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ABSTRACT Action recognition is a trending topic and key research direction in computer vision, machine
learning, artificial intelligence, and other fields. This research seeks to identify human action in image
and video data. Its research results have been widely used in the fields of safety monitoring, disability
monitoring, understanding multimedia content, human–computer interaction, virtual reality, and so on.
However, the existing traditional human action recognition technology has many limitations in practical
application, such as low accuracy and weak adaptive ability. Although the action recognition based on
deep learning can self-learn and improve the action recognition accuracy, there are many difficulties in
training the deep neural network model, such as gradient disappearance, gradient explosion, and overfitting.
Therefore, this paper will reduce the abovementioned difficulties in deep neural network model training from
the perspective of deep neural network model parameter initialization and then propose a model parameter
initialization method based on the multilayer maxout network activation function to solve the difficulties
in deep neural network model training. Then, on this basis, a method of learning the temporal and spatial
characteristics of human action based on the deep neural networkmodel is proposed. First, themethod detects
and tracks the human action and uses the restricted Boltzmann machine (RBM) to encode the temporal and
spatial features of various parts of the human body. Second, the temporal and spatial feature codes of various
parts of the human body are integrated into a global temporal and spatial feature representation method of
the action video through a RBM neural network. Finally, the trained SVM classifiers are used to recognize
human action. Experiments show that the human action recognition method proposed in this paper not only
has high recognition accuracy but also has great adaptability. Thus, this method extracts temporal and spatial
features from the shape feature sequences of various parts of the human body, thus opening up a new way
to extract human action features and solving the problem of human action recognition in complex scenes.
Its proposal provides an exploratory technical method and approach for self-adaptive recognition of human
action. It also gives directional enlightenment to the development and improvement of self-adaptive human
action methods.

INDEX TERMS Human action recognition, pose estimation, initializationmethod, spatial-temporal features,
deep learning.

I. INTRODUCTION
The extraction and learning of action characteristics is the
most important step in the process of action recognition.
In recent years, action recognition technology has been
widely used in daily life and industrial fields [1]–[3]. Accord-
ing to different action feature extraction methods, action
recognition algorithms can be divided into the following three

categories: action recognition methods based on traditional
artificial design features [4]–[6], action recognition methods
based on deep learning features [7]–[9], and hybrid feature
extraction action recognition methods [10], [11]. The hybrid
feature-based action recognition method herein is the fusion
of artificial feature extraction and deep learning action feature
extraction, that is, the hybrid feature extraction is performed
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through a combination of artificial design features and deep
learning strategies.

The first type of research results that use artificial action
features to extract and identify are more common [3]–[5].
Therefore, a large number of global features [12] and local
features [5] are also described in the area of action recog-
nition. These artificial design features are sophisticated, and
they provide very good action recognition effects through the
characterization of human action. However, in recent years,
there have been no breakthroughs and advances in the action
recognition of actions through artificial design features [4],
[5].

Deep learning technology has achieved great success in
speech recognition, image processing and other aspects, and
the second type of action recognition methods based on deep
learning has also receivedmore attention.Many scholars have
used deep learning techniques to obtain a good recognition
effect in action recognition. For example, Reference [13]
uses the techniques of stacking and convolution to learn the
unchanging spatial-temporal features directly from the video
data and uses this feature to obtain a very good action recog-
nition effect. Reference [14] proposed a method of action
recognition based on convolutional neural network archi-
tecture. This method learns a potential feature of an image
sequence from continuous image pairs. Then, an experiment
verifies the reliability of the method to identify the action.
Reference [15] uses a three-dimensional convolutional neural
network to recognize the human action in a video in an end-
to-end manner. Without relying entirely on design features,
it gains an overwhelming action recognition effect. However,
in the three-dimensional video, the computational complex-
ity of the deep learning methods that are very convenient
in image processing becomes very large, and many opera-
tions become extremely complicated. In the case of convolu-
tional operations, the computational complexity of the video
increases exponentially. Although convolutional operations
based on deep learning have made great progress in develop-
ment and application, there has also been a problem of falling
into local optimum and slow training. Thus, the training
process of the deep neural network model is a non-convex
optimization process, and the solution of the non-convex
optimization algorithm (such as stochastic gradient descent)
depends on the initialization of model parameters [16], [17].
The initialization of deep neural network model parame-
ters is a very important part of the model training process.
It directly affects the distribution of each hidden layer at
the initial stage of the neural network model. Proper model
parameter initialization can ensure that the state of each
hidden layer node obeys the same distribution and stability of
gradient propagation. It can increase the convergence speed
of non-convex optimization processes and avoid the non-
convex optimization process from becoming trapped into a
local optimal solution. Inappropriate model initialization of
parameters will cause the problem of gradient disappear-
ance or gradient explosion when the gradient spreads due
to the large difference in hidden layer distribution. It will

lead to slow convergence and easily fall into the local opti-
mal solution [18], [19]. In practical applications, the model
parameter initialization method is related to the structure
of the model, the nonlinear activation function, and other
factors. When a deep neural network model with differ-
ent structures and different nonlinear activation functions is
encountered, themodel parameter initializationmethod needs
to be redesigned. This process requiresmuch experimentation
and theoretical derivation. It not only makes the model train-
ing process cumbersome and time-consuming, but it is also
easy to improperly initialize the model parameters, causing
the model training to be difficult to converge. At present,
most of the research work on model parameter initialization
is based on the assumption that each hidden layer obeys
a similar distribution and carries out logical analysis and
theoretical derivation of both forward and back propagation
of the network. The nature of the nonlinear activation func-
tion at each level of the network plays an important role.
For example, the Xavier initialization method is based on
the sigmoid activation function, and the MSRA initialization
method is based on the ReLU activation function [18]–[20].
Since the nature of theMaxout andMMNactivation functions
is not the same as the traditional activation function, it causes
the above two model parameter initialization methods to be
inapplicable to the Maxout and MMN activation functions.

The third category is an action recognition method based
on hybrid feature extraction [10], [11]. There are few research
results regarding this type of method at present, as it uses
deep-learning technology to learn the features of artificial
design, which are extracted to obtain more abstract fea-
tures, and then engages in action recognition. For example,
Reference [10] uses deep learning to identify action based on
the human skeleton and joints. Reference [11] uses the DPM
(deformable part model) to detect human parts or targets
and then uses deep learning methods to identify the action
through the detected position information of various parts of
the body or target. Given the effectiveness of this approach
in action recognition, this type of hybrid strategy has also
received more attention.

Through actual monitoring, it can be determined that
human action consists of a series of ordered sequences of
limb movements. The movement of various parts of the body
forms a sequence of changes in the shape of the various parts
of the human body in the time dimension. The shape change
sequence has an important influence on action recognition.
We can learn this type of shape change feature by using
the video angle to capture the movement laws of human
action. In view of the fact that shape features have achieved
good results in many action recognition algorithms, Boltz-
mann machines are also limited in the distribution of learning
data [21]–[25]. This paper attempts to use the video feature
learning action recognition algorithm. This method uses a
deep neural network to extract the shape changes of various
parts of the human body in the video, learn the characteristics
of the action, and then identify the specific action through the
features. This paper proposes an adaptive model parameter
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initialization method based on the MMN linear activation
function, which overcomes the problem of gradient disap-
pearance and gradient explosion during training to avoid the
influence of deep neural network model parameter initializa-
tion on the effect of deep learning. It can provide a more the-
oretical guarantee for effectively training the network model
based on the MMN activation function. First, according to
the nature of the MMN activation function, the forward prop-
agation process of the neural network model is deduced, and
a sufficient condition for the initial model parameters to be
satisfied under the same distribution condition is obtained.
Second, according to the loss of the network forward prop-
agation calculation, the back-propagation algorithm deduces
the back-propagation process of the model, and the gradients
of all hidden layers in the back-propagation (BP) process
satisfy the same distribution, and the initial model parameters
must satisfy sufficient conditions [26]. Finally, in the process
of forward propagation and backward gradient propagation,
the sufficient conditions for the above two basic satisfactions
are merged to propose a method for parameter initialization
of the deep learning adaptive model. Based on the above
description and considering the importance of the initializa-
tion of the parameters of the deep neural network model
and the characteristics of the traditional feature extraction
methods, this paper proposes a temporal and spatial feature
human action recognition algorithm based on the parameters
of the deep learning model.

