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ABSTRACT Traffic sign recognition is a very important computer vision task for a number of real-world
applications such as intelligent transportation surveillance and analysis. While deep neural networks have
been demonstrated in recent years to provide the state-of-the-art performance traffic sign recognition, a key
challenge for enabling the widespread deployment of deep neural networks for embedded traffic sign
recognition is the high computational and memory requirements of such networks. As a consequence,
there are significant benefits in investigating compact deep neural network architectures for traffic sign
recognition that are better suited for embedded devices. In this paper, we introduce MicronNet, a highly
compact deep convolutional neural network for real-time embedded traffic sign recognition designed based
on macroarchitecture design principles (e.g., spectral macroarchitecture augmentation, parameter precision
optimization, etc.) as well as numerical microarchitecture optimization strategies. The resulting overall
architecture of MicronNet is thus designed with as few parameters and computations as possible while
maintaining recognition performance, leading to optimized information density of the proposed network.
The resulting MicronNet possesses a model size of just ∼1 MB and ∼5 10 000 parameters (∼27× fewer
parameters than state-of-the-art) while still achieving a human performance level top-1 accuracy of 98.9%
on the German traffic sign recognition benchmark. Furthermore, the MicronNet requires just ∼10 million
multiply-accumulate operations to perform inference, and has a time-to-compute of just 32.19 ms on a
Cortex-A53 high efficiency processor. These experimental results show that the highly compact, optimized
deep neural network architectures can be designed for real-time traffic sign recognition that are well-suited
for embedded scenarios.

INDEX TERMS Deep neural network, traffic sign classification, real-time, embedded.

I. INTRODUCTION
Traffic sign recognition can be considered an important com-
puter vision task for a number of real-world applications
such as intelligent transportation surveillance and analysis
(see Figure 1). The arrival of modern breakthroughs in deep
learning [13], [15] has resulted in significant state-of-the-art
results for traffic sign recognition, with much of the research
focused on designing deep convolutional neural networks for
improved accuracy [1]–[3], [5], [6], [12], [18], [25].

Despite the fact that such traffic sign recognition networks
have shown state-of-the-art object detection accuracies
beyond what can be achieved by previous state-of-the-
art methods, a key challenge for enabling the widespread

deployment of deep neural networks for embedded traffic
sign recognition is the high computational and memory
requirements of such networks. For example, the com-
mittee of deep convolutional neural networks proposed
by Cireşan et al. [6] consists of ∼38.5 million parame-
ters while the ensemble of deep convolutional neural net-
works trained via hinge loss as proposed by Jin et al. [12]
consists of ∼23.2 million parameters. More recently, the
state-of-the-art deep convolutional networkwith spatial trans-
formers proposed by Arcos-García et al. [3], while having
fewer parameters than the aforementioned approaches, still
consisted of over ∼14 million parameters. At a signifi-
cantly smaller sizes than the aforementioned configurations,
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FIGURE 1. The goal of the traffic signal recognition problem is to identify
which type of traffic sign is in the scene. For context, some example
images of traffic signs from the German traffic sign recognition
benchmark [20] are shown.

the macroarchitectures proposed by Cireşan et al. [6] still
consist of ∼1.5 million parameters. As such, the design of
more compact and efficient deep neural network architectures
for traffic sign recognition is highly desired for embedded
applications.

Recently, there has been an increasing focus in exploring
small deep neural network architectures that aremore suitable
for embedded devices [1], [8], [10], [11], [16], [17], [19],
[23], [24]. For example, in the work by Iandola et al. [11],
three key design strategies were leveraged to create com-
pact macroarchitectures: 1) filter quantity reduction, 2) input
channel reduction, and 3) late downsampling in the network.
As a result of such design strategies, a compact SqueezeNet
macroarchitecture was introduced that comprised of Fire
modules that was ∼50X smaller than AlexNet with compa-
rable accuracy on ImageNet [7] for 1000 classes. In the work
by Howard et al. [10], they leveraged depth-wise separable
convolutions to reduce the number of parameters, as well
as two global hyperparameters based on network width and
resolution for finding the tradeoff between latency and accu-
racy. Sandler et al. [17] expanded upon this by introducing
an inverted residual structure that enabled further reductions
in the number of parameters while maintaining high per-
formance. Aghdam et al. [1] presented techniques for opti-
mizing the efficiency of deep neural network architectures
for the specific purpose of traffic sign recognition. Based
on the practical principles they discussed for building small
deep neural network architectures for traffic sign recognition,
the authors were able to create a high-performance deep
neural network consisting of just ∼1.74 million parameters,
while still achieving great accuracy.

