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ABSTRACT In channels that introduce substitution, insertion, and deletion errors, one challenging problem
for a code designer to overcome is to avoid false code-synchronization. In other words, the probability of a
false codeword occurring should be minimized with appropriate code designs. In this paper, we propose a
new class of systematic comma-free code called generalized F(n, s, t) code for channels that are impaired
by substitution, insertion, and deletion errors. We first prove that this code is a synchronous code and then
we derive the probabilities of false synchronization when a substitution, insertion, or deletion error occurs.
We compare the theoretical and simulation results under different channel parameters. We also analyze the
factors affecting the false synchronization for each case. The proposed code gives a higher code efficiency
and better choice in terms of false synchronization compared with the classical F codes.

INDEX TERMS Comma free code, false codeword, false synchronization, SID channel.

I. INTRODUCTION
The transmitted signals are usually corrupted by noise in
communication channels, which causes adjacent channel
interference or introduces intersymbol interference, etc. The
transmitted symbols are substituted with other symbols in
some communication channels. For instance, substituting
bit 1 with bit O or bit 0 with bit 1 for the binary case.
When a fixed-length block code is used over such a channel,
no synchronization problem needs to be considered. In other
words, the decoder knows the boundaries of each codeword.
In contrast, Some channels not only substitute transmitted
symbols, but also remove transmitted symbols and insert
new symbols. When such insertion and deletion errors occur
together with substitution errors, synchronization becomes a
serious issue. It may not be possible for the decoder to decode
one block after another because the boundaries of codewords
are not easy to detect. Traditionally, deletion and insertion
errors occur in optical media and reading magnetic [2],
image watermarking [3], [4], satellite communication, mobile
communication and data storage systems in addition to sub-
stitution errors. Deoxyribonucleic Acid (DNA)-based data
storage system is a newly emerging field, in which data is
stored as DNA nucleotides [5]-[8]. Such data storage systems
can be viewed as digital communication systems. Several
DNA-based storage systems have been illustrated in the past
decade. For example, Church et al. [7] encoded an entire
book in DNA sequences using new synthesis and sequencing
technology. However, the nucleotides that store data may be

substituted, removed or added during the sequencing and syn-
thesis processes of DNA sequences, introducing substitution,
deletion and insertion errors, respectively. Synchronization
between codewords will get lost when deletion and/or inser-
tion errors occur.

Synchronization is a challenging problem because a rel-
atively small number of edits can cause obvious difference
between the transmitted and received sequences in terms of
Hamming distance. The maintenance of codeword synchro-
nization is of importance in any communication and data
storage systems. Many classes of codes with the capability to
detect or correct synchronous errors have been constructed.
In [9], Tenengol’ts has developed a block code that can
correct one deletion error or two consecutive substitution
errors for channels that are impaired by substitutions, inser-
tions and deletions. However, Tenengol’ts has not discussed
synchronization and has assumed that the boundaries of each
codeword are known. The literature [10] introduce and stud-
ies variable-length self-synchronizing codes in details. Self-
synchronization can be achieved by using variable-length
binary codes [11]. Even though variable-length codes can
keep a receiver synchronized, the delay to achieve synchro-
nization relies on the transmitted message and may be very
long. In addition, when a codeword is decoded using a wrong
code length, all subsequent codewords will be decoded incor-
rectly until synchronization is regained.

Fixed-length encoding can be used to keep the synchro-
nization delay below a limit. When a fixed-length block
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code is used, synchronization techniques must be taken to
make sure that the receiver and transmitter stay synchro-
nized. Fixed-length codes can be synchronized more eas-
ily. An effective approach to maintaining synchronization
of codewords is to transmit ‘“‘commas’ between codewords
in the presence of insertion or deletion errors [12]. This
synchronization technique under various constraints has been
studied. Another technique that does not rely on ‘“‘commas”
to maintain synchronization are referred to as ‘“‘comma-
free codes”. The comma-free codes were first proposed by
Golomb et al. [13]. The constructions of such codes have
been discussed by Gilbert [12], Golomb et al. [13], [14] and
Golomb [15], Jiggs [16] and Eastman [17].

Specifically, a comma-free code (CFC) is a set of code-
words of length n over an alphabet such that given any two
codewords u = ujuy - - - u, and v = vyv;, - - - v, belonging to
this set, the n letter concatenation W = wuy - - - Vi -+ - Vi—1
(k =2,3,...,n) cannot construct a codeword. Examples of
comma-free codes with a codeword length of 5 are {01000,
01100, 01010,01110, 01011, 01111} and a codeword length
of 7 are {0101000, 0101100, 0101110, 0101111, 0100010,
0110010, 0111010, 0111110, 0100011, 0110011, 0111011,
0111111, 0100000, 0110000, 0111000, 0111100, 0111110,
0111111}. From the view-point of mathematics, the upper
bound of the maximal number of codewords in a CFC set
given a codeword length n and an alphabet size g has been
derived in [13] and [16] and is given by

1
Walg) < = > d(d)g"?, ()
d|n

where the summation is extended over all divisors d of n, and
¢ is the Mobius function defined as

1 ifd =1,
0 if d has any square factor,

$(d) = o v @)
(=1)" ifd =pipy---pr, where

p1, -+, pr are distinct primes.

Golomb et al. [13] first show how to construct the maximal
cardinality of CFC for codeword lengths of 3, 5, 7 and 9.
They further prove that the construction can be extended to
codeword lengths of 11, 13 and 15. In [17], a strategy is
given for constructing maximal comma-free codes in terms
of number of words for any odd codeword length n. However,
the upper bound cannot always be achieved. This type of code
allows the receiver to re-establish synchronization after an
insertion or deletion error with a delay of at most two blocks.
Eastman and Even [18] have constructed a block code, which
is able to detect synchronization errors after receiving some
finite number of codewords. Comma-free codes have rel-
atively low efficiency because of a strong synchronizing
condition. The error correcting properties of these codes are
not known. In addition, CFC proposed by Golomb et al.
leads to difficult decoding unless small length of codes are
used.
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The aforementioned codes do not provide specific fixed
positions for transmitting data. The systematic fixed-length
block comma-free codes are investigated in [19]. A system-
atic comma-free code is a subclass of comma-free codes
where fixed locations are used to maintain synchronization
in each codeword and remaining locations are used to carry
information. An effective method is to fix the first few bits of
a codeword to a sequence of bit 1 or bit 0. The fixed sequence
is referred to as the primer drive of CFC and it appears at the
beginning of each codeword. When messages of binary digits
are transmitted as blocks, identifying the boundary between
consecutive blocks are of much significance to maintain the
receiver in synchronization with the transmitter. If the same
primer drive and fixed positions appear when two code-
words are concatenated due to errors, the decoder would
give a false synchronization and such a sequence is called
a false codeword. Two systematic CFCs are given in the
following.

