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ABSTRACT This paper proposes a time series model based on wavelet transform and long short-term
memory (LSTM) network to forecast vehicle emission. It implements the semi-supervised collaborative
training regression to compensate missing emissions data. The accumulated carbon monoxide (CO), hydro-
carbons (HC), and nitric oxide (NO) concentrations emitted by vehicles in different lanes per hour were
taken to quantitatively characterize the vehicle emissions. The original time series of vehicle emission data,
whichmay be highly variable, is decomposed into several lowly variable sub-series bywavelet transform. For
each sub-series, an LSTM time series model is proposed to forecast vehicle emissions. More specifically,
the inputs of that LSTM model are the weather variables, the driving variables of the concerned vehicle
and historical emissions records while its output is the predicted accumulated concentrations of CO, HC,
and NO. The three types of predicted concentrations of all sub-series are summed up, respectively, and
produce the desired prediction of the total emission of each type. The proposed model is verified through
real data which was collected between May 2017 and December 2017 at the multi-lane monitoring station of
Baimiao South Road, Daxing District, Beijing, China. It confirms that our model based on wavelet transform
and LSTM can efficiently improve the correlation coefficient (R) and the index of agreement (IA) against
conventional models, such as ARIMA and wavelet-ARIMA model.

INDEX TERMS Vehicle emissions forecasting, long short-term memory network, wavelet transform,
semi-supervised collaborative training regression.

I. INTRODUCTION
Vehicle emission causes poor air quality and may induce
various respiratory diseases. So vehicle emission monitoring
and control is important for improving air quality. The current
vehicle emissionmeasure methods mainly include the chassis
and engine dynamometer testing, tunnel measure method,
portable device detection method, and remote sensing detec-
tion. The chassis and engine dynamometer testing measure
is only suitable for specific simulated driving conditions [1].
The tunnel method measures the air flow through a tunnel
based on the fact that the difference of gas concentrations
between the outlet and the inlet can represent the emis-
sions of vehicles, and may be sensitive to meteorological
conditions [2]. A portable device, such as a PEMS system,
connects the probe to the exhaust pipe of the vehicle and

can precisely measure the emissions, but, at a high cost [3].
The remote sensing detection is a non-contact on-road vehi-
cle emission measure method, which has the advantages of
real-time detection, low cost, and no disturbance to the nor-
mally running vehicles [4] [5]. Therefore, the emission data
in our study was collected by the remote sensing measure
method.

From the perspective of air quality monitoring and emis-
sion control, the accumulated vehicle emissions in a given
time duration, e.g., one hour, are more meaningful than the
emissions of a single vehicle and are, therefore, considered
in our study. Furthermore, we attempt to forecast the future
accumulated emissions, e.g., the ones in a few hours, with the
current and historical results. As vehicle emissions are affects
by geographical conditions, traffic flow, meteorological
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conditions and other factors, these factors are also taken as
inputs of the emission forecasting.

Emission forecasting has caught much attention in the liter-
ature. Common emission forecasting methods mainly include
Autoregressive IntegratedMoving Average model (ARIMA),
BP neural network, and Recurrent Neural Network(RNN).
Cai [6] used an ARIMA model to analyze the time series
of the largest hourly carbon monoxide (CO) concentration
per month in the south coast of California and can yield
accurate prediction. Kukkonen et al.[7] used multiple BP
neural network models to predict the concentration of NO2
and PM10 in Helsinki, Finland. Cai et al. [8] implemented
artificial neural networks to predict hourly air pollutant con-
centrations near arteries in Guangzhou. Connor and Atlas [9]
demonstrated that RNN performs better than general feed-
forward neural networks when predicting vehicle emissions.
Brunelli et al. [10] studied the applicability of recurrent neu-
ral networks (Elman model) for predicting the maximum
concentration of daily SO2, O3, PM10, NO2 and other pol-
lutants. Alizadeh et al. [11] performed the suspended sedi-
ment forecasting using wavelet-ANN ensemble models, and
also investigated the effectiveness of wavelet-ANN methods
for predicting rainfall and runoff in Tolt River basin [12].
Salazar et al. [13] proposed a new method to predict the
ozone concentrations based on wavelet-ARIMA hybrid
models.