In this study, we introduce MicronNet, a highly compact
deep convolutional neural network designed specifically for

real-time embedded traffic sign recognition. In MicronNet’s
highly optimized network architecture, the underlying
microarchitecture of each convolutional layer in the network
(with microarchitecture here referring to the number and size
of convolutional filters) is numerically optimized to have as
few parameters and computations as possible while maintain-
ing recognition performance, hence resulting in an optimized
information density for the underlying network. Furthermore,
the macroarchitecture of the proposed MicronNet network is
designed via macroarchitecture design strategies (e.g., spec-
tral macroarchitecture augmentation, parameter precision
optimization, etc.) that encourage improved computational
efficiency and efficacy in embedded environments. As such,
the main contribution of this work is the investigation and
exploration of integrating design principles and optimization
strategies at both the microarchitecture level and the macroar-
chitecture level to design deep neural networks with opti-
mized information densities that satisfy real-time embedded
requirements while achieving strong accuracy, thus enabling
real-time embedded traffic sign recognition.

This paper is organized as follows. Section 2 describes the
highly optimized network architecture and design considera-
tions underlying the proposed MicronNet network. Section 3
presents experimental results that evaluate the efficacy of the
proposed MicronNet network for real-time embedded traffic
sign recognition, along with a discussion on some key obser-
vations about the network. Finally, conclusions are drawn in
Section 4.

II. NETWORK ARCHITECTURE OF MICRONNET
Leveraging macroarchitecture design principles such as those
from [1], [10], [11], [17] and a numerical microarchitecture
optimization strategy inspired by [23], the overall network
architecture of the proposedMicronNet network for real-time
embedded traffic sign recognition is inspired by the network
macroarchitecture described in [1] and takes the following
microarchitecture-level and macroarchitecture-level design
considerations and optimization strategies into account to
greatly improve the efficiency of the resulting deep convolu-
tional neural network while maintaining strong accuracy (see
Figure 2):
• Optimizing microarchitectures of each convolutional
layer via numerical optimization for reduced number of
parameters

• Incorporating spectral augmentations to produce a
spectral-spatial macroarchitecture that further reduces
number of parameters and computational complexity
while maintaining strong accuracy

• Optimizing parameter precision for reduced model size
while maintaining strong accuracy

Table 1 shows the overall architecture of the proposed
MicronNet network architecture. The proposed MicronNet
network architecture is a 16-bit floating-point deep convolu-
tional neural network composed of four convolutional lay-
ers, followed by two fully-connected layers and a softmax
layer. A combination of 1× 1 point-wise convolutional layer
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FIGURE 2. Integrated microarchitecture-level and macroarchitecture-level
design principles and optimization strategies leveraged for designing
MicronNet for high efficiency while maintaining strong accuracy.

TABLE 1. The optimized network architecture underlying MicronNet.

with 5 × 5 and 3 × 3 spatial convolutional layers form
a spectral-spatial macroarchitecture for reducing complex-
ity while maintaining accuracy. Furthermore, rectified linear
unit (ReLU) activation functions are leveraged within the
proposed MicronNet network architecture for low computa-
tional complexity and better suitability for real-time embed-
ded applications. Each of the design considerations in the
design of MicronNet is discussed in detail below.