A. GILBERT CODE

The primer drive of a Gilbert code consists of bit zeros
and is placed as a prefix to each block. In order to
ensure the primer drive not to appear in the body of
the codeword, the other digits should be constrained.
Suppose that the primer drive sequence p consists of s
binary digits pi, p2,---,ps. Each codeword of length n
(P1,p2, "+, Dss X1, X2, -+, Xy—g) is constructed by carefully
choosing (n — s) binary digits x1, x2, - - - , X,—s. Gilbert codes
ensure that the primer drive sequence p of length s will
not appear in (p2, -+, Ps, X1, X2, ==+ » Xn—ss P15 " * » Ps—1)-
Each subsequent sequence of s bits begins with a bit one
and the last digit is also a bit one. For example, Gilbert
code with parameters n = 16 and s = 4 encodes
the information sequence ‘“10110110” into the codeword
“0000110111011101”°, where the bold bits represent the
fixed bits used to keep synchronization. Obviously, the primer
drive sequence of s zeros can never appear in the body of a
codeword even if information bits are all zeros. Gilbert codes
have a relatively strong condition to maintain synchronization
because it is required that no primer drive sequence appears
in the body of a codeword and the efficiency of the code is
reduced.

B. F CODE

A more efficient classic systematic comma-free code in terms
of transmitting information called “F code” is introduced
in [19]. “F code” allows a primer drive to exist in the body
of a codeword, however, it precludes the possibility that
the bits between concatenated codewords form a codeword.
Indicate the codeword length by n and the parameter r is
the minimum integer greater than or equal to /2(n — 1),
the parameter s is the minimum integer no less than 5 and
t = r — 5. An F code with codeword length » has s 4 ¢ fixed
positions. Os are located at the positions 1,2,...,s and 1s
are located at the positions n,n —s,n —2s,...,n— (t — 1)s
while all remaining locations are arbitrary for transmiting
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information symbols. For instance, the information sequence
010010011 is encoded into an F code with a codeword
length n = 15 “000010011001111”°, where the bold bits
are the fixed bits which are used to maintain synchronization.
The class of F codes proposed by Clague are similar to Gilbert
codes but have a relatively weaker condition to maintain
synchronization, which results in a higher efficiency. Some
fixed positions of a Gilbert code become arbitrary bits in an
F code of the same length. The difference becomes more obvi-
ous as the length of the code increases. Therefore, F codes
have fewer fixed places and are more efficient in terms of
carrying data comparing with Gilbert codes. In fact, the class
of F codes have been demonstrated as the most efficient
systematic comma-free code that maintains synchronization
using fixed places [19].

A new systematic CFC referred to as “generalized F code™
is proposed in this paper and it includes ““F code™ as a special
case. The probabilities of a false synchronization due to
substitution/insertion/deletion errors have been derived. This
paper begins with a definition of the generalized F(n, s, t)
codes in Sect. II. This is followed by the construction of
the codes, the proof that it is a systematic comma-free code
and the encoding and decoding of the proposed generalized
F code. Sect. III shows the error types and channel model.
The false synchronization probabilities caused by a single
substitution, deletion or insertion error are derived, and per-
formance results are shown in Sect. IV. Concluding remarks
are given in Sect. VL.

Il. PROPOSED F(n, s, t) CODES AND ITS ENCODING

AND DECODING

A. PROPOSED F(n, s, t) CODES

A “generalized F(n,s,t) code” of codeword length n
includes s fixed Os and ¢ fixed 1s, where st > % In addition,
the fixed Os are at positions 1, 2, ..., s while the fixed 1s are
at positions js + 1, (j = 1,2..., t) satisfying st > % For
example, the format of a generalized F(n = 19, s = 3,1 = 3)
code is 0001xx 1xx Lxxx Lxxxxxxxxx, where x reprensents an
arbitrary information bit and it is either bit O or 1. For such
a set of fixed-position systematic CFC, we define the code
rate as the ratio between the number of arbitrary bits and
codeword length, i.e. “=*=!, The number of fixed positions

n
s+t is minimized when s is equal to ¢ under the condition that

%. Therefore, the code rate of
n—2-,/ a1
TZ N which

approaches 1 — \/% when the codeword length n becomes
very large.
Theorem 1: The generalized F(n,s,t) is a comma-free
code.
Proof: The positions of Osare a; =i (i = 1,2,...,5)
and the positions of 1sare b; = js +1(G = 1,2,...,1)
in the proposed generalized F(n,s,t) code. Note that
st > 0.5(n — 1). Thus, {£(a; — b))} (mod n) is given by the

25t >n—1,1ie,s =1t =

the generalized F'(n, s, t) code is limited by
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following.

by —a = al—by=n—s

|
@

by—ay=s5—1 a—bi=n—s5s+1

bl—aS=1
by —a; = 2s

a,— by =n-—1
ay—by=n-—2s
s+1
by —a; =ts

by — ag ag—bry=n—s—1

ay—b;=n—ts

by —a;=(t—1Ds+1 as—b=n—(@t—-1)s—1
The reason st + 1 > n — st is that st > 0.5(n — 1) is
required for a generalized F(n, s, t) code. Thus, all values
between 1 and (n—1) are covered at least once by the residues.
Based on the lemma of [19], which states that a fixed-place
code with Os and 1s fixed in the positions a; (i = 1,...,s)
and b; (j = 1,...,1), respectively, will be synchronous if
and only if the set {£(a; — b;)} contains a complete system
of nonzero residues (mod n), we demonstrate that the gen-
eralized F(n, s, t) code is indeed a systematic comma-free
code. ([l

B. ENCODING AND DECODING OF SYSTEMATIC CFC

The information bit sequence is first divided into blocks,
each of which contains k information bits. Then the primer
drive and fixed bits are inserted in between the k information
bits to construct a systematic CFC codeword. The encoding
procedure is repeated for every block of k information bits.

The decoding procedure at the receiver is actually the
reverse of the encoding operation. It is very likely that the
length of the received sequence is different from that of
the transmitted one due to potential insertion/deletion errors.
The boundaries between consecutive blocks are not easy to
detect any longer and thus, it is impossible to simply pass the
decoder one codeword after another. Our aim is to make the
decoding procedures as simple as possible. The strategy we
chose to solve the synchronization problem of the received
sequence is by introducing a decoding window of fixed-
length size n, which is simply a codeword length.

The first and the last bit of the received data sequence
are known by the decoder but there is no direct information
about the boundaries of each codeword. The decoder is able
to maintain synchronization at the codeword boundaries with
the use of the primer drive sequence and some fixed positions.
A codeword is immediately decoded whenever the structure
of a systematic CFC codeword is detected by the decoding
window. The decoding window then moves n positions to the
right and tries to detect the next codeword. It is possible that
the n bits in the decoding window cannot construct a CFC
codeword due to substitution, deletion and insertion errors.
Under this circumstance, the decoding window moves one
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position to the right at a time until another CFC codeword is
detected. The procedures repeat until the decoding window
reach the last bit.