Section II of this paper will mainly describe the space-time
feature-learning algorithm based on deep learning. Section III
systematically explains the initialization method of the deep
learning model parameters proposed in this paper. Section IV
introduces the action recognition classifier based on Support
Vector Machine. Section V analyzes the action recognition
algorithm proposed in this paper and compares it with the
mainstream recognition algorithm. Finally, the full text is
summarized and discussed.

II. SPACE-TIME FEATURE LEARNING
BASED ON DEEP LEARNING
This section describes how to use deep learning theory
to study the temporal and spatial characteristics of human
behavior. The feature learning process is divided into four
steps. (1) This method uses pedestrian detection and tracking
algorithms to identify the action features; themeasured action
video is converted into action tracking sequences [23]–[26]
(Action Tracks), and then feature learning is performed
through action tracking sequences. The specific architecture
is shown in Fig. 1. The architecture consists of a multilay-
ered neural network whose basic unit is a restricted Boltz-
mann machine (RBM). (2) The action tracking sequence is
divided into a plurality of video blocks as shown in Fig. 1,
and each frame of image in each video block is segmented
to obtain a shape feature (Block Shape Features). This
method does not learn features directly from the pixel infor-
mation of the video block but rather learns more abstract
features from the extracted video block shape features.

FIGURE 1. Space-time feature learning framework.

(3) Feature extraction from the shape feature sequence of the
video block occurs using a plurality of restricted Boltzmann
machine-neural network layers. (4) The output of the multi-
restricted Boltzmannmachine-neural network layer is spliced
and input into the second neural network. The output of
the second layer network is the space-time characteristics
learned. The purpose of setting up the second layer neural
network is to reduce the dimension of the output of the multi-
restricted Boltzmann machine-neural network layer, thereby
reducing the amount of computation and improving the com-
putational efficiency. The following describes the learning
process of the space-time features in detail.

A. VIDEO SEQUENCE ACTION TRACKING
The human body undergoes action changes during specific
action movements. The concrete manifestation thereof is
that the position of the human body in the detected video
frames will change; the posture of the human body will
appear with corresponding changes. This article uses the tar-
get detection and tracking algorithm to automatically detect
and track the action of the human body to ensure that the
human body’s specific action is always in the visual focus
and turn the detection and tracking results into action tracking
sequences (action track). In the initial frame of the action
video, the person in action is detected using a mainstream
pedestrian detection algorithm. After the active human body
is detected, the method uses a tracking algorithm to locate
the active human body in a subsequent frame to place the
actor in the visual focus in a subsequent video frame. The
positioning of the human body in action will seriously affect
the accuracy of the subsequent action recognition. Therefore,
it is very important to perform the detection of the specific
action successfully.

However, when an actor performs a variety of different
actions, his limbs perform a variety of specific movements.
Based on the results of pedestrian detection and tracking, it is
very difficult to determine the bounding box that contains
the actor’s body parts. Therefore, this paper uses a larger
bounding box to locate the actor to limit the actor’s limbs
and trunk to the bounding box under various movement pos-
tures. Similar to the action recognition method, the proposed
method also optimizes the bounding box based on pedestrian
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detection and tracking results. The optimized rectangular
bounding box is centered on the center axis of the bounding
box obtained by a pedestrian detection algorithm or tracking
algorithm, and its width is proportional to the height of the
bounding box. Finally, the action tracking sequence is formed
by normalizing the actor’s positioning results in the same
scale.

To facilitate subsequent processing, the length of the action
tracking sequence is set to a fixed length T . If the length of the
initial action tracking sequence is greater than T , the redun-
dant video frames are discarded; otherwise, the zero-padding
method is used to extend the action tracking sequence to T
frames. In this paper, for the action category ci, the action
tracking sequence of all the training videos is denoted as
Tci , and the action tracking sequence of other action types
is denoted as Tbi .

B. VIDEO BLOCK SHAPE FEATURES
Each action tracking sequence is segmented into sw× sh video
blocks from the beginning of the video. As described above,
the frame length of each video block is set to a fixed value T.
The segmented video block is denoted by Fj,, j ∈ J , where
J = {1, 2, · · ·, sw × sh} corresponds to the spatial position
of the video block. Since processing a video block sequence
using a three-dimensional convolution method results in a
very large number of computations and is time-consuming,
the proposed method represents a video block sequence as a
video block shape feature. Then, the deep neural network is
used to obtain more abstract spatial-temporal features from
these low-level features. Divide each frame of the video block
Fj, j ∈ J , F jk (k = 1, 2, · · · ,T ) into Nw× Nh grid cells
and compute each grid cell in Nd directions in the gradient
direction histogram (HOG). The splicing vector of the gra-
dient direction histogram of all the grid cells of each frame
image represents the shape characteristics of the image frame.
Therefore, the dimension of the shape feature of each image
frame isMw×Mh×Mw. In reference [21], this shape feature
is represented as a feature vector (mjk1,m

j
k2, · · · ,m

j
kn), where

n = Mw × Mh× Mw. s
j
kl, l = 1, 2, · · · , n indicates the first

component of the shape feature of the image frame F jk . For
each video block of the action tracking sequence, the shape
features of each video frame are extracted and spliced into
a long vector. This feature vector represents a shape feature
called a video block. The shape features of the video block
of the action tracking sequence. The first row of the graph
is an image sequence of a video block of an action tracking
sequence, and the second action is its corresponding shape
feature of the video block.

In the action recognition algorithm, the active person’s
posture is very important information. This paper normal-
izes the shape features of each frame of the action tracking
sequence. That is, the shape features of the human pose in
each frame of the action tracking sequence are normalized.
According to previous experience, the L2 norm is very effec-
tive for splicing image description features. Thus, a frame of

the image of the action tracking sequence is represented as
F1
k ,F

2
k , · · · ,F

sw×sh
k , k = 1, 2, · · · , n. The normalization of

the shape features of each frame of the image in the action
tracking sequence is as follows:

qjkl =
mjkl(∑sw×sh

j=1
∑m

r=1

∣∣∣mjkr ∣∣∣2) 1
2

(1)

Where 1 ≤ l ≤ m, qjkl is the normalization of the shape
feature vector, and the component mjkl of the shape feature
vector corresponds to the normalized component value. In
summary, the shape feature of each image frame in the video
block of the action tracking sequence is described as Djk =(
qjk1, q

j
k2, · · · , q

j
km

)
, where j ∈ J , 1 ≤ k ≤ T . Then,

the video block shape feature of the video block Bj can
be represented as

(
Dj1,D

j
2, · · · ,D

j
T

)
. The dimension of this

feature is T ×Mw ×Mh ×Mw. q
j
kl ∈ [0, 1], so, eigenvector(

Dj1,D
j
2, · · · ,D

j
T

)
can be used as an RBM input to train the

two-layer neural network architecture designed in this paper.

