
Received September 17, 2018, accepted September 26, 2018, date of publication October 5, 2018,
date of current version November 8, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2873636

Efficient Hardware/Software Partitioning Based
on a Hybrid Algorithm
TAO ZHANG , (Member, IEEE), XIN ZHAO , AND XUAN LI
1School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
2Texas Instruments DSP Joint Laboratory, Tianjin University, Tianjin 300072, China

Corresponding author: Xin Zhao (zhaoxin_16@tju.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61350009.

ABSTRACT Complex embedded systems with multi-processing units are important platforms for running
complex tasks. In the development of complex embedded systems, hardware/software partitioning plays an
important role. In practical application, there are many dynamic tasks which require the hardware/software
partitioning to be done in real time. It is necessary to design efficient algorithms to do this. In this paper,
the shuffled frog leaping algorithm (SFLA) and the greedy algorithm (GRA) are used to generate a hybrid
algorithm named SFLA-GRA. On the basis of the SFLA, the SFLA-GRA uses the greedy idea to terminate
invalid iterations and adjust the search step size. By these greedy strategies, the algorithm can be effectively
accelerated. Experimental results show that compared with the other swarm intelligence (SI) algorithms,
the efficiency of the proposed algorithm has been improved.

INDEX TERMS Efficient hardware/software partitioning, shuffled frog leaping algorithm, greedy algorithm,
hybrid algorithm.

I. INTRODUCTION
With the development of science and technology, the scale
and complexity of tasks are increasing. In order to ensure
the normal operation of complex tasks, it is necessary to
improve the processing performance of the embedded sys-
tems. Increasing the number and type of the processing
units can effectively improve the performance of the embed-
ded systems. Therefore, complex embedded systems with
multi-processing units have become the main platforms for
running complex tasks. Hardware/software partitioning is an
important part of the development of complex embedded
systems. A complex task consists of many subtasks, hard-
ware/software partitioning assigns these subtasks to software
units or hardware units. It is obvious that different task assign-
ment schemes would bring different execution results and
finding the optimal scheme is the goal of hardware/software
partitioning.

For hardware/software partitioning, there are two impor-
tant parts: the hardware/software partitioning models and the
hardware/software partitioning algorithms. To build a model,
the architecture of the system and the objectives of the hard-
ware/software partitioning problem should be considered.
In aspect of the architecture, some works [1], [2] are based
on the architecture consists of a single software unit and a

signal hardware unit while some works [3], [4] are based on
the architecture consists of different types and quantities of
software and hardware units. The system to be partitioned
is generally given in the form of a task graph, or a set of
task graphs [5], and the parallelism and the communication
between two processing units usually should be considered.
In aspect of the objectives, a task of hardware/software par-
titioning may have one [6] or multiple [7] objectives. The
common objectives include minimizing the execution time
of tasks on the system, minimizing the hardware area of the
system, minimizing the power of the system, minimizing the
communication overhead of the system. In different codesign
environments, the models would be different [5].

Algorithms used to solve hardware/software partitioning
problems can be divided into two categories: exact algo-
rithms and heuristic algorithms. Exact algorithms [7]–[9]
can accurately find the best solution of the problem. But
hardware/software partitioning is an NP-hard problem [10],
when its scale is large, using exact algorithms would be dif-
ficult and time-consuming. Because heuristic algorithms can
obtain the optimal solutions or near-optimal solutions within
a reasonable time [11], they have become the main way
to solve hardware/software partitioning problems [12]–[15].
As an important class of heuristic algorithms,

60736
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0003-2317-644X
https://orcid.org/0000-0002-1621-2337


T. Zhang et al.: Efficient Hardware/Software Partitioning Based on a Hybrid Algorithm

SI algorithms [16]–[21] are flexible and highly
adaptable [22]. These algorithms are proved to be more
suitable for solving complex problems [6].

In recent years, heuristic algorithms are more and more
applied in hardware/software partitioning. On the basis of
the original heuristic algorithms, a lot of methods are pro-
posed to improve the solution quality of hardware/software
partitioning. Such as the two software-oriented and the sec-
ond hardware-oriented greedy heuristic algorithms [23],
the supervised shuffled frog leaping algorithm [24], the posi-
tion disturbed particle swarm optimization with inva-
sive weed optimization [25]. These algorithms effectively
improve the search ability and are able to obtain the better
solutions. In practical application, most tasks are dynamic,
the hardware/software partitioning usually should be done
in real time. Therefore, improving the efficiency of hard-
ware/software partitioning without decreasing their solution
quality is another important research content. Based on differ-
ent ideas, some studies have been done to reduce the running
time of hardware/software partitioning. Based on the method
of model reduction, work [26] proposes the graph reduction
techniques to reduce the design space for hardware/software
partitioning. Based on the method of hardware acceleration,
work [27] designs the parallel algorithm which can be accel-
erated by GPUs. In addition to these two methods, the most
common way to reduce the running time is improving the
performance of the algorithm itself.