By definition, A sequence of bits from two consecu-
tive CFC codes cannot form a CFC. However, a false
codeword may appear when (substitution/insertion/deletion)
errors occur in CFCs. Supposing one error (insertion, dele-
tion or substitution error) occurs in the ith codeword and
no errors occur in the subsequent two codewords, we claim
that the receiver can always resynchronize at the (i 4+ 2)th
codeword or maybe at the (i + 1)th codeword. We will use
two examples to illustrate these.

One example to illustrate the latter case is shown in Fig. 1.
Suppose that an insertion error occurs in the second codeword
(i.e. Codeword 2). When the decoding window is at the first
block, the bits contained in the decoding window is the first
systematic CFC code and hence this codeword is immedi-
ately decoded. The decoding window then moves n positions,
however, these n bits in the decoding window cannot form
a systematic CFC and hence it moves one position to the
right until the decoding window arrives at the third block,
at which point the third codeword is decoded. The decoding
window moves 7 positions again after that and this process is
continued. The receiver resynchronizes at the third codeword
under this condition.

| Codeword 1 | Codeword 2 | Codeword 3 Codeword 4

Decoding Window |

Decoding Window
Decoding Window

Decoding Window

| Decoding Window

Decoding Window

FIGURE 1. Systematic CFC decoding with no false codewords.

For the former case, a CFC codeword is not able to be
detected or decoded whenever an insertion error occurs.
The tail of the corrupted codeword together with the head
of the subsequent codeword may construct a false codeword.
The decoding process with the false codeword formed by
the second corrupted codeword and the third correct code-
word is illustrated in Fig. 2. The tail of the second corrupted
codeword and the head of the third correct codeword together
form a false codeword caused by an insertion error in the sec-
ond codeword. The decoding window thinks it is a valid
codeword and thus it moves n positions to the right. The
content of the decoding window becomes an overlap of two
CFCs, which cannot be a codeword. After this, the decoding
window will move one position until it decodes the fourth
codeword. In this case, synchronization is re-established at
the fourth codeword. Even though the third codeword is
correct, we cannot decode this codeword due to the existence
of a false codeword.

The presence of a false codeword excludes the decoding of
the subsequent correct codeword (the 3rd codeword in Fig. 2).
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Codeword 1 ‘ Codeword 2 ‘ Codeword 3 ‘ Codeword 4 ‘

Decoding Window

Decoding Window

Decoding Window

Decoding Window

FIGURE 2. Systematic CFC decoding with the existence of false
codewords.

Therefore, the false codeword probability when substitution,
deletion and insertion errors are introduced is a performance
metric of a systematic comma-free code.

Ill. ERROR TYPES AND CHANNEL MODEL
We define the following synchronization errors and assume a
sequence proceeds from left to right.

o A deletion is defined as no detection of a transmitted bit
at the receiver. All the following bits after the specific
lost bit will shift one position to the left in the sequence.

« An insertion is defined as the detection of an untrans-
mitted bit at the receiver. All the following bits shift one
position to the right in the sequence. Random bit might
be inserted before each bit of the transmission sequence.

Error detection system requires two components: a precise
definition of the communication channel with error charac-
teristics and an analysis of properties of codes that permit
error detection or correction for channels in the given model.
We will discuss these two aspects in the following.

We consider a channel that suffers from independent sub-
stitution, deletion and insertion errors. Both the transmitter
and receiver have no information about the specific locations
where errors occur. In this paper, only bianary symbols are
considered and such a channel is called a binary substitution/
insertion/deletion (BSID) channel [20]. The BSID channel
model is shown in Fig. 3 [21].

Insertion

FIGURE 3. BSID channel model.

We consider the BSID channel described by three inde-
pendent parameters: insertion with probability p;, where a
random bit is inserted; deletion with probability p,, where the
current bit is discarded; and substitution with probability p,
where the transmitted bit is substituted. At time instant i,
the transmission of a bit #; through the BSID channel can
lead to one of the four possible events. One or more bits are
inserted before the current bit #;; The current bit ¢; is deleted
and subsequent bit ;4 is ready to be transmitted; The current
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bit #; is transmitted with probability p, = 1 —p; —p,. Further,
the transmitted bit get substituted with a probability p,. For
this model, any insertion errors occurring in the boundary
between two consecutive codewords are considered as errors
of the second codeword.

IV. FALSE CODEWORD PROBABILITIES
A. BLOCK ERROR RATE

We assume that the transmitted sequence is encoded into

successive fixed length blocks. Let t = (x1,x2,- -, x,),
xp € {0,1} fori = 1,2,--- ,nandy = (x|, x5, ---,x}),
xl € {0,1} fori = 1,2,---,r be the transmitted and

1
received sequence, respectively. The length of the transmitted

sequence n is a constant parameter while the length of the
received sequence r is a random variable depending on the
deletion and insertion processes. The length of the received
sequence is either lengthened or shortened depending on the
predominant insertion or deletion errors. Equal number of
deletion and insertion errors result in a received sequence
of equal length with the transmitted sequence. Such a case
is equivalent to having only substitution errors and thus the
boundary of the codeword is not affected. However, we can-
not always assume the same number of insertion and deletion
errors in a codeword. Therefore, we must find a codeword
that can be used to synchronize the received sequence whose
length is different from the transmitted one.

The BSID channel model does not restrict the maximum
number of consecutive insertions. The “overall” probability
of insertion errors for a current transmitted bit is p; = p; +
1’1'2 + p? + .= lf—’l P & p; is valid for small value of the
insertion probability p;. The subsequent bit will be considered
when a deletion error or a transmission has occurred. The
probability of the current transmitted bit being substituted is
Py = (1 = pi — pa) x ps. Similar to p/, p; ~ ps; when the
insertion probability p; and the deletion probability p,; are
small values. The operations repeat until the last bit of the
sequence has been transmitted and the obtained sequence is
the final received sequence. When a codeword of length n
bits are transmitted though a BSID channel, we can obtain
the block error probability on individual codewords. Based
on the BSID channel, we consider the probability Pr(Ny, N)
with N, deletion errors and Ny substitution errors and the
probability Pr(N;) with N; insertion errors individually. The
probability of the received codeword with a specific N, dele-
tion errors and N substitution errors through the channel is
given by

Pr(Ng, Ny) = pgd - (pr -pS)N" S(pr - (1 _ps))n_Nd—Ns’
where, py =1—ps—pi  (3)

Moreover, the probability of the received codeword with a
specific NV; insertion errors though the channel is

Pr(N;) = pévi. 4

All errors are assumed to be independent and thus the
probability of the codeword with the specific error pattern
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containing N; insertion, Ny deletion and N substitution errors
is given by the multiplication of these two probabilities, i.e.,

Pr(N;, Ng, Ns)
= Pr(Ng, Ny) - Pr(N;)
= PN )™ (pr - (L= NN (s)

Since we assume that any insertion errors occurring in the
boundary between two codewords is considered as errors of
the second codeword, the number of combinations of insert-
ing N; bits is ("+%i_l). In addition, we have (A','d) combina-
tions of deleting N bits from n bits and ("7\,1:/ 4) combinations
of substituting N; bits from n — Ny bits. Therefore, the total
number of combinations with the error pattern N;, Ny and N
errors is given by