A. NUMERICAL MICROARCHITECTURE OPTIMIZATION
The first design consideration in obtaining an ideal network
architecture for real-time embedded traffic sign recognition
in this study is to optimize the network microarchitecture of
the proposed MicronNet network. One of the key challenges

to identifying the ideal microarchitecture for each of the
individual convolutional layers in the deep neural network
is to achieve a fine balance between modeling performance
and model size as well as computations involved. While
a number of existing techniques have focused on uniform
microarchitecture design [10], [17], the strategy employed
here is instead focused on numerical microarchitecture opti-
mizations that operates at a more fine-grain level than other
techniques, as it was found by the authors to yield a better
balance between modeling performance and model size as
well as reduced computations.

Taking that mentality into account here, the key design
parameters of the microarchitectures of each convolutional
layer are the number of convolutional filters that form the
microarchitecture, and their associated sizes. Therefore, here
we optimize the number of convolutional filters and their
associated sizes in each convolutional layer via numerical
optimization. More specifically, the key objective leveraged
here is to minimize the number of parameters that compose
each convolutional layer in the network architecture while
maintaining the overall accuracy of the network.

One quantifiable assessment of the relative amount of
accuracy a given deep neural network captures with respect to
a fundamental building block (in this case, a parameter) that
ties well with this key objective is the information density [4]
of a deep neural network. By taking into account both model
size and network performance by means of a single metric,
information density provides a good representation of the
network’s ability to utilize its full modeling capacity. There-
fore, a deep neural network with a good balance of being
smaller with fewer parameters yet still maintaining strong
performance would be characterized by a higher information
density, and hence higher information density indicates better
network efficiency and is thus our desired outcome.

In this study, the numerical microarchitecture optimization
strategy is framed as a constrained optimization problem,
where the set of optimization parameters F is set as the num-
ber of convolutional filters and their associated sizes in each
convolutional layer for a given networkN , and the goal is to
numerically determine the optimal F that minimizes the total
number of network parameters (denoted here as p(N ;F)) for
a given F , with the validation accuracy av(N ) constrained to
being greater than or equal to an accuracy lower-bound of l
(set to 98.5% in this study based on the performance of [6]):

F = min
F

p(N ;F) subject to av(N ) ≥ l. (1)

An approximate solution to the above constrained opti-
mization problem posed in Eq. 1 can be obtained using
an iterative optimization approach. The key advantage with
leveraging such a numerical microarchitecture optimization
strategy is that each layer has its own unique informa-
tion density limits and thus the degree of microarchitecture
optimization that can be achieved for each layer can dif-
fer substantially. Therefore, a numerical microarchitecture
optimization strategy allows significantly greater flexibility
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FIGURE 3. Spectral macroarchitecture augmentation: a 1 × 1 point-wise
convolutional layer (a) sits before a 5 × 5 convolutional layer (b) to form a
spectral-spatial macroarchitecture where spectral features are first
extracted through computing linear combinations of the input spectral
channels in the point-wise convolutional layer, before spatial features are
extracted in subsequent convolutional layers (c).

in obtaining the ideal microarchitectures for each convolu-
tional layer with the optimal information densities without
being constrained by the need for uniform fine-tuning. As a
result, the proposed MicronNet network architecture pos-
sesses highly optimized microarchitectures that is optimized
for real-time embedded scenarios.