This paper would mainly research on hardware/software
partitioning algorithms, it would use SI algorithms to solve
the problems of hardware/software partitioning. SI algo-
rithms are inexact algorithms, it is difficult to judge whether
the solutions obtained by them are the best solutions. They
search for optimal solutions through multiple iterations.
These iterations are composed of valid iterations that improve
the quality of solutions and invalid iterations that reduce
the efficiency of algorithms. Increasing the total number of
iterations can improve the solution quality, but it would also
increase the running time of the algorithms. Therefore, when
SI algorithms are used in hardware/software partitioning, they
should be improved to reduce the running time. There are
two common ways to improve the SI algorithms: generat-
ing new algorithms by the fusion of multiple algorithms,
designing the adaptive search strategy for the algorithms.
Based on the two ways, some improved algorithms have been
proposed in recent years [28]–[31]. Compared with the orig-
inal algorithms, these improved algorithms can effectively
improve the quality of the output solutions. But because most
improved algorithms mainly focus on improving the solution
quality, their computational efficiency sometimes cannot be
improved effectively.

Based on the above analysis, this paper focuses on studying
efficient algorithms which can be used in hardware/software
partitioning. We first select SFLA which has good perfor-
mance when applied in hardware/software partitioning as the
basic algorithm. Then, based on the idea of the fusion of
multiple algorithms, SFLA is hybridized with GRA [32] to

generate an improved algorithm named SFLA-GRA. Com-
pared with SFLA, the hybrid algorithm can effectively reduce
the number of invalid iterations and improve the algorithm
efficiency.

The rest of this paper is organized as follows. In section 2,
the related knowledge of hardware/software partitioning is
shown. In section 3, the hybrid algorithm SFLA-GRA is
proposed. In section 4, the experimental results are given and
in section 5, we conclude our work.

II. HARDWARE/SOFTWARE PARTITIONING PROBLEM
In different codesign environments, the models would be
different. Most of the hardware/software partitioning meth-
ods can work perfectly within their own codesign environ-
ments, but it is impossible to compare them, because of
the large differences in their codesign environments and
the lack of benchmarks [5]. Compared with the exact algo-
rithms, SI algorithms have stronger adaptability, they can be
more easily used to solve different models. In this paper,
we mainly focus on studying the efficient algorithms of hard-
ware/software partitioning. In order to facilitate the research
of the algorithms, our work is based on a simplified model.

In this model, the architecture is made up by one software
unit and multiple hardware units of the same type. In this
architecture, tasks assigned to the hardware units can be exe-
cuted concurrently while tasks assigned to the software unit
must be executed sequentially. When there is communication
between a software unit and a hardware unit or between two
hardware units, the communication time is required.

Directed Acyclic Graph (DAG) is usually used to illustrate
the hardware/software partitioning. The graphs before and
after partitioning are shown in Figure 1.

FIGURE 1. DAG of hardware/software partitioning. (a) Before
partitioning. (b) After partitioning.

It can be seen in Figure 1(a), node i has three attributes:
software execution time si, hardware execution time hi, hard-
ware area ai. ci,j is the communication time between node i
and j. Based on these attributes, tasks would be assigned to

VOLUME 6, 2018 60737



T. Zhang et al.: Efficient Hardware/Software Partitioning Based on a Hybrid Algorithm

software unit or hardware units. Figure 1(b) shows a result
after partitioning, where node 3, 4, 6 and 7 are assigned to
software and the other nodes are assigned to hardware.

The partitioning scheme can be encoded to an
N -dimensional vector X = [x1, x2, . . . , xN ]T , where N is the
number of task nodes, xi ∈ {0, 1}, xi = 0 represents task i
is assigned to the software and xi = 1 represents task i is
assigned to hardware.

The optimization objective is minimizing the critical path
which demonstrates the longest path. The critical path would
determine the time required to execute the tasks on the
embedded platform. The hardware area is set as a constraint.
The optimization problem can be expressed by:

min: T = max{TE(k)|0, 1 . . .M}

subject to:
N∑
i=1

xi × ai ≤ A_limit (1)

Where TE(k) represents the completion time of the kth
path,M is the number of paths. A_limit denotes the constraint
value of hardware area.