CNi, Na, Ny) = (” i 1) : (1@ - <” ;VNd> ©)

Finally, the probability of any error pattern containing N;
insertion, Ny deletion and N substitution errors equals

P(Ni’NdaNS)ZC(NidevNS)'Pr(Nideva)‘ (7)

B. FALSE CODEWORD PROBABILITIES

In this section, the false synchronization probabilities will be
derived when (i) a single substitution occurs in a codeword,
(i1) a single substitution occurs in each of two consecutive
codewords, (iii) a single deletion error occurs in a codeword,
(iv) a single insertion error occurs in a codeword, under differ-
ent channel parameters. The following symbols are defined.

o x: An arbitrary information bit which can be either O or 1

« g: Generator of the proposed generalized F(n, s, t) code.
It is a vector of length n, which consists of s fixed (non-
arbitrary) Os, ¢ fixed (non-arbitrary) Is and n — s — ¢
arbitrary information bits x.

o tt: Concatenation of two transmitted F(n,s,t) code-
words with a total vector length of 2n.

e 1'r: Received vector when tt is transmitted. The vector
length depends on the errors occurring.

o g(i): A decoding window which is the delay-i version of
g, i.e., g with i empty slots in front.

o d(tt, g(i)): Hamming distance only between non-
arbitrary bits of tt and g(i) inside the decoding window.
If d(tt, g(i)) = 0O, the content in the decoding window is
a valid codeword.

o h(i): Number of positions where the element of g(i) is
0 or 1 AND the element of tt is x.

1) SINGLE SUBSTITUTION ERROR

Synchronization will be maintained when a random informa-
tion bit is substituted. However, synchronization will get lost
when one of the fixed bits is substituted and a false codeword
may appear under this case. Therefore, we only consider
those i for which d(tt, g(i)) = 1 when evaluating the false
synchronization probability caused by a single substitution
error. Namely, the transmitted vector tt and the decoding

VOLUME 6, 2018



T. Xue, F. C. M. Lau: Generalized Systematic Comma-Free Code

IEEE Access

s=t=3, n=16
iD:¢ 0001 xx I xx I xxxxxx 02001 xx1xx1xXxXxXJXx2Xx d h(i)
i=1 000 1] xx 1 xx1xxXx Xx Xx x 1 3
i=2 0001 xx I xx 1 xx Xx Xx x x 1 4
i=3 00 01 xx I xx1xx Xx x Xx X 1 3
i=4 0001 xx 1 xx Il x Xx x X x X 1 5
i=3 0001 xx I xx 1 xx Xx X X X 1 5
i=6 0001 xx 1 xx 1 x x X X x X 1 4
i=7 0001 xx 1! xx ] x x Xx x x Xx 2 4
i=8 0001 xx 1 xx ] XX Xx X x Xx 2 4
i=9 0001 xx ] xx I X Xx X Xx x x 2 4
i=10 000 1! xx I xx 1 x x x Xx x Xx 1 /
i=11 0001 xx I xx 1 x x x X X X 1 /

FIGURE 4. Complete shifting process of a decoding window.

window vector g(i) only differ in one fixed position. When
the bit at this position is substituted, the false codeword
will appear on condition that the fixed bits in g(i) and the
specific aritrary information bits x in tt are well matched. The
probability of the exact matching is given by (%)h(i).

The generalized systematic F(n 16,s = 3,t = 3)
code is used for explanation. The complete shifting pro-
cess of the decoding window for the generalized systematic
F(n 16,s = 3,t+ = 3) is shown in Fig. 4. When
i = 3, the decoding window moves three positions to the right
(or there are three empty slots inserted before the decoding
window).

Referring to Fig. 5(a), the first row shows the generator;
the second row shows two consecutive transmitted code-
words; the third row represents the received vector through
the channel, where a substitution error occurs at the first fixed
bit 1 in the transmitted codeword; the last row represents the
shifted decoding window with i 3. We notice h(3) = 3
by comparing the second and fourth rows. The probability
of a false codeword appearing is (%)3 (probability when the
5th, 6th, and 13rd transmitted bits in tt are 0, O and 1 coin-
cidentally) under the condition that the first fixed bit 1 is
substituted.

g: 0001zl 35l deead
tt: 000 Llzzlozlersreesl00lyszlozlaesz
r'r: 0000zaxlzxlezzaorxzxz000laalexlaaa

g(t=13): 000Lzxlasel zezeas

(@
g 000lzgzlzzlzeirss
tt: 000lzzlzzlzzzszz000lzzlzzlesazx
rr: 000lzzlazlzazaczzzl00laxzlzalaax
g(i=10): 0001lwe lee lexrers

(b)

FIGURE 5. Decoding window for the generalized F(n = 16,s = 3, = 3)
code. (a) Decoding window with i = 3. (b) Decoding window with i = 10.

However, a point needs to be emphasized. Suppose
d(tt, g(i)) = 1 for a certain i and the position where tt and g(i)
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differs is beyond n. For example, we find that the position
where the vector tt and g(10) differs is at the first bit of
the second codeword, as in Fig. 5(b). This means the first
codeword is decoded correctly and the only substitution error
occurs in the next codeword. Under this case, the decoding
window will shift n positions to the right after decoding the
first correct codeword. Since the decoding window never
contains the tail of the first codeword and the head of the next
codeword together, false codeword described in this scenario
can never occur.

To calculate the total probability of false synchronization
caused by a single substitution error at a fixed position,
we must exclude the case where the first codeword is cor-
rect and substitution error occurs in the second codeword.
Therefore, only the scenario, i.e., one substitution error
occurs in the first codeword and the second codeword is
correct, needs to be considered. For this case, we require the
last bit 1 of the decoding window g(i) not to go beyond the last
bit of the first codeword, i.e., not to exceed the second code-
word. Otherwise, the first codeword has been correctly syn-
chronized and detected or d(tt, g(i)) > 1. Thus, we require
i+st+1<n,ie.,1 <i<n-—st— 1.Furthermore, we show
that

i+t—1 1<i<s—1

hi)=4s+1—1 i=s2s - .15 8)
S

s+t —1 otherwise.

Combining all the above, we can readily show the proba-
bility of false synchronization caused by a single substitution
error at a fixed position in the generalized F(n, s, t) code

ICR

d(tt,g(i))=1 and i<n—st—1
where P, = (p;-ps) X (p: - (1 —py))* 1. In (9), P, represents
the probability that exact one fixed position suffers from a
substitution error. The expression of P is obtained under the
condition Ny = 1, Ny = 0 and N; = 0 in (5).

Py =P, x ©)]
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2) ONE SINGLE SUBSTITUTION ERROR IN EACH OF

TWO CONSECUTIVE CODEWORDS

In order to calculate the probability of false synchronization
caused by more than a single substitution error, we have to
find the general expression of /(i). Thus, we define two more
symbols.

. Ng(i): Number of positions in which both elements in

g(i) and tt are equal to 0
. Nl1 (i): Number of positions in which both elements in
g(7) and tt are equal to 1.

