin(x1 + δ0)e2

−
s
γ 2 (

3ε2e22 + c2 + m2 + 3ε1e21 + θ̂

k sin(x1 + δ0)
+ d2)2

− (d1 + d2θ̂ + 3ε1e21 + c1)x2 − d2k sin (x1 + δ0)

× (x3 + ySVC0)−
s

2γ 2 − d2a0 +
1

TSVC
(x3 + ySVC0)

−
1

k sin (x1 + δ0)
[m1x2 + 3m3x21x2 + 6ε1x1x22 +

˙̂
θx2

+

(
3ε2e22 + c2

) (
3ε1e21 + c1

)
x2 + (3ε2e22 + c2

+m2 + 3ε1e21 + θ̂ )(θ̂x2 + a0 + k sin (x1 + δ0)

× (x3 + ySVC0))]+
cos (x1 + δ0) x2
ksin2 (x1 + δ0)

[m1x1 + m2x2

+m3x31 + 3ε1x21x2 + θ̂x2 + a0 + ε2e
3
2 + c2e2]− βs},

in [17] and [42] and PID control scheme. It is obvious
that the proposed controller is much simple than traditional
backstepping method and the proposed QDSC exhibits better
transient performance and smaller steady tracking error, i.e.
the errormax = max(|y− yr |) is applied to describe the max-
imum value of the tracking error, the errormax is 1.33× 10−4

p.u. when the proposed control scheme is applied and the
errormax is 1.98 × 10−3 p.u. when traditional backstepping
method is used which is ten times larger than the proposed
QDSC control scheme. Also, form FIGURE.4 it can be seen
that the tracking error of the proposed control scheme is

FIGURE 4. The tracking error of the power angles using the proposed
QDSC, the traditional backstepping method and PID in Case 1.

FIGURE 5. The power angles using the proposed QDSC, the traditional
backstepping method and PID in Case 1.

always (t ≥ 0) kept between −0.003 p.u. and +0.003 p.u.
by using the initial technology in (110) − (118), which
guarantees the L∞ tracking performance and shows the bet-
ter transient tracking performance compared with traditional
backstepping method. FIGURE. 5−7 shows the curves of
power angles, the rotated speed and electrical power of two
generators, respectively. FIGURE. 8 illustrates the trajectory
of QDSC control signal v̄´i1 in (51) and the quantized control
signals ui1 in (49). FIGURE. 9 shows the curves of accessing
voltage of SVC. FIGURE. 10 illustrates the curves of v̄´i2
in (67) and the quantized control input u´Bi in (65).
Case 2: The operating points are:

δ10 = 30.5◦, ω10 = 314.2, Pm10 = 1.06 p.u.,

Vref 1 = 1.20 p.u.

δ20 = 30.8◦, ω20 = 314.2, Pm20 = 1.02 p.u.,

Vref 2 = 1.00 p.u
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FIGURE 6. The rotated speed of the two generators in Case 1.

FIGURE 7. The electrical power of the two generators in Case 1.

FIGURE 8. The control input of the two generators in Case 1.

We suppose that three-phase short-circuit fault occurs on
the transmission line at t = 4.8s, and be eliminated at
t = 6.2s. To achieve theL∞ norm of tracking error, the initial
values of system states and its corresponding design param-
eters are selected as xi1(0) = 0.8, yri(0) = 0.8, xi2(0) = 0.4,

FIGURE 9. The accessing voltage of the SVC equipment for the two
generators in Case 1.

FIGURE 10. The control input of the SVC equipment in Case 1.

FIGURE 11. The tracking error of the power angles using the proposed
QDSC and the traditional backstepping method in Case 2.

ci2 = 0.4, xi3(0) = 0.6, ci3 = 0.6.The control objective in
Case 2 is to design the control laws ui in (49) and uBi in (65),
such that the tracking performance of power angles can be
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FIGURE 12. The power angles of the two generators in Case 2.

FIGURE 13. The rotated speed of the two generators in Case 2.

FIGURE 14. The electrical power of the two generators in Case 2.

achieved and the power angles δ1, δ2, the speed ω10, ω20 and
the electrical power Pe1, Pe2 are still kept in an arbitrarily
small neighborhood of the operating points after the three-

FIGURE 15. The control input of the two generators in Case 2.

FIGURE 16. The accessing voltage of the SVC equipment for the two
generators in Case 2.