III. SFLA-GRA
A. SFLA AND GRA
1) SFLA
SI algorithms usually have similar characteristics, such as
easy to be realized and strong global optimization ability. But
for different problems, different SI algorithms usually have
different performances. Our work is based on the original
SI algorithms. In our previous works [6], [33], we have used
different original SI algorithms to solve hardware/software
partitioning problems and found that SFLA has the highest
efficiency. Therefore, SFLA is selected to generate the effec-
tive algorithm. SFLA is inspired by the foraging behavior
of frog population. In this algorithm, the position of a frog
represents a solution and the searching for optimal solutions
is based on multiple iterations. Before the iterations, some
solutions would be generated randomly to form the initial
population. There are three steps in each iteration: grouping,
updating and shuffling. Frogs are divided into several groups
in the step of grouping and shuffled together in the shuffling
step. Updating is the most important part of SFLA. In this
step, the worst solution of each group would move to better
solutions to update itself.

In order to further analyze the algorithm process of SFLA,
we use SFLA to solve hardware/software partitioning prob-
lem with 500 task nodes, the maximum number of iterations
is set to 1500 and the fitness curve of solutions is shown
in Figure 2.

It can be seen in Figure 2, invalid iterations account for
a large proportion of the total iterations, and these invalid
iterations obviously reduce the running speed of the algo-
rithm. In addition, when there are a large number of succes-
sive invalid iterations, the solutions usually have reached a
relatively high quality. Terminating the algorithm when the
number of successive invalid iterations arrives at a threshold

FIGURE 2. The fitness curve of SFLA.

is a common method to reduce the running time. But after the
large number of successive invalid iterations, there may also
be valid iterations to improve the solution quality. Therefore,
this termination condition may make the algorithm miss the
higher quality solutions. Based on these phenomena, if the
valid iterations can appear after a small number of succes-
sive invalid iterations and the suitable algorithm termination
condition is set, the running time of the algorithm would be
effectively reduced.

2) GRA
GRA is designed by the greedy idea. It is one of the simplest
heuristic algorithms. GRA usually starts from an initial solu-
tion which is generated randomly and then updates the solu-
tion iteratively. At each iteration, some alternative solutions
would be generated by themoving of the current solution, and
the distances between different alternative solutions and the
current solution are the same. The algorithm would choose
the optimal alternative solution to replace the current one
based on their profits. Because the choice of each iteration
is made just based on the current profits, the output solution
of GRA is usually a local optimal solution.

In order to further analyze the algorithm process of GRA,
we use GRA to solve the same hardware/software partition-
ing problem which is solved by SFLA in the previous part,
the algorithm would be terminated when there is no better
alternative solution can be chosen to replace the current one.
The fitness curve of solutions is shown in Figure 3.

FIGURE 3. The fitness curve of GRA.

It can be seen from Figure 3, GRA is terminated after
26 iterations and the quality of the solution obtained now has
been obviously improved compared with the initial solution.

60738 VOLUME 6, 2018



T. Zhang et al.: Efficient Hardware/Software Partitioning Based on a Hybrid Algorithm

TABLE 1. Pseudo code of function GRA().

GRA can get better solutions in each iteration and keep a fast
descending speed. These show that GRA has the advantage
of high efficiency. But when the algorithm is terminated,
the quality of the output solution is much worse than that of
SFLA, which proves that it is easy for GRA to fall into local
optimum.

B. THE HYBRID ALGORITHM
To ensure the quality of the solutions, SFLA with
strong global optimization ability should be used in hard-
ware/software partitioning problems. Although SFLA has
higher efficiency compared with some SI algorithms, its
efficiency still should be further improved. To achieve this
goal, there are three methods:

1) Reducing the invalid iterations. Invalid iterations
account for a large proportion of the total iterations,
so reducing the invalid iterations can obviously reduce
the number of iterations.

2) Terminating the algorithms with the effective termina-
tion conditions. If the algorithm is terminated too early,
the quality of the solutions would be poor, while if the
algorithm is terminated too late, the running time of the
algorithm would be long. So it is important to find the
effective termination conditions.

3) Accelerating the search efficiency of each itera-
tion. When the search efficiency of each iteration is
improved, the total running time would be reduced.

Based on the above analysis, the greedy idea of GRA
is introduced into SFLA to generate a new algorithm
SFLA-GRA. SFLA has strong global optimization ability and
GRA has high efficiency. Therefore, the fusion of the two
algorithms can obtain their respective advantages. The three
most important parts of the hybrid algorithm are shown as
follows:

1) TERMINATING INVALID ITERATIONS OF SFLA WITH GRA.
When the algorithm starts, SLFA-GRA would be run in
accordance with the steps of SFLA. During this process,
the number of successive invalid iterations would be calcu-
lated and if it is higher than the threshold Inv_Limit , GRA
function would be run. Because GRA has the ability to get
better solutions in one iteration, it would help the algorithm
to terminate the invalid iterations. When the GRA can no
longer find a better solution or reaches its maximum number
of iterations, it would be stopped and the SFLA would be
continued. The pseudo code of the process of GRA function
is shown in Table 1.