C. MULTI-RBM NEURAL NETWORK LAYER
RBM is an undirected graphical model, which is a special
type of Markov random field. The RBM is a network archi-
tecture that contains two layers of neurons. The two layers
of neurons are input layer neurons and hidden layer neurons.
There is no connection between the same layer of neurons
in the network, and the input layer and the neurons in the
hidden layer are connected in a fully connected manner. This
type of neural network model was first proposed in [27].
Subsequently, Freund discussed the learning algorithm of the
network in [28]. An effective learning algorithm for training
Boltzmann machines was proposed in [29]. Freund et al. [28]
noted that RBMs can learn any discrete distribution when
there are enough hidden neurons. As shown in Fig. 1, the first
layer of a neural network consists of multiple RBMs. The
proposed method uses multiple RBM neural network layers
to describe the characteristic distribution of the action. The
structure of the multiple RBM neural network layers is shown
in Fig. 2. As previously mentioned, the video block of the
action tracking sequence is represented herein as a video
block shape feature. For each action category, the video block
shape features of all training samples of the action type are
used to train the RBMs of the multiple RBM neural network
layers. Each RBM is trained using the video block shape fea-
ture of the corresponding spatial location. Correspondingly,
the multi-RBM neural network layer contains sw× sh needed
to train the RBM.

In Fig. 2, the output layer of eachRBMcontainsK neurons,
and the value of K directly affects the distribution of the
characteristics of each type of action learned. Therefore, this
method specifically analyzes the influence of the value of K
on the experimental results. For each RBM neural network
layer, limit each Boltzmann machine (j = 1, · · ·, sw × sh).
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FIGURE 2. Multiple RBM neural network layer structure.

It trains the shape features of all video blocks with the corre-
sponding spatial position j as input. The input video block

has the shape feature Qj =
(
qj11, q

j
12, · · · , q

j
Tm

)T
and the

corresponding RBMj output Hj = H j
=

(
hj1, h

j
2, · · · , h

j
K

)T
.

For the restriction of the Boltzmann machine RBMj, the state
energy of its neurons {Qj, } is defined as

E
(
Qj,H j

; θ j
)

= −

(
Qj
)T

W jH j
−

(
bj
)T

Qj −
(
aj
)T

H j

= −

T×m∑
l=1

K∑
k=1

W j
lkQ

j
lH

j
k−

T×m∑
l=1

bjlQ
j
l −

K∑
k=1

ajkH
j
k (2)

Where θ j = {W j, } is a parameter of RBMj, and Wj
represents a symmetric correlation matrix between the input
neuron and the output neuron. It refers to the connection
weight between the input layer and the output layer. bj and
aj are deviation vectors, both of which are column vectors.
Each RBMparameter is learned through the contrastive diver-
gence (CD) algorithm [29]. For aRBMj, the joint distribution
between the input neurons and the output neurons is

P
(
Qj,H j

; θ j
)
=

1

Z
(
θ j
) exp (−E (Qj,H j

; θ j
))

(3)

Z
(
θ j
)
=

∑
Qj

∑
H j

exp
(
−E

(
Qj,H j

; θ j
))

(4)

Among them, (θj) is a partition function, and the con-
ditional probability distribution can be easily derived from
Formula 3, specifically

p
(
H j
k = 1|Qj

)
= g

(∑
l

W j
lkQ

j
l + a

j
k

)
(5)

p
(
QjL = 1|H j

)
= g

(∑
k

W j
lkH

j
k + b

j
l

)
(6)

Among them, (x) = 1/(1 + exp(−x)) is a logic function.
The contrastive divergence [29] method is used to learn R’s
parameter set. This paper separately trains each RBM of
the first layer network (multi-RBM neural network layer)
of the used neural network architecture. The set of network

parameters that this multi-RBM neural network layer learns
for each action class is denoted by θ = (θ1, · · ·, θn).

D. TEMPORAL AND SPATIAL FEATURES
This paper trains a two-layer neural network for each action
category. As shown in Fig. 1, the second layer of the neural
network is a single RBM. The layer network is designed to
reduce the dimension of the output of the first neural network.
The parameters of this layer network are the same as each
RBM of the first layer neural network, denoted as (W , a, ).
For trained neural networks of different action categories, the
input of the same action video will cause the network of each
action category to output various types of feature vectors.

The output of the trained two-layer neural network is
the learned space-time characteristics. Unlike those features
based on deep learning methods that learn directly from the
original pixel values of the video, the spatiotemporal charac-
teristics of this article are learned from the shape features of
the video block. This feature is an abstract high-level feature
learned from traditional low-level features that can be more
robust to characterize the action. The space-time characteris-
tics of learning are denoted as H = (h1, h2, . . . , hS). Among
them, the value of S is the set based on experience. In the
experiments in this paper, we set S = 16× sw × sh × K .

III. MODEL PARAMETER ADAPTIVE INITIALIZATION
METHOD BASED ON THE MAXOUT
ACTIVATION FUNCTION
A. MODEL PARAMETER INITIALIZATION METHOD
Before training the deep neural network model, we must
first initialize the weight parameters of the model; other-
wise, the model cannot be optimized according to the initial
state. Proper parameter initialization can avoid the problem
of gradient disappearance or gradient explosion in the back-
propagation process and accelerate the convergence of model
training. Inappropriate initialization of model parameters will
lead to the optimization of the model parameters into a locally
optimal solution, which results in the model being unable
to be fully trained and unable to exert the powerful feature
extraction capabilities and feature representation capabilities
of the deep neural network model. Currently, many scholars
have conducted studies on the parameter initializationmethod
of the deep neural network model and have achieved certain
research results [30]–[32] that can quickly and effectively
select appropriate initial values for different depth neural net-
work model parameters. They not only overcome the gradient
disappearance and gradient explosion problems that often
appear in the deep neural network model training process
but also accelerate the training convergence rate of the deep
neural network model.

The traditional neural network model parameter initializa-
tion method initializes model parameters randomly from a
Gaussian distribution [33]. All hidden layer parameters have
the same Gaussian distribution. That is, all parameters in the
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model obey the following Gaussian distribution:

W ∼ N
(
µ, σ 2

)
(7)

Although this model parameter initialization method is
simple to implement, it lacks a theoretical basis. The two
hyperparameters of the Gaussian distribution need to be
determined through multiple experiments. The determination
of these two hyperparameters is very time-consuming and
does not guarantee the validity of the initialization results
of the model parameters. When using deeper, more com-
plex deep neural network models (for example, more than
8 neural network models for convolutional layers), using this
model parameter initialization method does not guarantee
that the model has good performance. The Visual Geometry
Group (VGG) of Oxford University performed several exper-
iments on theVGGmodel (13 convolutional layers and 3 fully
connected layers) and showed that the deep convolutional
neural network model using this method is very difficult to
converge [33]. This problem also limits the application and
development of deep convolutional neural network models in
image classification tasks.