In real applications, the ARIMA method requires the sta-
tionarity of the time series of emission data, which is not
easy to guarantee, and may be sensitive to model parameters.
As BP neural networks have no memory, they are not very
effective in dealing with the time series of emission data
whose future value may depend on both the current and the
historic values. Although RNN usually yields higher predic-
tion accuracy in dealing with the time series of emission
data, it is prone to the gradient vanishing problem and suffers
from short memory span. Hochreiter and Schmidhuber [14]
showed that LSTM is a special kind of recurrent neural
network and suitable for dealing with long-term dependence
problems. Compared with the general recurrent neural net-
works, LSTM adds a cell state that preserves long-term infor-
mation in the hidden layer and is more effective to avoid
gradient vanishing problem and gradient exploding problem
in dealing with long sequence problems. Therefore, our study
proposes to implement LSTM to forecast vehicle emissions
through analyzing the time series of vehicle emission data.

The original time series of vehicle emission data is usu-
ally highly variable, which may inhibit the prediction accu-
racy of the accumulated vehicle emissions. To resolve this
issue, we implement the wavelet transform to decompose
the highly variable time series of vehicle emission data into
multiple lowly variable sub-series as [15]. For each sub-
series, the LSTM method is implemented to forecast the
accumulated concentrations of CO, HC and NO. Then the
three types of predicted concentrations of all sub-series are
summed up, respectively, and produce the desired prediction
of the total emission of each type. We take some real data

FIGURE 1. The overview of the emission forecasting model.

to verify the proposed method. The experimental results con-
firm that our methods based on wavelet transform and LSTM
can achieve better forecasting performance than some state-
of-the-art methods, such as ARIMA and wavelet-ARIMA.

The remainder of the this paper is organized as follows.
Section II presents the details of the proposed method. Exper-
imental results are illustrated and analyzed in Section III.
Some final remarks are placed in Section IV.

II. DATA AND METHODS
The major procedure of the proposed emission forecasting
model is shown in Fig. 1. Based on the collected emission
data, the concentrations of CO, HC and NO are forecasted.
The related operations are introduced in the subsequent
subsections.

A. DATA COLLECTION
The vehicle emission data investigated in this paper was
collected by the Urban Road Network Motor Vehicle Emis-
sion Monitoring System from May to December 2017 at a
multi-lane monitoring station of Baimiao South Road, Dax-
ing District, Beijing, China. The meteorological data used
in this paper was obtained from the China Meteorologi-
cal Administration, including the hourly temperature, wind
speed, wind direction, humidity and atmospheric pressure.
The Urban Road Network Motor Vehicle Emission Moni-
toring System is mainly comprised of the remote sensing
equipment host, the retroreflective sheeting, the license plate
recognition system and the LED display screen as shown
in Figure 2. This monitoring system works mainly based
on the spectral feature absorption principle and video image
analysis technology. It is a non-contact real-time emission
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FIGURE 2. The Urban Road Network Vehicle Exhaust Emission Monitoring
System to collect emission data.

detection method. After the exhaust of a vehicle is emitted,
it will diffuse to form a plume and its opacity can bemeasured
by the intensity change of the light after passing by the plume.
The volume concentration ratio of each emission component
in the plume is almost constant. Taking carbon dioxide (CO2)
as the reference emission gas, the volume concentration ratio
of CO, HC and NO to CO2 can be measured. Specifically,
the ratio of CO to CO2 in the emission gas is measured by
the laser absorption spectroscopy in the near-infrared region,
and the volume concentration ratios of HC andNO to CO2 are
measured by the differential spectrum of ultraviolet light. The
volumetric concentration of CO, HC and NO in the emission
gas is obtained by the inversion using the combustion chem-
ical equation in (1), where Q is the volumetric concentration
ratio of CO to CO2, Q′ is the ratio of volumetric concentration
of HC to CO2, and Q′′ is the ratio of volumetric concentration
of NO to CO2 [16].