2) TERMINATING THE ALGORITHM WITH A NEW
TERMINATION CONDITION.
For SFLA, when a large number of successive invalid iter-
ations appears, there is a big possibility that the obtained
solution is near to the best solution. For GRA, when a better
solution can’t be obtained, the current obtained solution is
at least a local optimal solution. Therefore, if neither SFLA
(with a certain number of iterations) nor GRA can find a
better solution, there would be a larger probability that the
current solution is equal to or close to the best solution
in the solution space. Therefore, after a certain number of
successive invalid iterations, GRA function would be run,
if a better solution still can’t be found by GRA function,
the algorithm would be terminated.That is the termination
condition of SFLA-GRA.

3) ACCELERATING THE SEARCH WITH GREEDY STEP SIZE.
In SFLA, a bad solution moves toward a better one to find
a new solution. The generation process of a new solution is

VOLUME 6, 2018 60739



T. Zhang et al.: Efficient Hardware/Software Partitioning Based on a Hybrid Algorithm

TABLE 2. The pseudo code of SFLA-GRA.

shown as follows:
x1new
x2new

...

xNnew

=

x1bad
x2bad

...

xNbad

+

r1

r2
...

rN

×Step×(

x1better
x2better

...

xNbetter

−

x1bad
x2bad

...

xNbad

)

(Xnew) (Xbad ) (Rand) (Xbetter ) (Xbad )

(2)

Where Xnew, Xbad and Xbetter represent the new, the bad
and the better solutions respectively. N is the number of task
nodes.Rand is anN -dimensional vector composed of random
values between 0 and 1. Step is the search step size of SFLA.
To accelerate the algorithm, greedy step size is proposed

in SFLA-GRA. When x ibad is 0 and x ibetter is 1, the greedy
step size is denoted by gi0,1, when x

i
bad is 1 and x ibetter is 0,

the greedy step size is denoted by gi1,0, g
i
0,1 and gi1,0 can be

calculated by:

C i
0,1 = (si − hi)/ai

Cmax
0,1 = max{C i

0,1|i = 1, 2 · · ·N }

Cmin
0,1 = min{C i

0,1|i = 1, 2 · · ·N }

gi0,1 = mis+ (mas− mis)× (C i
0,1 − C

min
0,1 )/(C

max
0,1 − C

min
0,1 )

gi1,0 = mis+ mas− gi0,1 (3)

Where C i
0,1 is the profit when x ibad is changed from 0 to

1. si, hi and ai are the software execution time,the hardware
execution time and the hardware area of task node i. mas
and mis are the maximum search step size and the minimum
search step size. The generation of a new solution based on
the greedy step size is shown as:

Greedy_step =


g10,1 × x

1
better + g

1
1,0 × (!x1better )

g20,1 × x
2
better + g

2
1,0 × (!x2better )

...

gN0,1 × x
N
better + g

N
1,0 × (!xNbetter )


Xnew=Xbad+Rand×Greedy_step×(Xbetter−Xbad )

(4)

The pseudo code of SFLA-GRA is shown in Table 2.
Where Xi,worst , Xi,best , XBEST are the worst solution in group
i, the best solution in group i and the best solution in the
population, respectively. U_bond and L_bond are the upper
and lower bounds of the solution space. In order to further

60740 VOLUME 6, 2018



T. Zhang et al.: Efficient Hardware/Software Partitioning Based on a Hybrid Algorithm

FIGURE 4. Flow charts of SFLA, GRA and SFLA-GRA. (a) SFLA. (b) GRA. (c) SFLA-GRA.

TABLE 3. Comparison results under the first termination condition.

compare the three algorithms, the flow charts of SFLA, GRA
and SFLA-GRA are show in Figure 4.

IV. SIMULATION RESULTS
The proposed algorithm SFLA-GRA is simulated in C++
on an Intel Core i5-6400, 2.70GHz CPU, 8.00GB of RAM,
running Microsoft Windows 10 operating system. Random
instances are generated by TGFF tool to test the performance
of the algorithms.These instances include five task sets with
different scale (200 task nodes, 300 task nodes, 500 task
nodes, 700 task nodes and 1000 task nodes). The constraint
value is set to 1/2 of the maximum area (the total hardware
area when all tasks are assigned to hardware units). To test
the performance of SFLA-GRA, it is compared with the two
original algorithms: SFLA and GRA, four original SI algo-
rithms: Artificial Bee Colony Algorithm (ABC), Artificial
Fish Swarm Algorithm (ASFA), Genetic Algorithm (GA)
and Particle Swarm Optimization Algorithm (PSO), and four