With the deepening of the research on the optimization
process of the deep neural network model, many parameter
initialization methods for deep neural network models are
emerging. These model parameter initialization methods can
be roughly divided into two categories. One is based on
a pre-training model parameter initialization method. For
example, the method of initializing the model parameters
through the unsupervised pre-training method proposed by
Hinton et al. [34] in 2006, the deep belief network
(DBN) [35], deep Boltzmann machine (DBM), DBM) [36]
achieved significant results on equal depth neural network
models. This model parameter initialization method builds an
unsupervised objective function layer by layer, using an unsu-
pervised model such as a restricted Boltzmann machine [37]
and an autoencoder (AE) [38]. Layer-by-layer training can
obtain the feature representation of the input features in
the new space. This completes the initialization process for
each level of the deep neural network model parameters.
Whether it is a model parameter initialization method based
on unsupervised pre-training or a model parameter initial-
ization method based on supervised layer-by-layer greedy
pre-training, the pre-training process requires extra compu-
tational overhead. It affects the training efficiency of the
deep neural network model to some extent. The other is a
model parameter initialization method based on neural net-
work model training and parameter optimization. For exam-
ple, to quickly and efficiently initialize the parameters of the
deep neural network model, many researchers started with
the nonlinear activation function and the back-propagation
process. Bradley et al. found that as the gradient propagates
from the output layer to the input layer, the back-propagation
makes the gradient decrease, resulting in low-level param-
eters that cannot be effectively trained. By analyzing the
gradient of the sigmoid activation function in the definition

domain, we find that the gradient of the sigmoid activation
function is relatively large in the interval [−4, 4], which can
accelerate the training speed of the neural network model.
Glorot’s research work in 2010 [39] deeply analyzed the
gradient changes in different hidden layers during training.
Based on the assumption that every layer of neuron nodes
should obey the same distribution, the Xavier model parame-
ter initialization method was proposed. Although the Xavier
model parameter initialization method provides a quick and
effective reference and guidance for parameter initialization
of the deep neural network model, the Xavier model param-
eter initialization method is based on the traditional neural
network model inference of the sigmoid activation function
and the tanh activation function. It does not apply to neural
network models that use ReLU activation functions and their
variants. In 2015, He et al. [19] assumed that the state of
each neuron node should obey the same distribution and
proposed a parameter initialization method for the MSRA
model that is suitable for the ReLU activation function and
its variants. Due to the wide application of the ReLU activa-
tion function, the initialization of MSRA model parameters
solves the problem of initialization for many deep neural
network model parameters. However, since the inference pro-
cess of the MSRA model parameter initialization method is
based on the ReLU activation function, this model parameter
initialization method is only applicable to the deep neural
network model using the ReLU activation function and its
deformation.

B. MODEL PARAMETER ADAPTIVE INITIALIZATION
METHOD BASED ON THE MAXOUT
ACTIVATION FUNCTION
As mentioned earlier, the MMN activation function cannot
only alleviate the gradient disappearance and gradient explo-
sion problems in the back-propagation process, but it can also
increase the feature extraction ability and feature represen-
tation capability of the neural network model. It is jointly
optimized with other parameters in the deep neural network
model. It will further improve the image classification accu-
racy of the deep neural network model. Although the scale
of the deep neural network model using the MMN activa-
tion function has increased, a reasonable model parameter
initialization method can accelerate the convergence of the
model training. The existing model parameter initialization
method is based on the traditional activation function because
the theoretical derivation assumptions are not applicable to
the deep neural network model using the MMN activation
function or the Maxout activation function. This paper is
based on the assumption that the state of each neuron node
obeys the same distribution to initialize the parameters of the
neural network model using the MMN activation function
or the Maxout activation function more quickly and effi-
ciently. A neural network model parameter adaptive initial-
izationmethod based on theMMNactivation function and the
Maxout activation function is proposed.
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Because the MMN activation function is a multi-layer
Maxout network, the model parameter initialization method
based on the Maxout activation function is also effective for
the deep neural network model using the MMN activation
function. Therefore, theMaxout activation function is used as
an example for the theoretical derivation of model parameter
initialization. The forward propagation process and back-
propagation process of the deep convolutional neural network
model will be analyzed separately to ensure that the state of
each neuron node obeys the same distribution.

1) FORWARD PROPAGATION PROCESS
To ensure the derivation of the forward propagation process
of the deep convolutional neural network model, first, the fol-
lowing assumption is made: All the input vectors s and the
parameter vectors W are independent and obey the same
distribution; the initialization distribution of the parameter
vector W is symmetrical about the zero point; the offset b
of each layer is always equal to zero.

Here, l denotes the l-th hidden layer of the deep convo-
lutional neural network model, and the response of the l-th
convolution layer in the deep convolutional neural network
model is:

zl = xTl Wl + bl (8)

Among them, xl∈Rd, xl is the original input vector or the
state vector of the previous hidden layer. After the original
input vector is preprocessed, the mean value is zero, then:

d = p2c (9)

Where d represents the number of all input nodes
connected to one neuron node, p represents the size of the
convolution kernel (convolution kernels are square), and c
represents the number of input channels. The output of each
neuron node that passes through the Maxout activation func-
tion can be calculated by Formula (10), so the variance of zl
can be obtained, as shown in (11):

f (x) = max (w1x + b1,w2x + b2, · · · ,wnx + bn) (10)

Where n represents the number of linear functions in the
combination. When w1 = 1 and b1, w2, b2, . . . , wn, bn are
equal to zero, the Maxout activation function is equivalent
to the ReLU activation function. The local linearity of the
Maxout activation function alleviates the problem of gradi-
ent disappearance, but at the same time, it introduces addi-
tional parameters, which means that it takes more computing
resources and storage resources during the training process.

Var [zl] = dlVar [Wlxl] (11)

Since the weight Wl of the l hidden layer obeys the
zero-mean Gaussian distribution, the weightWl and the state
vector xl are independent of each other. Therefore,

Var [zl] = dlVar [Wl]E
[
x2l
]

(12)

Among them, E
[
x2l
]
is the expectation of x2l . Only the

Maxout activation function consisting of two linear functions
is considered here to simplify the presentation,.

xl = hl−1 (xl−1) = max
(
zl−1,1, zl−1,2

)
(13)

Since the offset bl−1 is always equal to zero, themean value
of the weightWl is also equal to zero, so both zl−1,1 and zl−1,2
are symmetrical about the zero point and the mean is equal to
zero.
xl is defined as shown in (14) to establish the connection

between the expectation E
[
x2l
]
and the variance Var[zl−1].

xl =
zl−1,1 + zl−1,2 +

∣∣zl−1,1 − zl−1,2∣∣
2

(14)

Substituting (14) into calculation expectation E
[
x2l
]
,

we get:

E
[
x2l
]

=
1
4
E
[(
zl−1,1 + zl−1,2 +

∣∣zl−1,1 − zl−1,2∣∣)2]
=

1
2
E
[
z2l−1,1+z

2
l−1,2+

(
zl−1,1+zl−1,2

) ∣∣zl−1,1 − zl−1,2∣∣]
=

1
2

(
E
[
z2l−1,1

]
+ E

[
z2l−1,2

]
+
(
E
[
zl−1,1

]
+ E

[
zl−1,2

])
E
[∣∣zl−1,1 − zl−1,2∣∣]

)
=

1
2

(
Var

[
zl−1,1

]
+ Var

[
zl−1,2

])
(15)

Since zl−1,1 and zl−1,2 obey the same distribution, the vari-
ance of zl−1,1 can be defined as shown in (16):

Var [zl−1] = Var
[
zl−1,1

]
= Var

[
zl−1,2

]
(16)

Substituting (16) into (15) obtains:

E
[
x2l
]
= Var [zl−1] (17)

By substituting (16) into (12), the relationship between
Var[zl] and Var[zl−1] can be obtained:

Var [zl] = dlVar [Wl]Var [zl−1] (18)

When there are L hidden layers in the deep convolutional
neural network model, the relationship between the variance
Var[zl] of the first hidden layer state and the variance Var[zL]
of the last hidden layer state can be expressed as:

Var [zL] =

(
L∏
l=2

dlVar [Wl]

)
Var [zl] (19)

The state of each neuron node is ensured to obey the
same distribution to reduce the internal covariate shift in each
hidden layer in the neural network model, that:

Var [zL] = Var [z1] (20)

The initialization of the neural network model parameters
needs to satisfy the sufficient conditions, as shown in (21):

dlVar [Wl] = 1,∀l (21)
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When l = 1, the above sufficient condition (21) is true
since there is no activation function directly acting on the
input vector.