The number of fixed positions in g(i) is s + ¢ and this value
also equals d(tt, g(i)) + N(? )+ N11 (i) 4+ h(i). In other words,
s+t = d(tt, g(i)) -l—N(())(i) —l—Nl1 (i) + h(i) and thus A(7) is given
by

h(i) = s 41 — d(tt, g(i)) — NJ() — N\ ()
= (s — N§()) + (t — N{ (i) — d(tt, g(i)).  (10)

The meaning behind A(i) is that there are h(i) occasions
where the sequence in the decoding window is not a CFC
when the decoding window moves i positions to the right.
Previously, we only investigated the scenario when
d(tt, g(i)) = 1 on condition that the subsequent codeword
is correct. However, for the scenario where d(tt, g(i)) = 2,
we can no longer assume the subsequent codeword is cor-
rect. Each of the two consecutive codewords must contain
one substitution error at a fixed position to ensure that the
concatenation of the two codewords form a false codeword.
Therefore, the scope we consider is enlarged, i.e., the position
of the first bit 0 of the decoding window g(i), i.e., position 1,
should never exceed the position of the last bit 1 of the first
codeword after shifting i positions of the decoding window to
the right. Hence we have 1+i < st+1,1i.e.,i < st. Otherwise,
the first codeword has been correctly synchronized while
the second one is corrupted and thus the false codeword can
never arise up.

The values for d(tt, g(i)), Ng(i) and N 11 (i) and h(i) for the
general case have been derived and are listed below:

<i<n-— —
d(tt. g(i)) = 1 1<i<n—st—1 (an

2 n—st<i<st

. s—i1 1<i<s-—1
NQG) = . (12)
0 s <1i<st
i
. =525 .- -1
Nll(i)= t S i=s,2s, , (1 )s (13)

0 otherwise;
Therefore, h(i) in (10) can be readily shown equal to
i+t —d(tt, g@@)
h@) = {s+ I ditt,g)) i=s2s,---,¢—1s (14)
s+ ts— d(tt, g(i))

1<i<s—1

otherwise.

3) SINGLE DELETION ERROR
We continue to investigate the false synchronization proba-
bility due to synchronous errors. We first investigate the false
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synchronization probability P; caused by a single deletion
error. r/r is defined as the received vector of length 2n — 1 in
which the zth bit (1 < z < n) of tt is deleted. In fact, r;r is
the cascading of a codeword with a single deletion error and a
correct codeword. Obviously, the distance d(g(n — 1), rir) =
0 because the sequence in the decoding window is exactly
the second correct codeword. d(g(i), rér) is usually nonzero
forallz = 1,2,---,nandi = 1,2,---,n — 2. In this
case, ccodeword cannot be formed caused by a single deletion
error. However, a false codeword is detected with probability
(%)h(i) if d(g(i), r,r) = 0 for certain i < n — 2 and z. Same
as the substitution error case, the last bit 1 of the decoding
window cannot arrive at the position of the first bit 0 of
the second codeword,i.e.,i+st+1 <n—1ori <n-—st—2.

The problem is further divided into different cases and the
corresponding /(i) is derived. The complete shifting process
of the decoding window for systematic generalized F'(n, s, t)
code is shown in Fig. 6.

Case 1 (A Single Bit Among the s Starting Os Is Deleted):
The received vector begins with (s — 1) Os followed by a
bit 1 while the decoding window begins with s consecutive Os.
s consecutive Os cannot be found even though all information
bits are 0s. Therefore, a false codeword cannot be formed for
this scenario.

Case 2 (The First Bit One After the Sequence of s Os Is
Deleted): A false codeword is formed when 0 < i < s — 1.
We further show that

hGi) = t+i nggs—z (15)
s i=s—1.

Case 3 (A Single Bit Between jth Bit I and (j + 1) Bit 1
(1 < j <t —1)Is Deleted): A false codeword can only
appear when i = 0. We further show that h(i) = ¢ —j.

Case 4 (The jth Bit 1 (2 < j <t — 1) Is Deleted): 1t is
obvious that a false codeword may appear when i = 0 and
h(i) =t — j + 1. Besides, a false codeword may also appear
when (a) the first bit 0 of the decoding window exceeds (j— 1)
bitl,ie., 1+i>@G—1)s+1+1ori>(G— 1)s+1; AND
(b) the first bit 1 of the decoding window does not exceed
G+ Dthbitl,ie.,i+s+1 <(G+1)s+1—1andi <js—1.
Furthermore, it is readily shown that

t (-1 1<i<js—2
h(i)=[s+. o vwl=i=py (16)
s+j i=js—1.

Case 5 (The Last Bit 1 Is Deleted): Obviously, a false
codeword appear when i = 0 and h(i) = 1. Besides, a false
codeword may also appear when the first bit 0 of the decoding
window exceeds the fixed bit 1 preceding the deleted bit 1,
ie,14+i>@—1s+1+1ori> (t—1)s+ 1. Furthermore,
it can be shown that

1 i =0
h(i) = ’ , (17
s+t t—Ds+1<i<n—st—2.

Case 6 (A Single Bit After the Last Bit 1 Is Deleted): A
false codeword may appear only on condition that i = 0 and
h(i) = 0.
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s=1=3, n=19

TX 0 001 xx1xx1xxxxxxxxx80O0O01 1 1 x x h(i)
Case 1 0071l xx 1 xxl]lxxxxxxxxx 0001 xx1 1 x x /
Case 2 00 0xx I xx]lxxxxxxxxx000 1 xx 1 7 x
i=0 0001 xx 1 xx1xxx XX XXXX
i=1 00071 xx 1 xx1] xxxxxxxx X
i=2 0001 xx 1 xx ] XX X X XX XXX
Case 3 0001 x1xx]lxxxxxxxxx 000/ xx1xx1]xxxxxx2xXxx
i=0 0001 xx 1 xx1xxx x x x x x x 2

0001 xx1Ix1]lxxxxxxxxx00017xx1]xx1]xxxxxXx2xXxx
i=0 0001 xx 1 xx1]xxxx X Xx X X X 1
Case 4 00071 xxxx /1 xxxxxxxxx 200017 xx1xx1]xxxxxXxXxXxXxx
i=0 0001 xx1xx1]xxxxXxXx X X X 2
i=4 000171 xx I xx 1 xxx x x 6
i=5 000171 xx 11 xx 1] xxxxxx 5
Case 5 0001l xxIIxxxxxxxxxxx2020O0! l xx /] xxxxXxxXx X Xx
i=0 000 1 x /! xx ] x x x Xx x Xx X x X 1
i=7 0001 xx 1 xx1xx 6
=8 0001 xx 1 xx 1 x x x x X 6
Case 6 0 xx ]l xx ]l xxxxxxxx 000!/ 1 /] x x x x x x x X x
i=0 0 I x x 1] x x ] x x x Xx X X X X X 0

FIGURE 6. Complete shifting process of a decoding window.