improved SI algorithms proposed in recent years: Mnemonic
Shuffled Frog Leaping Algorithm(MSFLA) [34], Improved
Particle Swarm Optimization(IPSO) [35], novel Artificial
Bee Colony Algorithm(called APABC) [36] and Improved
Genetic Algorithm(IGA) [37]. SFLA-GRA is terminated
based on the termination condition introduced in section III.
GRA is terminated when no better alternative solution can
be found. Other algorithms are terminated by two common
termination conditions. The first condition is that there are
150 successive invalid iterations. The second condition is that
the number of iterations reaches 1500. The simulation results
are averaged by 10 runs.

A. COMPARISON BASED ON THE SOLUTION QUALITY
AND RUNNING TIME
Table 3 and Table 4 show the comparison results of the
11 algorithms in terms of solution quality and running
time. In Table 3, SFLA and other SI algorithms used for

VOLUME 6, 2018 60741



T. Zhang et al.: Efficient Hardware/Software Partitioning Based on a Hybrid Algorithm

TABLE 4. Comparison results under the second termination condition.

comparison are terminated by the first termination condi-
tion(150 successive invalid iterations). In Table 4, SFLA and
other SI algorithms used for comparison are terminated by
the second termination condition(1500 iterations). Q and R
are calculated by:

Q =
fitcomp − fitsfla−gra

fitsfla−gra
× 100%

R =
runcomp − runsfla−gra

runsfla−gra
× 100% (5)

Where fitcomp and fitsfla−gra are the fitness values of the
solutions obtained by the comparison algorithm and the
SFLA-GRA, respectively. runcomp and runsfla=gra are the run-
ning time of the comparison algorithm and the SFLA-GRA,
respectively. It can be seen from formula 5, when Q and
R are positive values, the solution quality of SFLA-GRA is
better than the comparison algorithm and the running time of
SFLA-GRA is shorter than the comparison algorithm.

As shown in Table 3 and Table 4. GRA has the shortest
running time among all the algorithms, but its solution quality
is poor, which proves GRA is easy to fall into local optimum.
Under the first termination condition, when the numbers
of task nodes are 500, 700 and 1000, the running time of
SFLA is less than SFLA-GRA, but its solution quality is also
worse than SFLA-GRA. That because SFLA is terminated
too early to get the high quality solution. Under the second
condition, both the solution quality and the running time of
SFLA are worse than SFLA-GRA, which proves SFLA-GRA
effectively improves the efficiency while guaranteeing the
quality of solutions.

Compared with four other original SI algorithms and four
improved algorithms, SFLA-GRA can get higher quality
solutions within a shorter running time in most cases. Under
the first termination condition, the running time of ABC
and PSO is sometimes shorter than SFLA-GRA, but their
short running time leads to the poor solution quality. In some
cases, ASFA and IGA can obtain the solutions whose qual-
ity is the same as SFLA-GRA , but ASFA and IGA are
the two most time-consuming algorithms among the 8 com-
parison algorithms and their efficiency is much lower than
SFLA-GRA.

Compared with the fist termination condition, when SI
algorithms are terminated under the second termination con-
dition, their running time would be longer but their qual-
ity would be higher. That is because the 150 successive
invalid iterations are easy to appear before the total num-
ber of iterations reaches 1500, and the quality of the solu-
tions obtained at this time usually has room for further
improvement. This result also shows that it is important to
reduce the invalid iterations and set the suitable termination
conditions.

B. COMPARISON BASED ON THE FITNESS CURVES
The fitness curves of the 11 algorithms when they are used
to solve the instances of 300 nodes and 700 nodes are shown
in Figure 5.

It can be seen from Figure 5(a), GRA keeps the fastest
descending speed and is terminated after a small number
of iterations, but the solution quality of GRA is the worst.
This further proves that GRA has high efficiency but easily
falls into local optimum. In the early stage, the descending
speeds of SFLA-GRA and SFLA are similar. But as the
number of iterations increases, the large number of invalid
iterations would reduce the descending speed of SFLA while
SFLA-GRA would still keep a fast speed. That proves intro-
ducing GRA into SFLA can effectively terminate the invalid
iterations.