In summary, the hypothesis is that each hidden layer node
state follows the same distribution based on the neural net-
work model. The model parameter initialization method pro-
posed in this paper requires that each hidden layer parameter
Wl of the deep convolutional neural network model satisfies
the Gaussian distribution as shown in (22).

Wl ∼ N
(
0,

1
dl

)
(22)

2) BACK-PROPAGATION PROCESS
In the back-propagation process of the deep convolutional
neural network model, it is necessary to pay attention to
the gradient obtained by each convolutional parameter, as
shown in (23):

1xl =
1

Wl1hl (23)

Here, 1xl and 1hl denote gradients ∂Loss
∂xl

and ∂Loss
∂hl

,
respectively. Loss is the loss function of the neural network
model.1xl is the c×l dimensional vector, and1hl is the d̂×1
quantity, where d̂ = p2e and e is the number of convolution
filters. W and Ŵl can be transformed into each other by
changing the dimension because Ŵl is the c × d̂ matrix.
Similar to forward propagation, the relevant assumptions still
need to be made here:1hl andW (or Ŵl) are independent of
each other; W (or 1hl) follows the initialization distribution
with respect to 0 symmetry; for all l, E [1xl] = 0.
Here, we still consider only the Maxout activation function

a=0, to get:

1zl,k = f ′
(
zl,k
)
1xl+1, k ∈ {1, 2} (24)

Among them, f ′
(
zl,k
)
= 1 and f ′

(
zl,k
)
= 0 each has

half the probability of occurrence. Since f ′
(
zl,k
)
= 1 and

1xl+1 are independent of each other, they are satisfied for
any k ∈{1,2}.

E [1hl] = E
[
1zl,k

]
(25)

Simultaneously,

E
[
(1hl)2

]
= Var [1hl] =

1
2
Var [1xl+1] (26)

Therefore, the variance of the gradient 1xl is:

Var [1xl] =
1
2
d̂lVar [Wl]Var [1xl+1] (27)

The relationship between Var[1xl] and Var[1xl+1] can
be established by (27). When there are L hidden layers in
the deep convolutional neural network model, the relation-
ship between Var[1x2] and Var[1xL+1] can be deduced as
follows:

Var [1x2] = Var [1xL+1]

(
L∏
l=2

1
2
d̂2Var [Wl]

)
(28)

To enable the gradient to propagate back to the hidden layer
in front smoothly, sufficient conditions for the initialization of
the network model parameters need to be satisfied.

1
2
d̂lVar [Wl] = 1, ∀l ∈ [2,L] (29)

When the first hidden layer is initialized, formula (29)
still applies because the first layer has no activation function
directly acting on the input vector.

In summary, the initialization of the neural network model
parameter W needs to follow the Gaussian distribution as
shown in (30):

Wl ∼ N
(
0,

2

d̂l

)
(30)

After the previous theoretical derivation, the initialization
methods based on the forward propagation process and the
reverse propagation process are obtained, but the two cannot
be satisfied at the same time. To this end, here is an eclectic
approach to translating the above issues into the following
optimization problems:

min
τl
(τl − dl)2 +

(
τl −

1
2
d̂l

)2

(31)

Among them,

Wl ∼ N
(
0,

1
τl

)
(32)

Based on two sufficient conditions, the optimal solution
gives a sufficient condition for trade-off, as shown in (33):

Wl ∼ N
(
0,

4

2dl + d̂l

)
(33)

Because the MMN activation function is a multi-layer
Maxout network, the model parameter initialization method
based on the Maxout activation function is also applicable to
the deep convolutional neural network model using theMMN
activation function.

3) VERIFICATION AND ANALYSIS
In order to verify the validity of the model parameter adap-
tive initialization method proposed in this paper, relevant
experiments were carried out on the CIFAR-10 and ImageNet
datasets respectively. The model used was a deep convo-
lutional neural network model (four convolutional layers),
and the loss function was calculated by a logistic loss layer
connected after the average downsampling layer. All acti-
vation functions in the model used the activation function
proposed in this paper. In order to prevent over-fitting of the
model, the Dropout method was used after each downsam-
pling layer [40]. That is, in the training phase, each batch of
data was trained using a sub-model of a randomly selected
convolutional neural network model, and all the sub-models
shared all the parameters, with a Dropout probability of 50%.
The image classification error rate of the model was the result
of averaging in 5 experiments, and themodel parameters were
randomly initialized each time.
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FIGURE 3. Global contrast normalization schematic.

(i) Data preprocessing
Before training, the training data was first pre-

processed [41], including Global Contrast Normalization
(GCN) and ZCA whitening. The GCN process is shown
in Fig.3. ZCA whitening is defined as shown in (34).

XZCA = US−
1
2UTX (34)

In the formula (34), X is the data matrix, U is the eigen-
vector matrix of the data X covariance matrix, UT is the
transpose of the matrix U , and S is the eigenvalue matrix of
the data X covariance matrix.
All models used the Xavier initialization method to initial-

ize the parameters [39] and the initialization of the model
parameters W obeys the uniform distribution U , which sat-
isfies the requirements of formula (35).

W ∼ U

[
−

√
6

√
nj + nj+1

,

] √
6

√
nj + nj+1

(35)

In the formula, nj is the number of input nodes, and nj+1 is
the number of output nodes.

(ii) CIFAR-10 and ImageNet datasets verification and
analysis

On the CIFAR-10 dataset, the model parameter adaptive
initialization method proposed in this paper was compared
with the Xavier model parameter initialization method. The
training data was first processed by GCN and ZCA whiten-
ing. The deep convolutional neural network model in the
experiment used the model parameter initialization method
proposed in this paper and theXaviermodel parameter initial-
ization method respectively. The performance comparison of
different parameter initializationmethods is shown in Table 1.

TABLE 1. Test error rates of different initialization methods on the
CIFAR-10 dataset.

Using the model parameter adaptive initialization method
proposed in this paper, the image classification performance
of the deep convolutional neural network model using the
MMN activation function was improved. The reason is that
the proposed adaptive initialization method can ensure that

the node states of different hidden layers obey the same
distribution, effectively avoiding the problem of gradient dis-
appearance or gradient explosion in model training.

In order to further verify the generalization performance of
the model parameter adaptive initialization method proposed
in this paper on the big dataset, a comparison experiment
of different model parameter initialization methods was also
carried out on the ImageNet data set. Since the ImageNet
image dataset is a 1000-class image problem, a deep convo-
lutional neural network model with more layers and convolu-
tion kernels was used in the experiment.

During the experiment, the deep convolutional neural net-
work model iterated a total of 500,000 times, the initial
learning rate was set to 0.1, and the learning rate decreased
by 10 times after 15,000 iterations.

The performance comparison between the model param-
eter adaptive initialization method proposed in this paper
and the Xavier model parameter initialization method on the
ImageNet image classification data set is shown in Table 2.

TABLE 2. Test error rates of different parameter initialization methods on
ImageNet image classification dataset.

It can be seen from the experimental results that the model
parameter adaptive initialization method proposed in this
paper is still effective on large-scale image datasets, which
can improve the image classification performance of deep
convolutional neural networks, which further verify that the
proposed model parameter initialization method has good
generalization performance.