%CO2 =
42

2.79+ 2Q+ 1.21Q′ + Q′′
%CO = %CO2 × Q

%HC = %CO2 × Q′

%NO = %CO2 × Q′′ (1)

According to [16], the vehicle emission mass concentration
can be expressed as

EFCO(g · km−1) = 1020.48
Q · V−0.674

1+ Q+ 3Q′/0.493

EFHC (g · km−1) = 3105.27
Q′ · V−0.674

1+ Q+ 3Q′/0.493

EFNO(g · km−1) = 1099.57
Q′′ · V−0.674

1+ Q+ 3Q′/0.493
, (2)

where V is the speed of the concerned vehicle. The license
plate recognition subsystem can identify the license plate

number of the concerned vehicle on the road through the
fixed camera, video capture card and license plate recognition
module. In addition, the integrated speedometer in the system
measures the speed, acceleration and length of the concerned
vehicle. The LED display shows the license plate number,
speed, emission detection results of the concerned vehicle.
The site control cabinet is a control unit with a database and
a correlation analysis center.

B. DATA COMPENSATION
Some of the emission data recorded by the monitoring system
is incomplete due to sensor failures or partial data loss during
data transmission and updating. Therefore, before analyzing
the emission data, it is necessary to compensate the missing
data. There are two main types of missing data.
• The remote sensing emission data is missing. All local
vehicles regularly go to the vehicle management station
for exhaust emission testing. When the remote sensing
emission data of one vehicle is missing, its last emission
test results saved at the vehicle management station can
be used for compensation.

• Other non-emission data, such as vehicle-length,
speed, acceleration, are missing. We implement the
semi-supervised collaborative training regression [17]
to compensate the missing data. This method make
up the missing data by iteratively training two
K-NearestNeighbor (KNN) regressors, whose details are
presented below.

1) Using the complete data set L to generate two KNN
regressors h1 and h2 based on distance divergence.

2) Randomly select 50 incomplete data points from the
incomplete data set U . For each point X ∈ U , use the
regressors h1 and h2 to generate estimated values Y1 and
Y2, respectively. (X ,Y1) updates h1 to h′1 while (X ,Y2)
updates h2 to h′2. Find the k-nearest neighbors of point
X ,�. Then define two sums of squared error difference,
e1 and e2, as

e1 =
∑
Xi∈�

((Yi − h1(Xi))2 − (Yi − h′1(Xi))
2) (3)

e2 =
∑
Xi∈�

((Yi − h2(Xi))2 − (Yi − h′2(Xi))
2) (4)

Find the minimum e1 and e2 among the selected
50 points, which are denoted as e′1 and e′2, respec-
tively. The found two points are denoted as (X ′1, h1(X

′

1)),
(X ′2, h2(X

′

2)).
3) If e′1 > 0, remove the point (X ′1, h1(X

′

1)) from the incom-
plete data set U , add it into the training set L2 of h2 and
update h2. If e′2 > 0, remove the point (X ′2,h2(X

′

2)) from
the incomplete data setU , and add it into the training set
L1 of h1 and update h1.

4) Repeat 2)–3) until there are no incomplete data
points or less than 50 points inU . Then return the output
regressor h = 0.5(h1 + h2), and use h to generate the
value of each incomplete point in U .
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TABLE 1. The absolute value of Pearson correlation coefficients of input and output features.

In fact, the above KNN regressors can also be be achieved
by choosing different k-neighbor values. Based on diver-
gence, KNN can prevent the two regressors from degen-
erating into the same regressor, and take advantage of the
available information regarding incomplete data. Actually,
it is a lazy algorithm. When we update the KNN Regressors,
we do not update all data and just update some necessary
points. For example, our experiments have 215,865 original
remote sensing monitoring vehicle records at the multi-lane
emission monitoring station of Baimiao South Road, Dax-
ing District, Beijing,China, from May 1 to December 31,
2017. And there are 4,402 records without CO, HC, or NO
emission concentration, and 7403 other incomplete. Through
the above compensation method, a total of 11805 incomplete
data records are compensated and fundamentally improves
the forecasting performance.