It can be seen from Figure 5(b) and Figure 5(c) that with
the number of iterations increases, the descending speeds of
most algorithm curves are getting slower and slower. But
the fitness curve of SFLA-GRA can keep a fast descending
speed until the algorithm is terminated. In the early stage,
some algorithms may have faster speeds than SFLA-GRA,
but as the increase of their invalid iterations, the descending
speeds of these algorithms would be exceeded by SFLA-
GRA. It should also be noted that the time required for these
algorithms(especially ASFA and IGA) to complete one iter-
ation is much longer than that of the SFLA-GRA. It also can
be seen from these curves that SLFA-GRA would usually be
terminated in less than 700 iterations but the quality of its out-
put solution is highest among all the algorithms. This proves
the validity of the termination condition of SFLA-GRA.

60742 VOLUME 6, 2018



T. Zhang et al.: Efficient Hardware/Software Partitioning Based on a Hybrid Algorithm

FIGURE 5. Fitness curves of 11 algorithms. (a) Fitness curves of SFLA-GRA, GRA and SFLA. (b) Fitness curves of SFLA-GRA
and four original SI algorithms. (c) Fitness curves of SFLA-GRA and four improved SI algorithms.

V. CONCLUSION
In this paper, we first analyze the importance of improving the
efficiency of the hardware/software partitioning. Then, based
on the idea of the fusion of multiple algorithms, SFLA and
GRA are hybridized to generate a hybrid algorithm SFLA-
GRA. On the basic of SFLA, the new algorithm uses GRA
function to terminate the invalid iterations and sets greedy
search step size to further accelerate the algorithm. Experi-
mental results show that the proposed algorithm SFLA-GRA
outperforms all comparison algorithms, especially in terms of
the algorithm efficiency.

There are some future research suggestions: 1) It is found
during our research that the profit function is an important
factor which affects the performance of GRA function. So it
should be further studied. 2)Our proposed algorithm is based
on the original SFLA, but there are many improved heuristic

algorithms. Hybridizing GRA with these improved heuristic
algorithms may further improve the efficiency. 3) The meth-
ods of model simplification and hardware acceleration can
also be studied to accelerate the proposed algorithm.

REFERENCES
[1] J. Henkel and R. Ernst, ‘‘An approach to automated hardware/software

partitioning using a flexible granularity that is driven by high-level estima-
tion techniques,’’ IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 9,
no. 2, pp. 273–289, Apr. 2001.

[2] M. López-Vallejo and J. C. López, ‘‘On the hardware-software partitioning
problem: System modeling and partitioning techniques,’’ ACM Trans.
Design Autom. Electron. Syst., vol. 8, no. 3, pp. 269–297, 2003.

[3] J.Wu, Q. Sun, and T. Srikanthan, ‘‘Algorithmic aspects for multiple-choice
hardware/software partitioning,’’ Comput. Oper. Res., vol. 39, no. 12,
pp. 3281–3292, 2012.

[4] S. B. Saoud, S. B. Saoud, and S. B. Saoud, ‘‘An efficient technique
for hardware/software partitioning process in codesign,’’ Sci. Program.,
vol. 2016, May 2016, Art. no. 6382765.

VOLUME 6, 2018 60743



T. Zhang et al.: Efficient Hardware/Software Partitioning Based on a Hybrid Algorithm

[5] J. Wu, T. Srikanthan, and G. Chen, ‘‘Algorithmic aspects of hard-
ware/software partitioning: 1D search algorithms,’’ IEEE Trans. Comput.,
vol. 59, no. 4, pp. 532–544, Apr. 2010.

[6] T. Zhang, X. Zhao, X. An, H. Quan, and Z. Lei, ‘‘Using blind optimiza-
tion algorithm for hardware/software partitioning,’’ IEEE Access, vol. 5,
pp. 1353–1362, 2017.

[7] W. Shi, J. Wu, S.-K. Lam, and T. Srikanthan, ‘‘Algorithmic aspects
for bi-objective multiple-choice hardware/software partitioning,’’ in Proc.
6th Int. Symp. Parallel Archit., Algorithms Program. (PAAP), Jul. 2014,
pp. 7–12, doi: 10.1109/PAAP.2014.42.

[8] W. Jigang, B. Chang, and T. Srikanthan, ‘‘A hybrid branch-and-bound
strategy for hardware/software partitioning,’’ in Proc. 8th IEEE/ACIS Int.
Conf. Comput. Inf. Sci., Jun. 2009, pp. 641–644.

[9] E. Demirel, N. Demirel, and H. Gökçen, ‘‘A mixed integer linear
programming model to optimize reverse logistics activities of end-
of-life vehicles in turkey,’’ J. Cleaner Prod., vol. 112, pp. 2101–
2113, Jan. 2016. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0959652614011226

[10] P. Arató, Z. Á. Mann, and A. Orbán, ‘‘Algorithmic aspects of hard-
ware/software partitioning,’’ ACM Trans. Des. Automat. Electron. Syst.,
vol. 10, no. 1, pp. 136–156, 2005.