We can readily show that the total probability of false
sychronization caused by a deletion error is

1 h(i)
> (5)
d(g(z),rér):O
s—2 1 1 t—1 1
- t+i S —-1- - t—j
[Z(2> +GPT+ 6= Z(z)
i=0 j=1
t—1 }
In (18), P = pa - (1 = pi — pa) - (1 — py))"~" represents

1, . 1
+Z(§)f*f+‘ + ()t —1)
the probability that exact a single bit suffers from a deletion

j=2
where, Py = pa - (1 = pi —pa) - (1 = ps)

error. The expression of P/, is obtained under the condition

Ng=1,Ny=0and N; = 0in (5).

PdIP/dX

=Pﬁix{

=t a8)

4) SINGLE INSERTION ERROR

We finally investigate the false synchronization probability P;
caused by a single insertion error. r;r is referred as the
received vector with a random bit inserted before the gth
bit of tt, | < g < n. The length of the received vector
is 2n + 1. In fact, r;r is the cascading of a codeword with
a single insertion error and a correct codeword. Obviously,
the distance d(g(i), r;r) = 0 when | n + 1 due to the
fact that the sequence in the decoding window is the sec-
ond correct codeword. d(g(?), r;r) is usually nonzero for all
qg=12,---,nandall i 1,2,---,n — 2. In this case,
a false codeword can never be formed caused by a single
insertion error. However, a false codeword will be detected
with probability ()" if d(g(i). rr) = 0 for certain i < n+1
and g. Same as the substitution and deletion scenarios, the last
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bit 1 of the decoding window cannot go beyond the position
of the first bit 0 of the subsequent codeword, i.e., i+ st + 1 <
n+lori<n-—st.

Similar to dealing with a single deletion error, the problem
is divided into several scenarios to derive the correspond-
ing h(i). The complete shifting process of the decoding win-
dow for generalized F'(n, s, t) code is shown in Fig. 7.

Case 1: Any single bit 0/1 is inserted before any bit in
the s starting zeros

Case 2: Any single bit 0/1 is inserted before the first bit 1
after the sequence of s zeros

Case 3: Any single bit 0/1 is inserted before any bits
after the last bit 1

Case 4: A single bit 1 is inserted between jth bit 1 and
(j + Dth bit 1 including the (j + Dth bit1,1 <j <¢

Case 5: A single bit 0 is inserted between jth bit 1 and
(7 + Dth bit 1 including the (j + Dth bit 1,1 <j <t

Based on the complete shifting process of a decoding
window, it is impossible to form a false codeword under
the first four cases.! A false codeword can appear with two
conditions under Case 5, i.e., a bit 0 is inserted between
jth bit 1 and (G + Dth bit 1 including the (j + 1) bit 1,
1 <j < t. The first condition is to make sure the sequence in
the decoding window is not a codeword when i = 0 because
the definition of false codeword is the concatenation of two
codewords. Only under the first condition will the decoding
window shift one position to the right. The second condition
is that the first bit O of the decoding window must arrive

'One point needs to be noticed for Case 1 where any single bit is
inserted before the first bit. Even though d(g(1), r:]r) = 0 under this case,
the sequence in the decoding window is the first codeword. False codeword
is actually the overlap of two consecutive codewords. Based on the definition
of the false codeword, this scenario cannot contribute to the false codeword
probability caused by a single insertion error.
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=4, =2, n=17

X 00 00 ] xxx] xx xx xx xx 0000 1 I x x X x
Case 1 0000011 xxxI1 xxxx xxxx0000 1 I x x X x
0000 x»x xI x ¥ x x x x x x
00 00 ] x x x] xx x x x x x x
g 0001 I x x X x
0001710171 xxx1 xxxx xxxx00O0 01 I x x X x
0 00 1 x x X XX X X X X Xx
00001 xxx1 xx xx X
Case 2 0 0011 x x ] xx x x x x x x0 000 1 I ¥ x x x x ¥ x x
0 00 1 x xI x x x ¥x x x X x
00001 xxx1 xx xx X
Case 3 0 00 1 x xI1 x xx x x x x x x0 000 1 I x x x x x x x x
o 001 x xI x x x ¥x x x X x
0 a I x I x x «x X x
0 0 1 I x x X x
Case 4 000011 x x] x x x x ¥x ¥ x X 0 0 1 I x x X x
00001 x x] x x x x x x x x
00001 x x x1 x X x
Case 5 000010 x x1 xx x x x x x x0 0001 X X X X X X ¥ X
i=0 0000 x»x xI x ¥ x x x x x x
i=3 00001 xx x] x x x x x x x x
FIGURE 7. Complete shifting process of a decoding window.
3X 10° T 0.06 4X 10° T 0.08 5 xi0® 01
I F(143.5)ps AI F(fZE:E)pS ‘ Hfgia)Ps
« F(143,3 « F(17,3,3)p, « F1933)g
o H1433y o H17.33p o H1933)y
o F1433,,, 3+ o F(17,3, 30 0.06 o F1933),,,
z2 § 004 2 // z /
8 8 2
% % 2 0.04 %
o 1 o 002 & /D/ g o
/ / 1 // / 0.02 //
7 4 a
00 0.002 0004 0006 0.008 0.001 00 0.002 0004 0.006 0.008 0.001 OO 0.002 0.004 0.006 0.008 O.Cﬂ

Channel Error Event Probability ( Ps=Py=P, )

Channel Error Event Probability ( Ps=Pg=P; )

Channel Emror Event Probability (ps =Pg=p; )

FIGURE 8. Probabilities of false synchronization of generalized F(n, s, t) codes of different lengths with parameters
N =14,17,19,s =3 and t = 3. ps = pg = p; increases from 0.001 to 0.01. Theoretical results are plotted using the solid

lines and simulated results are represented by symbols.

at the next bit of the jth bit 1 of the received codewords,
ie,l+i=js+ 1+ 1ori=js+ l. Furthermore, we can
show that h(i) = s+j— 1. Most of the cases do not contribute
to false codeword probability. We can readily show that the
total probability of false synchronization cased by a single
insertion error is

t—1 1 s+j—1
r=rxs(3)
j=1
1
where, P, = (@ =pi=p)A =p))'-pi (19)
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In (19), P; is the probability that exact a single bit 0 is
inserted. The expression of P} is obtained under the condition
N;i=1,N; =0and Ny = 0in (5).

V. RESULTS

The theoretical results of false synchronization for a gener-
alized F(n, s, t) code caused by a single substitution error,
a single deletion or a single insertion error have been
derived in (9), (18) and (19). In order to verify the accuracy,
we perform the simulation as follows: a random sequence of
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FIGURE 9. Probabilities of false synchronization of generalized F(n, s, t) codes of different lengths with parameters
N =14,17,s=4and t = 2. ps = pg = p; increases from 0.001 to 0.01. Theoretical results are plotted using the solid

lines and simulated results are represented by symbols.
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0.01
0.002 0004 0006 0.008 0.01
Channel Error Event Probability (p, =p,=p;)

001 0
0006 0008 0.01 0

FIGURE 10. Probabilities of false synchronization of generalized F(n, s, t) codes of different lengths with parameters
N =20,23,25,s =4 and t = 3. ps = pg = p; increases from 0.001 to 0.01. Theoretical results are plotted using the solid

lines and simulated results are represented by symbols.