C. CONSTRUCTION OF EMISSIONS DATA SAMPLES
After compensating the missing emission data by the method
in Section II-B, the monitoring emission data records are
complete. However, these original monitoring records char-
acterize only the emissions of individual vehicles. In order to
estimate and predict the overall vehicle emissions of different
lanes at the concerned monitoring station, it is necessary to
construct a time series of emission samples that can character-
ize the regional emission.We calculated the hourly total num-
ber of vehicles passing by the multi-lane monitoring station
of Baimiao South Road in Daxing District, Beijing, China,
during the period from May 1 to December 31, 2017. For
these vehicles, their average length, average speed, average
acceleration, accumulated hourly concentrations of CO, HC
and NO are also computed. Moreover, the hourly temper-
ature, wind, wind direction, relative humidity, atmospheric
pressure are obtained from the meteorological department
as the components of an hourly emission sample. In order
to build an emission forecasting model more accurately,
we delete the entire 24-hour records of the days when more
than 3 hours’ vehicle emission data are not recorded.

We use the accumulated hourly concentrations of CO,HC
and NO as the overall reference estimated emissions. We use

the emissions data samples in past 5 hours, including the num-
ber of vehicles, the average vehicle length, the average driv-
ing conditions,and the meteorological conditions, to forecast
the accumulated hourly concentrations of CO,HC and NO in
1 or 3 hours. Here the average vehicle length can indicate
the type of passing vehicles to a certain extent. Generally,
the longer the length of a vehicle, higher emission it exhausts.
Vehicle emissions are closely related to driving conditions.
In the normal driving speed range, the slower the vehicle
speed is, the higher emission we can expect [18]. In addition,
vehicle emissions and plume diffusion also depend on mete-
orological conditions, such as temperature and wind speed.
Due to the aforementioned reasons, we correspondingly con-
struct the emission data samples and set the input and output
of the emission forecasting model as above.

D. CORRELATION ANALYSIS
The input features of the time series model are expected
to be highly correlated with the output while the multi-
ple input features are expected to be lowly correlated with
each other. We use the absolute value of Pearson corre-
lation coefficient(|r|) to represent the correlation between
the input and output features. These correlation results are
shown in Table 1, where F1, F2, · · · , F9 stand for 9 input
features, including the hourly number of vehicles passing
by the monitoring lanes, the average vehicle length, speed,
acceleration of these vehicles, the wind speed and direction,
the outdoor temperature, the relative humidity, the atmo-
spheric pressure, and F10,F11,F12 are the 3 output features,
including the accumulated hourly concentrations of CO, HC
and NO. Of course, the autocorrelation coefficient of each
feature in Table 1 is 1. The correlation coefficients between
the the input features from F1 to F9 are mainly small, which
are often less than 0.25 and have an average of 0.215. The
correlation coefficients between the output features (fromF10
to F12) and the input features (from F1 to F9) are larger and
have an average of 0.320. By Table 1, we see that there is
a strong correlation between F1 and the three output fea-
tures, which results from the fact that more vehicles (larger
F1) produce more emissions, i.e., larger accumulated hourly
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concentrations of CO, HC and NO. Table 1 also demonstrates
a strong correlation between the meteorological conditions
of the input features, such as F7 (the temperature), F8 (the
relative humidity) and F9 (the atmospheric pressure).

E. WAVELET TRANSFORM
The original emissions time series constructed with the above
emission samples are usually highly variable and difficult to
analyze and predict. So we introduce the wavelet transform
to decompose the original highly variable time series into
several lowly variable sub-series. Then, each sub-series is
processed by a LSTM network to forecast the accumulated
hourly concentrations of CO, HC and NO. Finally, the fore-
casted concentrations from these sub-series are summed up
to yield the desired total concentrations. In this forecasting
procedure, the LSTM network plays a critical role and its
details are explained below.