IV. ACTION RECOGNITION CLASSIFIER BASED
ON SUPPORT VECTOR MACHINE
The proposed method is divided into the following two parts:
one part trains a two-level neural network for each action
category, and the other builds an SVM classifier. In the
training stage of the SVM classifier, for each action category,
the training sample of the action is used as a positive sample
(yi = +1), and the training samples of the other action
categories are used as a negative sample (yi = −1) to train the
SVM classification. The parameter vector ρ and slack vari-
able ξi are then optimized byminimizing the SVM’s objective
function [40]. However, when using this idea to train the
SVMmodel, it was found that the SVM’s classification result
was affected by the imbalance in the number of positive
and negative samples in the training set. In the process of
training the SVM classifier for each action category to solve
the problem of data imbalance, the proposed method uses
different penalty parameters C for the positive and negative
samples in the training set. Since the number of positive
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samples p in the training set is smaller than the number q
of negative samples, a larger penalty coefficient C is used
for the positive samples. Therefore, the importance of each
positive sample data in the training set is increased during
the training process. For negative samples, a smaller penalty
coefficient C is used. The objective function used to train the
SVM classifier is as follows:

min
ω,ξ

1
2
‖ω‖2 + C +

p∑
i=1

ξi + C −
p+q∑
j=p+1

ξj

s.t. yi
[(
ωTHi

)
+ b

]
≥ 1− ξi, i = 1, 2, · · · , p+ q

ξ ≥ 0 (36)

Where Hi is the space-time feature of the i−th action
sample, (Hi, yi) is the input vector of the SVM classifier, and
p + q is the number of training samples used by the training
SVM. In the experiment, lib SVM [41] was used to solve the
training problem of the SVM classifier. In the experiment,
a different penalty coefficient C was set by the ratio of the
number of positive and negative samples.

In summary, an SVM classifier F is trained for each action
category. Thus, each action category can be represented as an
action model (θ,W , a, b, ) consisting of a two-layer neural
network and an SVM classifier. This model is used to identify
specific action. Of course, multiple action models are used to
classify and identify multiple action types.

V. EXPERIMENT ANALYSIS
A. UCF SPORTS ACTION DATABASE
In this experiment, the UCF Sports Human Action Database
proposed by the Computer Vision Research Center of the
University of Florida was used for analysis and discussion.
The database contains 10 categories of action. The rele-
vant action videos are from BBC, ESPN and other sports
broadcast channels [44]. The UCF Sports dataset contains
150 videos containing ten actions. The database contains a
total of 150 action video sequences. The shooting scenes
of these videos are different for different action categories,
and the shooting perspective is very wide. These ten actions
are Diving-side, Walk, Kicking, Lifting, Riding-Horse,
Swing-SideAngle, Skate-Boarding, Swing-Bench, Golfing
and Running. The video in the UCF Sports database is
shown in Fig. 4.

It is very challenging to identify the motion action in
these chaotic real scenes collected from various perspec-
tives. This experiment used the same experimental setup as
in [43] and [44] to divide the UCF Sports Action database
into a training set of 103 video samples and a test set of 47
action samples. According to [45], this segmentation method
can reduce the background correlation between the training
set and the test set. Due to the small number of training
samples, the proposed method uses a data expansion method
to increase the number of video samples in the training set.

In this database, the following three sets of experiments
were designed:

FIGURE 4. UCF Sports database part of the action of the image.

1) RECOGNITION EXPERIMENTS FOR
SPECIFIC ACTION CATEGORIES
In this experiment, each action tracking sequence was divided
into 2×6 video blocks. The effect of the parameter K on
the experimental results was evaluated through experiments.
The parameter K was set to 300. K is the number of output
neurons of each RBM in the first layer network of the neural
network architecture. Our proposed algorithm is compared
with the reference [43], [44] action recognition algorithm to
the recognition rate in each action category. The recognition
results are shown in Fig. 5 and Table 3. For SVM, the penalty
coefficient C = 10, and other parameters such as slack
variables are obtained by adaptive matching with data. The
neural network parameters are obtained by adaptive matching
with the image data to be processed.

FIGURE 5. UCF Sports Action dataset classification results.

As shown in Fig. 5, the method proposed in this paper
correctly identified the rotation action of the UCF Sports
Action dataset such as Diving-side, Lifting, Kicking, Riding-
Horse, Swing-SideAngle and Skate-Boarding. The correct
recognition rates for Golf, Running, Walk and Swing-Bench
were 84%, 87%, 77%, and 73%, respectively. The average
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TABLE 3. Comparison of the action average recognition rate of the UCF
Sports Action database.

recognition rate of the ten activities in the UCF Sports Action
dataset was 92.1%.

2) K PARAMETER EXPERIMENT
In the second experiment conducted on the database,
the effect of the number of output neurons of the RBM in
the first layer of the neural network on the action recogni-
tion experiments was observed by adjusting the value of the
parameter K. In this paper, the number of output neurons in
the second layer of the neural network is S = 1/3 × sw ×
sh × K . In Fig. 6, the number K of the output neurons of
each RBM of the first layer of the neural network is shown,
which influenced the average recognition rate of the action
in the UCF Sports Action database. As shown in the Fig. 6,
the value of K had a direct impact on the result of the
action recognition. This is because the value of K directly
determines the number of space-time feature bases of neural
network learning designed in this paper. In an experiment to
identify motion action in the UCF Sports Action database,
the parameter K = 300.

FIGURE 6. Effect of the number of output neurons of RBM on the average
recognition rate of the first layer of the neural network architecture.

3) MULTI-TYPE ACTION RECOGNITION EXPERIMENT
The proposed method uses a one-against-all SVM classifi-
cation strategy to implement the recognition experiment for
multiple types of action to compare with the classic action
recognition algorithm. According to the neural network and
SVM classifier model for each type of action training, after
calculating the video block shape features of the action video
in the test set, they were input into the neural network and
SVM classifier corresponding to each action category. Then,
after comparing the classification values of the respective

classifiers, an action class corresponding to the classification
model having the largest classification value was output,
which served as an action label of the test video in the multi-
class action recognition experiment.

In this experiment, the generated act tracking sequence was
detected from the action video of the UCF Sports Action
database and divided into 2×6 video blocks. In addition,
the parameter K was set to 300. The comparison between the
experimental results of the multi-type action recognition and
the recognition effects of other multi-type action recognition
algorithms is shown in Table 4. For SVM, the penalty coeffi-
cientC = 10, and other parameters such as slack variables are
obtained by adaptive matching with data. The neural network
parameters are obtained by adaptive matching with the image
data to be processed.

As shown in Table 4, the average recognition rate of
the algorithm proposed in the UCF Sports Action dataset
improved by approximately 17.2% compared with theMiron-
ica algorithm [48]. Mironică et al. combined the color his-
tograms andHoG features of each frame of the video and used
random forests to cluster these data to find cluster centers.
Then, it encoded all the frames in the video with a modified
local aggregation vector method. The encoded vector was
then used as the action recognition feature vector for the
video. This method uses a large number of local features in
the video and then reduces the computational complexity by
encoding the data. However, the essence of this method is still
the hand-made local features, and for the cleverly manufac-
tured and stitched local features, a simple encoding operation
will result in the loss of effective information. The proposed
algorithm operates on four image sequences with differ-
ent focus points, uses deep learning to learn features, and
then performs SVM classification. Therefore, the obtained
action recognition features are more targeted than those of
Mironica et al. At the same time, the method’s action recog-
nition rate is also higher.

TABLE 4. Comparison results of multiple types of action recognition
experiment results in the UCF Sports Action database.