10° information bits is generated. The information bit
sequence is first divided into N blocks, each of which con-
tains k (k = n — s — t) information bits based on different
generalized F(n, s, t) codes. Then the primer drive and fixed
bits are inserted in between the k information bits to form a
systematic generalized F'(n, s, t) codeword of length n. The
encoding procedure is repeated for every block of k informa-
tion bits, which results in a encoded sequence of length N - n.

The encoded sequence, i.e, transmitted sequence ¢
{t1,t2, - - - tny.n} of length N - n is transmitted though the BSID
channel model with different parameters p;, pg, and p;. The
length of the received sequence is usually different from
that of the transmitted sequence due to potential insertion
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and deletion errors. A fixed-length decoding window with
the same length of a codeword is introduced. The decod-
ing window moves from the start of the received sequence
until it reaches the last bit. During the whole process,
we count the total number of false codewords and count the
number of false codewords caused by a single substitution
error, a single deletion error and a single insertion error,
respectively.

A. PROBABILITIES OF FALSE SYNCHRONIZATION
The simulation results for the probabilities of false synchro-
nization of generalized F(n, s, t) codes with different values
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FIGURE 11. Probabilities of false synchronization in generalized F(n, s, t) codes of different lengths with parameters
N =27,31,s =4 and t = 4. ps = pg = p; increases from 0.001 to 0.01. Theoretical results are plotted using the solid

lines and simulated results are represented by symbols.

of s and ¢ are shown in Fig. 8, Fig. 9, Fig. 10 and Fig. 11.
(i) The probability of false synchronization caused by a single
substitution error and (ii) the probability of false synchro-
nization caused by a single insertion error are plotted using
the left black ordinate axis while (iii) the probability of false
synchronization caused by a single deletion error and (iv) the
total probability of false synchronization are plotted using the
right red ordinate axis. The simulation results represented by
symbols match with those theoretical results represented by
lines derived in (9), (18) and (19). The figures also show that
deletion errors dominate the false synchronization probability
while insertion errors have the least influence for the gener-
alized F(n, s, t) codes.

B. SINGLE SUBSTITUTION FALSE SYNCHRONIZATION

In order to analyze the false synchronization of the gen-
eralized F(n,s,t) codes further, we show the simulation
results of false synchronization in a generalized F(n, s, t)
code caused by a single substitution error at the fixed posi-
tions, a single deletion error and a single insertion error
respectively.

The simulation result for probability of false synchroniza-
tion in a generalized F(n, s, t) code caused by a single substi-
tution error at the fixed positions is shown in Fig. 12. From the
simulation results, we observe that the false synchronization
caused by a single substitution error at the fixed positions
is not always increasing as the codeword length increases.
This probability is closely related to the values of s and 7.
This can be demonstrated by the simulation result, in which
the curve for F(25, 4, 3) code is always lower than those of
F(7,3,3),F(19, 3,3)and F(17, 4, 2) codes under the same
channel error event probability. However, one point needs to
be emphasized is that the false codeword probability caused
by a single substitution error at the fixed positions increases
as the codeword length increases with the same values of
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FIGURE 12. The false synchronization probability Ps in a generalized
F(n, s, t) code caused by a single substitution error at fixed positions as
Ps = P4 = pPj increase from 0.001 to 0.01. Theoretical results are plotted
using the solid lines and simulated results are represented by symbols.

sand?,e.g., comparing results for (20, 4, 3), F(23, 4, 3) and
F(25,4,3).

In addition, we investigate the performance of generalized
F(n, s, t) codes with different parameters in terms of false
codeword probability at different values of p; caused by a
single substitution error at fixed positions in Fig. 13. For all
generalized F(n, s, t) codes with different values of s and 7,
the false codeword probability P; is slightly decreased when
paq and p; increase. It is because when p, increases, more bits
are deleted and hence fewer bits are transmitted. When fewer
bits are sent, fewer substitution errors can occur. On the other
hand, when p; increases, more bits are inserted and hence
the false codeword, if occurs, is more likely to occur due
to insertion errors. Therefore, the false codeword probabil-
ity Ps due to ““substitution errors” becomes lower. Moreover,
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FIGURE 13. The false synchronization probability Ps in a generalized F(n, s, t) code caused by a single substitution error
at fixed positions with different values of ps as p; = p4 increase from 0.001 to 0.01. Theoretical results are plotted using
the solid lines and simulated results are represented by symbols.

P changes a lot as p; increases under the same insertion
and deletion probabilities. For instance, the false codeword
probability of generalized F (25, 4, 3) is 4.14 x 10~* under
the channel error event {p; = 10_3,pd = 10_3,p,~ =103 1,
and 3.91 x 1073 under {p; = 1072, pg = 1073, p; = 1073}

C. ONE SINGLE SUBSTITUTION ERROR IN EACH OF TWO
CONSECUTIVE CODEWORDS FALSE SYNCHRONIZATION
The theoretical false synchronization in a generalized
F(n, s, t) code caused by one substitution error at each of two
consecutive codewords’ fixed positions are shown in Table 1.
For a fixed combination of (s, #), false codeword cannot be
formed for the maximum codeword length, i.e., 2st + 1, for
specific s and ¢ such as F(19, 3, 3), F(17,4,2), F(25,4,3)
and F (33,4, 4).

TABLE 1. Theoretical probability of false synchronization in a generalized
F(n, s, t) code caused by one single substitution error at fixed positions
in each of two consecutive codewords.

[nIsTt] ps [ pa [ pi | Ps |
14 ]3[]37]001 001 [001 [444x10-Y
17 [ 3131001 [ 001 [ 001 | 887 x10-FY
19 [ 3 [3]001 | 0.0 | 0.01 0
1342100100100 [|1.77x10°°
17 | 4 [ 2] 001 | 0.0 | 0.01 0
20 [ 4 [ 31001 [ 001 [ 001 | 1.46x10°°
23 | 413 ] 001001 [ 001 [ 418x10°°
25 | 4 [ 31001 | 0.0 | 0.01 0
31 | 4 [ 3]001 [ 001|001 [1.97x106
33 4471001 [ 001|001 [107x1096
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Comparing results in Fig. 12 and Table 1, we notice the
probability of false synchronization due to two substitution
errors in two consecutive codewords is much smaller than
that due to a single substitution error. The explanation is as
follows: Ng(i) is nonzero fori = 1,2,--- ,s5s — 1 and Nll )
is nonzero for i = s,2s,---,(t — 1)s. The probability of
false synchronization caused by substitution errors at fixed
positions is the largest when d(tt, g(i)) = 1 and the sum of

0.08

*

F(14,4,2) 3
F(17,4,2) —

F(20,4,3)
F(23,4,3)
F(25,4,3) :
F(27,4,4) ! P
F(31,4,4)

0.07

x O

Rt

False Codeword Probability (P )

0 I I I I I I I I
1 2 3 4 5 6 7 8 9 10

Channel Error Event Probability (p, = p,=p;)

FIGURE 14. The false synchronization probability P4 in a generalized
F(n, s, t) code caused by a single deletion error as ps = pg = p; increase
from 0.001 to 0.01. Theoretical results are plotted using the solid lines
and simulated results are represented by symbols.
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FIGURE 15. The false synchronization probability P in a generalized F(n, s, t) code caused by a single deletion error
with different values of py as p; = ps increase from 0.001 to 0.01. Theoretical results are plotted using the solid lines and

simulated results are represented by symbols.