FIGURE 17. The control input of the SVC equipment in Case 2.

phase short-circuit being eliminated on the transmission line.
FIGURE. (11) shows the tracking error of power angles
of the two generators when three-phase short-circuit fault
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occurs. Form FIGURE. (11), it can be seen that the proposed
QDSCmakes the power system stable rapidly (almost smaller
than 1 second) and exhibits better tracking transient
performance compared with traditional backstepping method
after three-phase short-circuit fault is eliminated on the trans-
mission line. FIGUREs. (12) - (17) are power angles, rotated
speed, electrical powers, control input, accessing voltage of
SVC and control input of the SVC of two generators when
three-phase short-circuit fault occurs, respectively.

V. CONCLUSION
In this paper, a neural decentralized adaptive quantized
dynamic surface control has been addressed for multi-
machine excitation systems with static var compensator
where the control input signal takes quantized values. The
controller design is achieved by introducing a hysteretic
quantizer to avoid chattering and using adaptive dynamic
surface control. The advantages of the proposed method in
this paper are that by combining the approximated property
of the radial neural networks (RBFNNs) with the Finite Cov-
ering Lemma, the Krasovskii functionals and Razumikhin
functions are removed, which leads to the achievement of
L∞ norm of tracking errors with the help of initializing
technique. The designed controller together with the quan-
tizer ensures semi-global stability of closed-loop system in
the sense of signal boundedness. Future works will focus
on the discrete-time adaptive controller design for the sin-
gle or multi-machine power system. �

APPENDIX
PROOF OF THEOREM 1
Proof: The time derivative of V in (78) yields

V̇ = V̇1 + V̇2 + V̇3 + V̇4 +
n∑
i=1

yi2eẏi2e +
n∑
i=1

yi3eẏi3e. (80)

From (22) and (70), it arrives at

xi2 = si2 + yi2e + x2di + ci2. (81)

By using the Young’s inequalities, one has

si1si2 ≤
1
2
s2i1 +

1
2
s2i2, (82)

si1yi2e ≤
1
2
s2i1 +

1
2
y2i2e. (83)

Substituting (81)-(83), and the virtual control law x2di in (20)
into (19), we have

V̇1 ≤
n∑
i=1

(
−(ki1 −

3
2
)s2i1 +

1
2
s2i2 +

1
2
y2i2e +

1
2
c2i2

)
. (84)

Similar to (81), from (32) and (71), it arrives at

xi3 = si3 + yi3e + x3di + ci3. (85)

By using the Young’s inequalities, it follows that

−si2si3 ≤
1
2
s2i2 +

1
2
s2i3, (86)

−si2yi3e ≤
1
2
s2i2 +

1
2
y2i3e. (87)

Substituting (85)-(87), the virtual control law x3di in (29), and

adaptive law
·

ν̂i2in (30) into (28), one has

V̇2 ≤
n∑
i=1

(−(ki2 −
3
2
)s2i2 +

1
2
s2i3 +

1
2
y2i3e

+
1
2
ε2i2m +

1

2α2i2
− σi2ν̃i2ν̂i2 +

1
2
c2i3). (88)

Noting that

−
λis2i3v̄

2
i1

|si3v̄i1| + %i1
=
−λi(|si3v̄i1|2 − %2i1)− λi%

2
i1

|si3v̄i1| + %i1
≤ λi%i1 − λisi3v̄i1, (89)

and substituting (42)-(47) into (44), we have

si3ṡi3 ≤ gi3[si3(ι1 (t) ui + ιi2 (t)+
α2i3ν

∗

i3ψ
T
i3ψi3si3
2

)

+
1
2
ε2i3m +

1

2α2i3
+

1
2
δ2i0]

≤ gi3[si3(−
λsi3v̄2

|si3v̄| + %i1
+ ιi2 (t)+

α2i3ν
∗

i3ψ
T
i3ψi3si3
2

)

+
1
2
ε2i3m +

1

2α2i3
+

1
2
δ2i0]

≤ gi3[λi%i1 − λisi3v̄i1 +
1
2
s2i3 +

1
2
ε2i3m

+
α2i3ν

∗

i3ψ
T
i3ψi3s

2
i3

2
+

1

2α2i3
+

1
2
δ2i0 +

ā2

2
]

≤ gi3[−λisi3 ι̂iv̄´i1 + λi%i1 +
1
2
s2i3 +

α2i3ν
∗

i3ψ
T
i3ψi3s

2
i3

2

+
1
2
ε2i3m +

1

2α2i3
+

1
2
δ2i0 +

ā2

2
]