[11] Z. Li, Y. Liu, and G. Yang, ‘‘A new probability model for insur-
ing critical path problem with heuristic algorithm,’’ Neurocomput-
ing, vol. 148, pp. 129–135, Jan. 2015. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S0925231214009230

[12] P.-A. Mudry, G. Zufferey, and G. Tempesti, ‘‘A hybrid genetic algorithm
for constrained hardware-software partitioning,’’ in Proc. IEEE Design
Diagnostics Electron. Circuits Syst., Apr. 2006, pp. 1–6.

[13] L. Li, J. Sun, W. Li, Z. Lv, and F. Guan, ‘‘Hardware/software partitioning
based on hybrid genetic and tabu search in the dynamically reconfigurable
system,’’ Int. J. Control Autom., vol. 8, no. 1, pp. 29–36, 2015.

[14] N. Hou, F. He, Y. Zhou, and H. Ai, ‘‘A GPU-based tabu search for
very large hardware/software partitioning with limited resource usage,’’
J. Adv. Mech. Des., Syst., Manuf., vol. 11, no. 5, p. JAMDSM0060,
2017.

[15] M. Jemai, S. Dimassi, B. Ouni, and M. Abdellatif, ‘‘A metaheuristic based
on tabu search for hardware-software partitioning,’’ Turkish J. Elect. Eng.
Comput. Sci., vol. 25, pp. 901–912, Mar. 2016.

[16] J. Kennedy and R. Eberhart, ‘‘Particle swarm optimization,’’ in Proc. IEEE
Int. Conf. Neural Netw., vol. 4, Nov. 1995, pp. 1942–1948.

[17] M. M. Eusuff and K. E. Lansey, ‘‘Optimization of water distribution net-
work design using the shuffled frog leaping algorithm,’’ J. Water Sources
Planning Manage., vol. 129, no. 3, pp. 210–225, 2003.

[18] D. Karaboga and B. Basturk, ‘‘A powerful and efficient algorithm for
numerical function optimization: Artificial bee colony (ABC) algorithm,’’
J. Global Optim., vol. 39, no. 3, pp. 459–471, Apr. 2007.

[19] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and Machine
Learning, vol. 13. Reading, MA, USA: Addison-Wesley, no. 7, 1989,
pp. 2104–2116.

[20] X. Li, Z. Shao, and J. Qian, ‘‘An optimizing method based on autonomous
animats: Fish-swarm algorithm,’’ Syst. Eng.-Theory Pract., vol. 22, no. 11,
pp. 32–38, 2002.

[21] Y. Tan and Y. Zhu, ‘‘Fireworks algorithm for optimization,’’ in Advances in
Swarm Intelligence, Y. Tan, Y. Shi, and K. C. Tan, Eds. Berlin, Germany:
Springer, 2010, pp. 355–364.

[22] X.-S. Yang, ‘‘Recent advances in swarm intelligence and evolutionary
computation,’’ in Studies in Computational Intelligence. Cham, Switzer-
land: Springer, 2015.

[23] J. W. Tang, Y. W. Hau, and M. N. Marsono, ‘‘Hardware/software
partitioning of embedded system-on-chip applications,’’ in Proc.
IFIP/IEEE Int. Conf. Very Large Scale Integr. (VLSI-SoC), Oct. 2015,
pp. 331–336.

[24] X. Zhao, T. Zhang, X. An, and L. Fan, ‘‘An improved blind optimization
algorithm for hardware/software partitioning and scheduling,’’ inAdvances
in Swarm Intelligence, Y. Tan, Y. Shi, and Q. Tang, Eds. Cham, Switzer-
land: Springer, 2018, pp. 225–234.

[25] X.-H. Yan, F.-Z. He, and Y.-L. Chen, ‘‘A novel hardware/software parti-
tioning method based on position disturbed particle swarm optimization
with invasive weed optimization,’’ J. Comput. Sci. Technol., vol. 32, no. 2,
pp. 340–355, 2017.

[26] G. Jiang, J.Wu, S.-K. Lam, T. Srikanthan, and J. Sun, ‘‘Algorithmic aspects
of graph reduction for hardware/software partitioning,’’ J. Supercomput.,
vol. 71, no. 6, pp. 2251–2274, 2015.

[27] Y. Zhou, F. He, and Y. Qiu, ‘‘Dynamic strategy based parallel ant colony
optimization on GPUs for TSPs,’’ Sci. China Inf. Sci., vol. 60, p. 068102,
Jun. 2017.