Compared with discrete Fourier transform, wavelet trans-
form can not only obtain the frequency components of a
sequence, but also locate the timing of these frequency com-
ponents [19]. By wavelet transform, the original highly vari-
ably emission time series/sequence can be reconstructed by
the following wavelet coefficients as [20]

s[n] =
∑
j

∑
k

cjk9(aj0nT − k) (5)

where s[n] is the original time series, {cjk} stands for a series
of wavelet coefficients,9(aj0nT −k) is the wavelet at the j-th
scale shifted by k samples, a0 is a constant which is almost
always set as 2. The original sequence can be reconstructed
by different levels of high-frequency components Di, and
the residual low-frequency component A. The number of
decomposition layers, j, must satisfy the wavelet variance test

std(A)
std(s)

< 0.1, (6)

where std(·) stands for the standard variation of a sequence.
Here we take the CO emission series of Lane 1 as an exam-

ple. We use the ’db1’ wavelet to decompose the original time
series into four layers of high-frequency components Di (i =
1, 2, 3, 4) and a layer of low-frequency component A, which
are shown in Figure 3. We can compute std(A)/std(s) =
0.03 < 0.1, i.e., the requirement in (6) is satisfied. By
processing Di (i = 1, 2, 3, 4) and A with LSTM networks,
we can forecast the accumulated hourly CO concentration as

CO[t] =
4∑
i=1

f (Di[t − 1], . . . ,Di[t − 5])

+ f (A[t − 1], . . . ,A[t − 5]) (7)

where f (·) is the LSTM network forecasting model based on
lowly variable sub-series/sub-sequences. The details of f (·)
will be presented in Section II-F.

F. LONG SHORT-TERM MEMORY NETWORK
The basic time series network model to predict emissions is
shown in Figure 4, where 2 LSTM layers are connected to

FIGURE 3. The wavelet decomposition of the original time series s of CO
emission at Lane 1: D1-D4 denote the high-frequency components at
different levels and A is the residual low-frequency component.

FIGURE 4. The basic structure of LSTM emission forecasting model.

a fully connected neural network layer. In Figure 4, the pink
part represents the input sequence, the green part is the LSTM
layers, the yellow part is the fully connected neural network,
and the blue part is the output. The dashed box indicates
that the accumulated hourly concentrations can be iteratively
predicted using the LSTM model.

The input of the model is a normalized 5 × 10 matrix,
which are made up of the data in past 5 hours. More specif-
ically, each row of that matrix is the hourly values of the
number of vehicles passing by the monitoring lane, the aver-
age vehicle length, the average vehicle speed, the average
vehicle acceleration, the wind speed, the wind direction,
the outdoor temperature, the relative humidity, atmospheric
pressure and the accumulated emission concentration of
CO or HC or NO. Moreover, the input of that model is
recurrent, i.e., the five consecutive inputs are sequentially
got. The model output is the forecast accumulated hourly
concentration of CO or HC or NO in the next hour (the
dimension of the output is 1) or the next 3 hours (the
dimension of the output is 3). LSTM is a special kind of
recurrent neural network suitable for dealing with long-term
dependence problems [21], [22]. Compared with the general
recurrent neural networks, it adds a cell state that preserves
long-term information in the hidden layer. The single layer
LSTM structure is shown in Figure 5. After being temporally
expanded, the single-layer LSTM structure is obtained and
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FIGURE 5. The single layer LSTM.

FIGURE 6. The temporal-logic diagram of a single layer LSTM.

shown in Figure 6.
In Figures 5 and 6, at time t , the LSTM input is the current

time input vector Xt , the last time output vector is ht−1,
the last time cell state is ct−1. In Figure 5, LSTM controls
the cell state by the forget gate ft and the input gate it . These
gates are actually sigmoid functions that restrict the flow of
information. The forget gate determines the information of
the last cell state ct−1 to flow into the current cell state ct and
is expressed as

ft = σ (Wf · [ht−1,Xt ]+ bf ), (8)

where σ (·) is the sigmoid nonlinear function,Wf is the weight
matrix of the forget gate, bf is the bias vector of the forget
gate, [ht−1,Xt ] is a vector to combine ht−1 and Xt .
The input gate it controls the information of the current

input Xt to flow into the current cell state ct , and is calculated
as

it = σ (Wi · [ht−1,Xt ]+ bi), (9)

where Wi and bi are the weight matrix and the bias vector of
the input gate, respectively.