≤ gi3[−si3v̄´i1 − λisi3 ι̃iv̄
´

i1 + λi%i1 +
1
2
ε2i3m +

1
2
s2i3

+
α2i3ν

∗

i3ψ
T
i3ψi3s

2
i3

2
+

1

2α2i3
+

1
2
δ2i0 +

ā2

2
]. (90)

Then, it follows that

V̇3 ≤
n∑
i−1

(−ki3s2i3 − λisi3 ι̃v̄
´

1 + λi%i1 +
ā2

2
+

1
2
ε2i3m

+
1

2α2i3
+

1
2
δ2i0 − σi3ν̃i3ν̂i3 − λσι ι̃ι̂). (91)

V̇4 ≤
n∑
i=1

(−ki4s2i4 +
1
2
ε2i4m +

1

2α2i4
− σi4ν̃i4ν̂i4

+ λ
′

i%i2 +
ā2́

2
− λ

′

isi4 ι̃
´
iv̄
´

i2 − λ
´
iσι´ι̃
´
i ι̂
´
i). (92)

From A1, the compact set

�r := {(yri, ẏri, ÿri) : yri + ẏri + ÿri ≤ Bi0} , (93)
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in<3 and Bi0 > 0. As shown in [28], letMi2 andMi3 to be the
maximumvalues ofBi2 andBi3 in�r , respectively.Moreover,
by using the Young’s inequalities, the inequalities

|yi2eBi2| ≤
y2i2eB

2
i2

2µ
+
µ

2
≤
y2i2eM

2
i2

2µ
+
µ

2
, (94)

|yi3eBi3| ≤
y2i3eB

2
i3

2µ
+
µ

2
≤
y2i3eM

2
i3

2µ
+
µ

2
, (95)

−σi2ν̂i2ν̃i2 ≤ −
σi2

2
ν̃2i2 +

σi2

2
ν∗2i2 , (96)

−σi3ν̂i3ν̃i3 ≤ −
σi3

2
ν̃2i3 +

σi3

2
ν∗2i3 , (97)

−σi4ν̂i4ν̃i4 ≤ −
σi4

2
ν̃2i4 +

σi4

2
ν∗2i4 , (98)

−σι ι̃i ι̂i ≤ −
σι

2
ι̃2i +

σι

2
ι∗2i , (99)

−σι´ι̃
´
i ι̂
´
i ≤ −

σι´

2
ι̃2́i +

σι´

2
ι∗́2i , (100)

hold with µ being a positive constant. Let

1
τi2
≥

1
2
+
M2
i2

2µ
+ αi0, (101)

1
τi3
≥
λ

2
+
M2
i3

2µ
+ αi0. (102)

Substituting (84), (88), (91), (92) and (94)-(102) into (80),
it follows that

V̇ ≤
n∑
i=1

[−(ki1 −
3
2
)s2i1 −

(
ki2 −

3
2

)
s2i2 −

(
ki3 −

1
2

)
s2i3

− ki4s2i4 − αi0y
2
i2e − αi0y

2
i3e −

σi2

2
ν̃2i2 −

σi3

2
ν̃2i3

−
σi4

2
ν̃2i4 −

σ ιi

2
ι̃2i −

σ ι´i

2
ι̃2́i ]+ C

∗, (103)

where

C∗ =
n∑
i=1

(
1
2
ε2i2m +

1

2α2i2
+
σi2

2
ν∗2i2 +

ā2

2
+

1
2
ε2i3m +

1

2α2i3

+
1
2
δ2i0 +

σi3

2
ν∗2i3 +

1
2
ε2i4m +

1

2α2i4
+
σi4

2
ν∗2i4 +

1
2
c2i2

+ λi%i1 + µ+
σι

2
ι∗2i + λ

′

i%i2 +
ā2́

2
+
σι´

2
ι∗́2i +

1
2
c2i3).