As shown in Table 4, the average recognition rate of
the proposed algorithm on the UCF Sports Action dataset
is 6.2%, which is higher than that of Souly and Shah’s algo-
rithm. Souly and Shah used video image intensity values to
learn and reasoning to calculate the corresponding corner
maps of the video and then clipped and improved the features
of the video such as HoG and pouches through the corner
maps. Finally, the processed features were used as action
recognition features in the video [49]. The essence of this
method is to improve the hand-made features in the video by
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learning to remove the redundant information and strengthen
the effective information. However, hand-made features can
only cover the information considered, which is a limitation.
Because the features obtained by the feature learning using
deep learning in this paper contained richer action informa-
tion, the accuracy of the action recognition obtained by using
this method was better than the algorithm proposed in [49].

As shown in Table 4, the average recognition rate of
the algorithm proposed in the UCF Sports Action dataset
was approximately 4.8%, which is higher than that of
Le et al. [13]. Le et al. constructed an independent sub-
space analysis model of a two-layer neuron structure for the
boundary features of static images through machine learn-
ing. The parameters in the model were obtained through the
mass projection gradient descent method. Then, using the
stack convolution technique to apply this model to the video
image sequence, a human action recognition feature that is
sensitive to the boundary speed and rotation angle sensitivity
and the position or translation of the boundary was obtained.
This human action recognition feature was obtained through
learning. It is more versatile than hand-made features and
has better extraction features. However, the ontology of the
method learning is the boundary features in the image, and
the feature types are relatively single. In this paper, the deep
learning theory was used to extract the spatiotemporal fea-
tures in the process of action, and the feature types were
more abundant. Therefore, the method proposed in this paper
had better performance and higher accuracy than the method
of Le et al.
As shown in Table 4, the average recognition rate of the

proposed algorithm on the UCF Sports Action dataset is
improved by approximately 2.7% compared with the algo-
rithm of Rezazadegan et al. [47]. Rezazadegan et al. cal-
culated a optical flow map corresponding to each image in
the video and used the EdgeBoxes algorithm [50] in the
optical flow map to obtain a plurality of possible candi-
date foreground regions in the image. Then, the sum of the
amplitudes of the pixel values of the optical flow map in
each area was calculated, and the area where the optical
flow moved the most was selected as the foreground area
of the image. Finally, the image blocks in the corresponding
regions in the color image and the optical flow image were
sent to the trained convolutional neural network, and then the
temporal features were integrated with the spatial features;
finally, the human action recognition features corresponding
to the video were obtained. The method uses the amplitude
of the optical flow map to select the foreground region from
multiple candidate regions, resulting in poor robustness. For
example, in the act of ‘‘Kicking’’, the key position is in the
leg. However, when the human body is kicking, the upper
body, especially the upper arm, also swings considerably.
The proportion of foreground pixels in the rectangular area
including the upper body is larger than that in the lower body.
Therefore, the algorithm calculates that the amplitude of the
optical flow of the pixel in the upper body region of the
human body as relatively large, and thus mistakenly selects

the upper body region as the foreground region. The proposed
algorithm uses deep learning to learn gesture information in
the process of action. It can ensure that the region contains
a more complete body part, including the key areas of the
exercise action. It is more targeted to the target area, so as
not to lose the key information of the human action. There-
fore, the human action recognition results obtained using the
proposed method are superior to those of Rezazadegan et al.

FIGURE 7. Sample of KTH action database.

B. KTH ACTION DATABASE
To further verify the action recognition effect of the proposed
algorithm; this experiment conducted an action recognition
experiment in the KTH action database. The KTH action
database [51] contains six action categories, namely, walking,
jogging, running, boxing, hand-waving and hand-clapping.
These six actions were performed by 25 different people
and captured in four different scenarios. The four shooting
scenes were an outdoor scene ‘‘outdoors’’ (d1), an outdoor
scale changing scene ‘‘outdoors with scale variation’’ (d2),
an outdoor costume changing scene ‘‘outdoors with differ-
ent clothes’’ (d3) and an indoor scene ‘‘indoors’’. (d4). The
database contains a total of 2,391 action video sequences
with a video resolution of 160×120. An example of a sample
KTH action database action is shown in Fig. 7. Fig. 8 shows
the confusion matrix resulting from the action classification
recognition experiments for all scenes in the KTH action
database. In the experiment, the size parameter of each cell
in the displacement space was set to N = 5. The specific
recognition results are shown in Table 5. To illustrate the
effectiveness of the method in the recognition of multiple
types of action, the four scenes of the database were used as a
large dataset to conduct action recognition experiments. For
SVM, the penalty coefficient C = 10, and other parameters
such as slack variables are obtained by adaptive matching
with data. The neural network parameters are obtained by
adaptive matching with the image data to be processed.

In the four scenarios as shown in Fig. 9, the recognition
rate of the action ‘‘boxing’’ was relatively low. Thus, it is
similar to hand-waving and hand-clapping. According to
Table 5, the proposed algorithm is better than other action
recognition algorithms based on single-class action classi-
fiers in some scenarios, and other scenes are also relatively
indistinguishable from those of single-class action classifiers.
Moreover, the proposed algorithm is a true multi-type action
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FIGURE 8. The confusion matrix of the KTH action database classification.
(a) d1 scene. (b) d2 scene. (c) d3 scene. (d) d4 scene.

recognition algorithm. In the performance of the action
recognition, the algorithm is not higher than those based on
multiple single-category action classifiers.

TABLE 5. Comparison of action recognition algorithms in the four
scenarios of the KTH database.

FIGURE 9. The confusion matrix for action recognition in the KTH action
database.

TABLE 6. Comparison of recognition performance of the recognition
algorithm on the KTH database.

Experiments are conducted to identify all the data in the
four scenes of theKTH action database as awhole. The exper-
iment selected the 19 performers’ video data as the verifi-
cation set and the 5 action performers’ video data as the
training set. Other action videos served as test sets. The con-
fusion matrix for this action recognition experiment is shown
in Fig. 9. The recognition effect of the proposed algorithm
and other action recognition algorithms on the KTH action
database is shown in Table 6. In Fig. 9 and Table 6, it can be
seen that the proposed algorithm has better performance in
action recognition.

C. SUB-JHMDB ACTION DATABASE
The sub-JHMDB [56] contains 316 video segments contain-
ing twelve types of action. These twelve actions are catching,
climbing stairs, playing golf, jumping, kicking, picking up,
pull-ups, pushing, running, pitching, playing baseball, and
walking. In the dataset, there are three training/testing set
segmentation methods. This section used the third one to
perform the experiments. Among these, 224 video segments
were used for training, and the remaining 92 video segments
were used for testing. Fig. 10 shows the images in some
videos in the sub-JHMDB. The specific action recognition
effects are shown in Fig. 11 and Table 7. For SVM, the penalty
coefficient C = 10, and other parameters such as slack
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FIGURE 10. Images from some videos in the sub-JHMDB.

FIGURE 11. sub-JHMDB classification results.

TABLE 7. Comparative experimental results of the sub-JHMDB.

variables are obtained by adaptive matching with data. The
neural network parameters are obtained by adaptive matching
with the image data to be processed.

As shown in Fig. 11, the proposed method in this paper can
accurately identify playing golf, pull-ups, pushing, running,
catching, jumping, pitching, and playing baseball in the sub-
JHMDB. The corresponding action recognition rates were

100%, 100%, 89%, 87%, 87%, 82%, 73%, and 71%; recog-
nition rates for walking, kicking, picking up, and climbing
stairs were 69%, 68%, 66%, and 65%. Because the action in
the sub-JHMDB is more complex than the action in the UCF
Sports Action dataset, the accuracy of this action recognition
is low.