The state of the current input, c′t , can be calculated as

c′t = tanh(Wc · [ht−1,Xt ]+ bc), (10)

where Wc is the weight matrix, bc is the bias vector, and
tanh(·) is the hyperbolic tangent function.

The current cell state ct is determined by both the forget
gate and the input gate as

ct = ft ◦ ct−1 + it ◦ c′t , (11)

FIGURE 7. The 3-hour emission forecasting results for 100 consecutive
samples from Lane 1. a) CO forecasting results. b) HC forecasting results.
c) NO forecasting results.

where ◦ represents the element-wise multiplication between
vectors.

The output gate Ot controls the information flowing from
the cell state ct , which contains the long-term memory infor-
mation, to the current output, and is expressed as

Ot = σ (Wo · [ht−1,Xt ]+ bo), (12)

where Wo and bo are the weight matrix and bias vector,
respectively.

The final output of the single LSTM layer is determined by
the output gate Ot and the cell state ct ,

ht = Ot ◦ tanh(ct ) (13)

The historical emission data are used to train the above
wavelet-LSTM model. More specifically, the back prop-
agation through time (BPTT) method is implemented
to iteratively optimize the network weights, such as
Wf , bf ,Wi, bi,Wc, bc,Wo, bo, and the mean absolute error is
selected as the network loss function.
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FIGURE 8. Performance of CO forecasting. a) R of CO forecasting. b) IA of
CO forecasting. c) RMSE of CO forecasting. d) MAE of CO forecasting.

III. EXPERIMENTS AND DISCUSSION
Our emission forecasting model combines the wavelet trans-
form in Section II-E and the LSTM network in Section II-F,

FIGURE 9. Performance of HC forecasting. a) R of HC forecasting. b) IA of
HC forecasting. c) RMSE of HC forecasting. d) MAE of HC forecasting.

and is referred to as wavelet-LSTM model. It is compared
with 3 conventional forecasting models, including ARIMA,
LSTM, wavelet-ARIMA which also introduces the wavelet
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transform in Section II-E and implements the ARIMAmodel
for each sub-series. As mentioned in Section II-A, the emis-
sion data at Lane 1 and Lane 2 were collected. With these
emission data, the 4 forecasting models are trained and com-
pared. Figure 7 shows the 3-hour emission forecasting results
for 100 consecutive samples randomly selected from Lane
1. From Figure 7 we see that the predicted values are quite
close to the real values under the proposed wavelet-LSTM
model, which has achieved better performance than ARIMA,
LSTM, and wavelet-ARIMA, especially during forecasting
the concentration of CO in Figure 7-a).

Besides the qualitative comparison in Figure 7, the con-
cerned 4 forecasting models are mainly quantitatively com-
pared through a few indicators, including the correlation
coefficient (R), the index of agreement (IA), the root mean
square error (RMSE), and the mean absolute error (MAE),
which are defined as

R =

∑N
i=1(yi − y)(ŷi − ŷ)√∑N

i=1(yi − y)2
∑N

i=1(ŷi − ŷ)2
, (14)

IA = 1−

∑N
i=1(yi − ŷi)

2∑N
i=1(|yi − y| + |ŷi − y)2

, (15)

RMSE =

√√√√ 1
N

N∑
i=1

(yi − ŷi)2, (16)

MAE =
1
N

N∑
i=1

|yi − ŷi|, (17)

where N is the total number of samples in the test set, yi
is the real value of the i-th sample, y is the average of all
samples, i.e., y = 1

N

∑N
i=1 yi, ŷi is the forecasted value of

the i-th sample, ŷ is the average of the forecasted values of all
samples.

In our experiments, the 5-fold cross-validation method is
implemented, i.e., the available emission data are separated
into 5 equal sets in turn, 4 of which are used for training
and the other one of which is used for validation or test-
ing. The training and testing of each forecasting model is
repeated for 5 times, each of which chooses a different set as
the testing set. For each performance indicator, the average
of the 5 obtained performance indicators is taken as the
overall one. ARIMA, LSTM, wavelet-ARIMA, and wavelet-
LSTM are implemented to forecast the accumulated hourly
concentrations of CO, HC and NO in advance of one hour
and three hours. The obtained performance results are shown
in Figure 8, 9 and 10, where ‘‘lane 1/+1h’’ means the 1-hour
forecasting at Lane 1 and ‘‘lane 1/+3h’’ means the 3-hour
forecasting at Lane 1.