(104)

Here, αi0 is positive design parameter and satisfies

αi0 ≤ min{gmin(ki1 −
3
2
), gmin

(
ki2 −

3
2

)
, gmin

(
ki3 −

1
2

)
,

ki4,
γi2σi2

2
,
γi3σi3

2
,
γi4σi4

2
,
γισι

2
,
γι´σι´

2
}. (105)

Therefore, by using (103), it follows that

V̇ ≤ −2αi0V + C∗. (106)

Let

αi0 >
C∗

2p
. (107)

Then, V̇ ≤ 0 on V = p that implies V ≤ p is an invariant set,
i.e., if V (0) ≤ p, then, V (t) ≤ p, for all t ≥ 0. By solving
the inequality (106), it follows that

0 ≤ V (t) ≤ C∗/2αi0 +
{
V (0)− C∗/2αi0

}
e−2αi0t (108)

which implies

lim
t→∞

V (t) ≤ C∗/2αi0. (109)

Thus, all the signals such as si1, si2, si3, si4, ν̃i2, ν̃i3, ν̃i4, ι̃i, ι̃´i,
yi2e, yi3e in the closed-loop system are ultimately uniformly
bounded. It should be noted that αi0 can be chosen large
enough by properly selecting the design parameters i.e., ki1,
ki2, ki3, ki4, γi2, γi3, γi4, σi2, σi3, σi4 , σι´, σι, leading to all the
signals such as si1, si2, si3, si4, ν̃i2, ν̃i3, ν̃i4, ι̃, ι̃´, yi2e, yi3e in the
closed-loop system can eventually converge to an arbitrary
small value.

In order to achieve L∞ norms of tracking errors of power
angles, the initial conditions of estimations of unknown
parameters in (68) and (69) are set as

v̂i2 (0) = 0, v̂i3 (0) = 0, v̂i4 (0) = 0,

ι̂i (0) = 0, ι̂´i (0) = 0. (110)

Also, in order to make Sij (0) = 0, j = 1, . . . , 4, we set

yri (0) = xi1 (0) ,

xi4 (0) = Vrefi (0) ,

ci2 = xi2 (0)− zi2(0),

ci3 = xi3 (0) . (111)

Now, taking (110)-(111) into consideration, from (16),
(20)-(22), (29)-(32), (49 )-(54), and (70)-(71), it can ba shown
in a step-by-step fashion that

x2di (0) = zi2 (0) ,

x3di (0) = 0⇒ zi3 (0) = 0,

sij (0) = 0, j = 2, 3,

yije (0) = zij (0)− xjdi (0)

= 0, j = 2, 3. (112)

Then, we have

V (0) =
n∑
i=1


1

2γi2
v∗2i2 +

1
2γi3

v∗2i3 +
λ

2γι´
ι∗2i

+
1

2γi4
v∗2i4 +

λ

2γι´
ι∗́2i

. (113)

From (104) and (105), the following inequalities hold

C∗

αi0
=

n∑
i=1

(
1

2αi0
ε2i2m +

1

2αi0α2i2
+
σi2

2αi0
ν∗2i2 +

ā2

2αi0

+
1

2αi0
ε2i3m +

1

2αi0α2i3
+

1
2αi0

δ2i0 +
σi3

2αi0
ν∗2i3

+
1

2αi0
ε2i4m +

1

2αi0α2i4
+
σi4

2αi0
ν∗2i4 +

λ%i1

αi0
+
µ

αi0
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+
σι

2αi0
ι∗2i +

λ%´i2

αi0
+

ā2́

2αi0
+

σι´

2αi0
ι∗́2i ), (114)

which implies

V (0)−
C∗

αi0
≤ −

n∑
i=1

(
1

2αi0
ε2i2m +

1

2αi0α2i2
+

ā2

2αi0

+
1

2αi0
ε2i3m +

1

2αi0α2i3
+

1
2αi0

δ2i0

+
1

2αi0
ε2i4m +

1

2αi0α2i4
+
λ%i1

αi0

+
µ

αi0
+
λ%´i2

αi0
+

ā2́

2αi0

)
. (115)

Then, one has

V (0)−
C∗

αi0
≤ 0, (116)

which together with (108) and (116) implies

0 ≤ V (t) ≤
C∗

αi0
, ∀t ≥ 0. (117)

Therefore, |si1| ≤
(
C∗
αi0

) 1
2
and |si4| ≤

(
C∗
αi0

) 1
2
, for all t ≥ 0,

which means supt≥0, |si1| ≤
(
C∗
αi0

) 1
2
and |si4| ≤

(
C∗
αi0

) 1
2
, or in

other words

‖si1‖∞ ≤

√
C∗

αi0
,

‖si4‖∞ ≤

√
C∗

αi0
(118)

From (118), it is clear that L∞ norm of the tracking errors si1
and si4 can be made arbitrarily small if a larger αi0 is chosen.
This completes the proof of Theorem 1.
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