As shown in Table 7, the comparative statistics of the
recognition rate of the action of this method and other main-
stream algorithms on the sub-JHMDB. As shown in Table 7,
the average recognition rate of our proposed algorithm in the
sub-JHMDB was better than that of Richard et al. The aver-
age action recognition rate of the method proposed by [57]
increased by 17.9%. Richard et al. improved the classification
word package method to train a recursive neural network that
can recognize and supervise the generation of visual vocabu-
lary and used a support vector machine to train the classifier
to achieve the purpose of identifying and classifying human
action. In this method, the input data of the neural network is
a complete original image frame, without considering that the
different parts of the video image contribute differently to the
action recognition, and the method of separately processing
the image does not consider the time information in the video.
The proposed method can use the deep learning theory of
initializing model parameters to learn video images actively
and can obtainmore abundant action recognition information.

The average recognition rate of the proposed algorithm
on the sub-JHMDB is 17.3% higher than the average action
recognition rate proposed by Gkioxari and Malik [58]. Malik
used a method of selecting and searching for objects in color
images [59] to generate two thousand candidate image block
regions for each image of the video and then removed the
regions in the region where the pixel amplitude of the cor-
responding optical flow graph was smaller than the threshold
value. The corresponding color image blocks and optical flow
image blocks were cut out with the remaining regions and
sent to a convolutional neural network for processing, and the
vectors obtained by all video image blocks were connected to
obtain the action recognition characteristics of the video. The
method selects the key area in the image by calculating the
optical flow value in the image block area. Its problems are
similar to those of the Rezazadegan et al.’s approach, which
can easily lead to the miss election of key areas. The proposed
method uses deep learning to learn pose information in the
process of action, which can ensure that the region contains
a more complete body part, ensuring that it contains the
key areas of the exercise action, and avoids the loss of key
information of the human action. Therefore, the accuracy of
the human action recognition results it obtains was higher
than the method proposed by Malik.

As shown in Table 7, the average action recognition rate
of the proposed algorithm on the sub-JHMDB was 10.5%,
which is higher than the average action recognition rate
proposed by Peng et al. [60]. Peng et al. used a multi-level
nested Fisher vector coding method to obtain action expres-
sion features in video. In this method, the improved dense
trajectory feature of the input video is obtained by sampling
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in the first layer, and the original Hsher vector is obtained by
compressing it with Fisher coding at the video segment level.
Since the original Hsher vector feature dimension obtained in
the first layer was too high, the data were projected using the
maximum edge learning method in the second layer, and then
the processed data was further Fisher encoded. The vector
obtained after the second encoding was used as a feature
vector for human action recognition. The method improves
the coding method of the video-intensive trajectory features
and uses the cascaded secondary encoding method to extract
the features hierarchically, which is more refined than the
features obtained by using only one coding. However, this
method is still based on the hand-made features in nature.
Its self-learning ability is far lower than that of the deep
learning theory used in this paper. Therefore, the human
speech recognition accuracy rate obtained by this method is
better than the methods proposed by Peng et al.

D. UCF101 ACTION DATABASE
The UCF101 dataset [61] is a collection of human behavior
data provided by the Center for Computer Vision Research
at the University of Florida. The dataset is an extension of
the UCF50 dataset. It contains 101 human behaviors. Each
behavior category is divided into 25 groups. Each group con-
tains 4-7 videos of the same type, with a total of 13320 seg-
ments of behavioral video. The dataset video was divided
into three sets of training/test videos [61] during the behav-
ioral recognition experiment: split1, split2, and split3. In this
experiment, relevant experiments were carried out according
to the standard, and the average action recognition rate of
the three sets of test videos was taken as the final experi-
mental result. For SVM, the penalty coefficient C = 10,
and other parameters such as slack variables are obtained by
adaptive matching with data. The neural network parameters
are obtained by adaptive matching with the image data to be
processed.

In order to better reflect the effectiveness and advantages
of the proposed algorithm, the UCF101 behavior database is
identified by the method, the MF algorithm in [62], and the
EMV-CNN algorithm in [63]. The algorithm running speed
test includes video decoding to obtain motion features and
motion vectors compensated by performing the algorithm.
They are implemented on Intel Core, and the [62], [63]
convolution feature extraction part is obtained on CPU-based
Caffe. The test running speed results of 5,000 samples ran-
domly sampled on each data set are averaged. The speed
test includes complete action recognition process such as
video dump decoding, feature extraction and behavior clas-
sification. The specific action recognition effect is shown
in Table 8.

As shown in Table 8, In the UCF101 dataset, the proposed
algorithmic recognition rate of this paper is 6.1%, 1.9%,
and 1.3% higher than that of the [62], [63], and the neu-
ral network for action recognition classification. Although
the algorithm runs faster than the reference [63], the gap

TABLE 8. Comparative experimental results of the UCF101.

is small and can meet the real-time processing application
requirements.

E. HMDB51 ACTION DATABASE
The HMDB51 data set was provided by Kuehne et al., Brown
University, USA. The data set contains a total of 51 behavior
categories, each of which contains at least 100 videos, includ-
ing 6676 action sequences. The data set video is also divided
into 3 training/test splits when performing action recognition
experiments. Each type of behavioral video for each group
contains 70 training videos and 30 test videos. This paper
is set according to the reference [64], based on the average
recognition rate of the three groups as the final result.

In this section, the method, the neural network for action
recognition classification, the GME algorithm in refer-
ence [65] and the EMV-CNN algorithm in reference [63]
are used to identify the behavior of the HMDB51 behav-
ior database. The algorithm runs at an Intel Core i5-5200
(2.2GHz) CPU. The results of random sampling of 5000 sam-
ples on each data set are averaged, and the speed test objects
are the running speeds of the three algorithms. The specific
action recognition effect is shown in Table 9.

TABLE 9. Comparative experimental results of the HMDB51.

As shown in Table 7, the action recognition rate of the
algorithm in the HMDB51 data set is 8.5%, 4.6%, and 1.5%,
which higher than that of the [65], [63], and neural network
for action recognition. Although the speed of the algorithm
in this paper is lower than that in [63], the difference is
small. Compared with the [63], the use of neural networks for
action recognition has improved, but they are all in an oper-
ational level and can meet the needs of real-time processing
applications.

VI. CONCLUSION
In this paper, a neural network model parameter adaptive
initialization method deep learning model based on theMMN
activation function and the Maxout activation function is
proposed. Based on this, a method for global temporal and
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spatial feature learning of human action based on video angle
is proposed. The deep learning model proposed in this paper
cannot only guarantee the stable propagation of gradients in
different hidden layers but also accelerate the convergence
speed of neural network model training and avoid the slow
convergence of training caused by inappropriate initialization
of the model. In addition, it can improve the image recogni-
tion performance of the deep convolutional neural network
model.

The human action recognition method mentioned in this
paper does not directly extract features from the pixel
information of the video but learns more abstract and higher-
level space-time features from the underlying shape fea-
ture sequences that characterize the action motion laws.
The basic idea is to design a two-layer neural network
structure using training and a support vector machine to
characterize a specific action model. The method utilizes a
neural network based on a restricted Boltzmann machine to
achieve self-learning of the discrete distribution of action
movement laws or action movement information, thereby
realizing the recognition of certain types of human action.
Although the algorithm is designed to identify certain types
of action, the algorithm can still be used for multi-class action
recognition with a one-to-many SVM classification strategy.

This paper used three human action datasets to verify the
proposed algorithm and compared it with several existing
mainstream algorithms. The experimental results showed that
the proposed method can not only quickly and accurately
identify a certain type of human action but can also identify
multiple types of human action. Its recognition effect is better
than other existing types of human-specific action recognition
algorithms and human body multi-type action recognition
algorithms.
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