Ng (i)and N ]1 (¥) is large. Under this condition, /(i) is small and
(%)h(i) is large. During the shifting process of the decoding
window, we may find d(tt, g(i)) = 1 is approved under
most cases. This is the reason that the probability of false
synchronization caused by two substitution errors is much
smaller, which is in accordance with the results shown when
d(tt, g(i)) = 1 and d(tt, g(i)) = 2 in Table 1.

D. SINGLE DELETION FALSE SYNCHRONIZATION

The simulation result for the probability of false synchroniza-
tion in a generalized F(n, s, t) code caused by a single dele-
tion error is shown in Fig. 14. Similar to false synchronization
due to substitution errors, the false synchronization caused by
a single deletion increases as the codeword length increases
with the same set of {s,t}, e.g., comparing results for
F(20,4,3), F(23,4,3) and F(25, 4, 3). However, the false
synchronization due to a single deletion error is not always
increasing as the codeword length increases. This probability
is closely related to the values of s and ¢. This can be verified
by the simulation result, in which the curve for F (27, 4, 4) is
always lower than that of F(23, 4, 3) and F(25, 4, 3) under
the same channel error event probability. This can also be
verified by the better performance of F'(27, 4, 4) compared to
F(17, 4, 2) when the channel error event probability is equal
to or greater than 9 x 1073,

In addition, we plot the performance of generalized
F(n, s, t) codes with different parameters in terms of false
codeword probability at different values of p; due to a
single deletion error in Fig. 15. For all four generalized
F(n, s, t) codes with different values of s and ¢, the false
codeword probability decreases when p; and p; increases.
Under the condition py; is a small value like p; = 0.002 or
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pa = 0.004, P; changes very little under the same deletion
error probability p; when both ps and p; increase ten times
from 1073 to 10~2. When pa 1s large, however, P; can change
quite significantly. Moreover, P4 changes significantly as py
increases under the same insertion and deletion probabilities.
For instance, the false synchronization probabilities of gen-
eralized F (25, 4, 3) are 0.0142 and 0.1144 under the channel
error events {p; 1073, pg = 1073, p; 1073} and
{ps = 1073, pg = 1072, p; = 1073}, respectively.

x 107

10
*  F(1442)

97 A -
o F1742) — _

- e
F(20,4,3) .

8r + F2343) s
o F2543)

7 F(27.44)

False Codeword Probability (P, )

1L I I I I I I I
4 5 6 7 8 9

Channel Error Event Probability (ps =py= p;) X107
FIGURE 16. The false synchronization probability P; in a generalized

F(n, s, t) code caused by a single insertion error as ps = pg = p; increase
from 0.001 to 0.01. Theoretical results are plotted using the solid lines
and simulated results are represented by symbols.
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FIGURE 17. The false synchronization probability P; in a generalized F(n, s, t) code due to a single insertion error with
different values of p; as py = ps increase from 0.001 to 0.01. Theoretical results are plotted using the solid lines and

simulated results are represented by symbols.

E. SINGLE INSERTION FALSE SYNCHRONIZATION

The simulation result for the probability of false
synchronization in a generalized F(n, s, t) code caused by
a single insertion is shown in Fig. 16. One point need to
be emphasized is that different from the previous two cases,
the false codeword probability caused by a single insertion
may not always increase as the codeword length increases
even under the same set of {s,¢}. This can be demon-
strated as better performance of F(25,4,3) compared to
F(23,4,3).

Same as the first two cases, we plot the performance of
four generalized F(n, s, t) codes with different parameters
in terms of false codeword probability at different values of
pi caused by a single insertion in Fig. 17. We notice this
probability decreases gradually as pg and py increases for
all four generalized F(n, s, t) codes. For example, the false
codeword probabilities for (33, 4, 4) under the channel error
events {p; = 0.001,p; = 0.001,p; = 0.01} and {p; =
0.01,pg = 0.01,p; = 0.01} are 0.0150 and 8.1 x 1074,
respectively.

VI. CONCLUSION

In this paper, we have proposed a new class of systematic
comma-free code, namely generalized F'(n, s, t) code. For a
classical F(n, s, t) code of length n, it requires that is the
minimum interger greater or equal to 4/2(n — 1), s is the
minimum integer greater or equal to 5 and t = r — s.
However, for the generalized F(n, s, t) code, the condition
st > 0.5(n — 1) is enough to ensure the generalized F'(n, s, t)
code is a synchronous code. In addition, we provided the
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proof. As a result, more combinations of (s, #) can be chosen
for a specific codeword length n in constructing the pro-
posed generalized F(n, s, t) code. For instance, F (17,4, 2)
and F (25, 4, 4) are the generalized F(n, s, t) but they are not
the classical F codes. The generalized F'(n, s, t) code not only
provides more choices but also a higher code performance in
terms of false synchronization under some specific cases. For
example, the generalized F'(17, 4, 2) has a better performance
compared with F'(14, 4, 2) caused by a single insertion error.

The theoretical probabilities of false synchronization
caused by three types of errors, namely substitution error,
deletion error and insertion error have been derived.
Simulations are performed on generalized F(n, s, t) codes
with different parameters and corresponding probabilities of
false synchronization are recorded under different channel
parameters. We observe the simulation results match closely
with the theoretical ones. Moreover, deletion errors have a
large effect on the probability false synchronization while
insertion errors have the least influence.

It has been shown that the probability of false synchro-
nization caused by a single substitution error or a single
deletion error increases as the codeword length increases
under the same set of {s, t}. We conclude that shorter length
of generalized F(n,s,t) codes perform better in terms of
false synchronization under the same set of {s, ¢} for these
two cases. However, shorter length codes require more
redundancy, which decrease the code rate and efficiency of
generalized F(n, s, t) code. Different from the previous two
cases, the false codeword probability caused by a single inser-
tion error may not always increase as the codeword length
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increases even under the same set of {s, t}. The generalized
F(n, s, t) code of the maximum codeword length, i.e., 257 4 1
for a fixed set of {s, ¢} usually perform better against the false
synchronization caused by a single insertion error.

Therefore, the false synchronization of the generalized
F(n, s, t) code is not only related to the parameters of the
channel but also to the number of fixed bits and codeword
length. Thus, a specific generalized F(n, s, t) code should
be chosen based on different applications and requirements,
i.e., channel parameters, code rate, codeword length and
SO on.
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