In Figure 8, the performance indicators of ARIMA, LSTM,
wavelet-ARIMA and wavelet-LSTM are represented by blue,
light blue, green and red bars, respectively. Figure 8-a) shows
that R of the wavelet-LSTM model is largest and ARIMA
obtains the smallest R. When forecasting the CO emission of
Lane 1 in advance of 1 hour, R of the wavelet-LSTM model

FIGURE 10. Performance of NO forecasting. a) R of NO forecasting. b) IA
of NO forecasting. c) RMSE of NO forecasting. d) MAE of NO forecasting.

is as high as 0.97, which is much higher than 0.75 of the
LSTM model, 0.70 of the wavelet-ARIMA model and 0.66
of the ARIMAmodel. Figure 8-b), 8-c) and 8-d) also confirm
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TABLE 2. The forecasting results of Lane 1.

TABLE 3. The forecasting results of Lane 2.
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the performance advantage of our wavelet-LSTM model in
terms of IA, RMSE andMAE . The same performance ranking
of ARIMA, LSTM, wavelet-ARIMA and wavelet-LSTM can
also be observed in Figure 9 (HC forecasting), Figure 10 (NO
forecasting). Moreover, we can observe from Figures 8-10
that
• R of 3-hour forecasting is smaller than that of 1-hour
forecasting as forecasting becomes more difficult under
a longer forecasting window.

• The wavelet transform does improve the performance
by comparing ARIMA with wavelet-ARIMA, LSTM
with wavelet-LSTM. This performance improvement
mainly comes from the fact that the wavelet transform
decomposes the highly variable original time series into
lowly variable sub-series, and the forecasting based
on these lowly variable sub-series is more efficient
than the highly variable original time series, either by
ARIMA or LSTM.

• LSTM achieves better forecasting performance than
ARIMA by comparing LSTM with ARIMA, wavelet-
LSTM with wavelet-ARIMA. The superiority of LSTM
may come from its powerful modeling capability.

For precisely quantitative comparison, the performance
results in Figure 8, 9, and 10 are listed in Tables 2 and 3.
Table 2 shows the results of Lane 1 while Table 3 shows the
results of Lane 2. As the concentration of CO is quite different
from those of HC and NO, their averages of samples, y, are
included in Table 2 and 3. Besides the performance ranking of
the 4 forecasting models, we observe from Tables 2 and 3 that
Lane 2 suffers from worse pollution than Lane 1, i.e., higher
concentrations of CO, HC and NO. This difference comes
from the physical situation of the two lanes. Lane 2 lies in
the right of Lane 1. According to the traffic rules in China,
big vehicles, such as trucks, mainly drive on the most right
lane, which is Lane 2 in our experiments. As big vehicles
contribute most of CO, HC and NO, Lane 2 observes higher
concentrations of CO, HC and NO.

IV. CONCLUSION
In this paper, a model based on wavelet transform and long
short-term memory network is presented, which can accu-
rately forecast the vehicle emissions of CO, HC and NO
in advance. This model takes into account the number of
vehicles passing by the monitoring lane, the average length
of these vehicles, meteorological conditions and historical
emissions. When some emission data samples are incom-
plete, a method based on semi-supervised collaborative train-
ing regression is used to compensate missing data. Wavelet
transform is implemented to decompose the highly variable
original time series of emission data into multiple lowly vari-
able sub-series. For each sub-series, LSTM is implemented to
forecast the concentrations of CO, HC and NO. By summing
up the forecasted results of all sub-series, we obtain the
overall concentrations of CO, HC andNO. Real emission data
are used to train the proposedwavelet-LSTMmodel and com-
pare it with conventional models, including ARIMA, LSTM

and wavelet-ARIMA. Experimental results confirm that the
proposed wavelet-LSTM model yields the best forecasting
performance.
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