[28] J. Luo, X. Li, M.-R. Chen, and H. Liu, ‘‘A novel hybrid shuffled
frog leaping algorithm for vehicle routing problem with time win-
dows,’’ Inf. Sci., vol. 316, pp. 266–292, Sep. 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020025515002571

[29] W.-H. Ho, J.-T. Tsai, J.-H. Chou, and J.-B. Yue, ‘‘Intelligent hybrid
taguchi-genetic algorithm for multi-criteria optimization of shaft align-
ment in marine vessels,’’ IEEE Access, vol. 4, pp. 2304–2313, 2016.

[30] K. K. Bhattacharjee and S. P. Sarmah,Modified Swarm Intelligence Based
Techniques for the Knapsack Problem. Norwell, MA, USA: Kluwer, 2017.

[31] R.-I. Chang, H.-M. Hsu, S.-Y. Lin, C.-C. Chang, and J.-M. Ho, ‘‘Query-
based learning for dynamic particle swarm optimization,’’ IEEE Access,
vol. 5, pp. 7648–7658, 2017.

[32] C. Cerrone, R. Cerulli, and B. Golden, ‘‘Carousel greedy: A gen-
eralized greedy algorithm with applications in optimization,’’ Com-
put. Oper. Res., vol. 85, pp. 97–112, Sep. 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0305054817300801

[33] T. Zhang, X. Zhao, Y.-K. Yu, and X. Cai, ‘‘Reserch on hardware/software
partitioning method of improved shuffled frog leaping algorithm,’’ J. Sig-
nal Process., vol. 9, pp. 1055–1061, Sep. 2015.

[34] H.-B. Wang, K.-P. Zhang, and X.-Y. Tu, ‘‘A mnemonic shuffled frog
leaping algorithm with cooperation and mutation,’’ Appl. Intell., vol. 43,
no. 1, pp. 32–48, Jul. 2015, doi: 10.1007/s10489-014-0642-x.

[35] B. Yao, B. Yu, P. Hu, J. Gao, and M. Zhang, ‘‘An improved particle
swarm optimization for carton heterogeneous vehicle routing problemwith
a collection depot,’’Ann. Oper. Res., vol. 242, no. 2, pp. 303–320, Jul. 2016,
doi: 10.1007/s10479-015-1792-x.

[36] L. Cui et al., ‘‘A novel artificial bee colony algorithm with an
adaptive population size for numerical function optimization,’’
Inf. Sci., vol. 414, pp. 53–67, Nov. 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0020025517307545

[37] R. Zhang and J. Tao, ‘‘A nonlinear fuzzy neural network modeling
approach using an improved genetic algorithm,’’ IEEE Trans. Ind. Elec-
tron., vol. 65, no. 7, pp. 5882–5892, Jul. 2018.

TAO ZHANG received the M.S. degree from
the School of Electronic Information Engineering
from Tianjin University, Tianjin, China, in 2001,
and the Ph.D. degree from Tianjin University
in 2004.

He is currently an Associate Professor with the
School of Electrical and Information Engineering
and the Tianjin University and Texas Instruments
DSP Joint Laboratory, Tianjin University, China.
His current interests include image, video, and

acoustic signal processing, auditory model, speech enhancement, and hard-
ware/software partitioning.

XIN ZHAO received the B.S. degree from the
College of Electronic Information Engineering,
North China Institute of Aerospace Engineering,
Hebei, China, in 2014. He is currently pursuing
the Ph.D. degree with the School of Electrical and
Information Engineering, Tianjin University.

His research interests are evolutionary compu-
tation, optimization, and image processing.

XUAN LI received the B.S. degree from the School
of Physics and Electronic-Electrical Engineering,
Ningxia University, in 2016. She is currently
pursuing the Ph.D. degree with the School of
Electrical and Information Engineering, Tianjin
University.

Her research interests are hardware/software
partitioning and image processing.

60744 VOLUME 6, 2018

http://dx.doi.org/10.1109/PAAP.2014.42
http://dx.doi.org/10.1007/s10489-014-0642-x
http://dx.doi.org/10.1007/s10479-015-1792-x

	INTRODUCTION
	HARDWARE/SOFTWARE PARTITIONING PROBLEM
	SFLA-GRA
	SFLA AND GRA
	SFLA
	GRA

	THE HYBRID ALGORITHM
	TERMINATING INVALID ITERATIONS OF SFLA WITH GRA.
	TERMINATING THE ALGORITHM WITH A NEW TERMINATION CONDITION.
	ACCELERATING THE SEARCH WITH GREEDY STEP SIZE.


	SIMULATION RESULTS
	COMPARISON BASED ON THE SOLUTION QUALITY AND RUNNING TIME
	COMPARISON BASED ON THE FITNESS CURVES

	CONCLUSION
	REFERENCES
	Biographies
	TAO ZHANG
	XIN ZHAO
	XUAN LI