B. SPECTRAL MACROARCHITECTURE AUGMENTATION
The second design consideration in obtaining an ideal
network architecture for real-time embedded traffic sign
recognition is to incorporate additional layers to the macroar-
chitecture of the MicronNet network that enable fur-
ther reductions in computational complexity to be made
while maintaining strong accuracy. Taking inspiration
from [10], [11], [17] where 1 × 1 convolutional layers are
leveraged to reduce the number of parameters in the network
while preservingmodeling performance, we augment the pro-
posed MicronNet network an additional 1 × 1 convolutional
layer placed at a strategic location where it would have the
most impact on reducing computational complexity while
having a positive impact on modeling performance. More
specifically, we take inspiration fromwork on spectral-spatial
macroarchitectures such as that proposed in [26], which are
designed to learn spectral features prior to learning spatial
features in an end-to-endmacroarchitecture, and incorporated
an additional 1 × 1 convolutional layer at the beginning of
proposed MicronNet network architecture. This 1 × 1 con-
volutional layer sits before a 5 × 5 convolutional layer and
acts as a pointwise feature transform layer where new fea-
tures are built through computing linear combinations of the
input spectral channels. Therefore, from a theoretical per-
spective, one can view this 1 × 1 convolutional layer as a
spectral feature learning layer that learns the optimal spectral
mixing projection between the input color channels in an
image to produce a single-channel spectral feature map that
feeds into subsequent convolutional layers (see Figure 3),
resulting in a spectral-spatial network macroarchitecture. The
key advantage of this additional 1 × 1 convolutional layer
compared to the strategy used by deep neural networks such
as that proposed by [1], which converts color input images
into grayscale images using a pre-defined conversion scheme,
is that it provides amuch greater level of flexibility in learning
a more discriminative spectral projection into a single feature

channel than that can be achieved with a fixed grayscale
conversion scheme.

Based on empirical experiments, the augmentation of
this additional pointwise convolutional layer to form a
spectral-spatial network architecture enables us to greatly
reduce the number of filters needed in the 5 × 5 convolu-
tional layer to obtain strong modeling accuracy. In addition to
reducing the number of parameters in the proposed Micron-
Net network, the reduction in the number of convolutional
filters in the 5×5 convolutional layer is very important as the
convolutional filters are used to convolve inputs at the original
image resolution, and as such reducing the number of convo-
lutional filters result in a significant reduction in the number
of computations that need to be performed. It is important
to note that this augmentation is performed on the proposed
network architecture prior to the numerical microarchitecture
optimization process.

C. PARAMETER PRECISION OPTIMIZATION AND
ACTIVATION FUNCTION SELECTION
The third design consideration in obtaining an ideal network
architecture for real-time embedded traffic sign recognition
is to optimize the precision of the parameters used in the
proposed MicronNet network. For embedded applications,
the computational requirements and memory requirements
are typically quite strict and as such an effective strategy to
address these requirements is to reduce the data precision of
parameters in a deep neural network. In particular, embedded
processors often support accelerated mixed precision oper-
ations, and as a result leveraging such parameter precision
considerations into the design of the deep neural network
can result in noticeable improvements in computational time
as well as memory storage for embedded scenarios. For the
MicronNet network architecture, all parameters are charac-
terized with half precision floating-point data representations
after training to enable further model size reductions while
still achieving strong performance. Alongside the use of
fixed-point parameter precision for embedded applications,
the utilization of half-precision floating-point parameter pre-
cision for deep neural networks has seen widespread adoption
for embedded applications and hardware-accelerated in a
wide range of embedded processors, including the Nvidia
Tegra family of embedded processors as well as widely-used
ARM embedded processors such as the Cortex-A53 high
efficiency processor tested in this study. In additional, we also
produced a variant of the proposed MicronNet network
architecture with 16-bit fixed-point data representation for
comparison purposes.

Finally, to reduce the computational complexity of the
proposed MicronNet network architecture, the rectified lin-
ear unit (ReLU) function is used as the activation function
in the deep neural network since it is more suitable for
real-time embedded applications when compared to other
activation functions such as the scaled hyperbolic tangent
function [14] and the parametric rectifier linear unit (PReLU)
function [9].
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D. TRAINING
Here, we will discuss the training policy for learning the pro-
posedMicronNet network. The proposedMicronNet network
was trained for 60,000 iterations in the Caffe framework with
a training batch size of 50. Stochastic gradient descent with
momentum and exponential decay was utilized as the training
policy with the base learning rate set to 0.007, the momentum
set to 0.9, the learning rate decay step size set to 1000, and
the learning rate decay rate set to 0.9996. A l2 weight decay
with rate 0.00001 was also used on the filters and matrices.

III. EXPERIMENTAL RESULTS AND DISCUSSION
To study the efficacy of the proposedMicronNet for real-time
embedded traffic sign recognition, we evaluate the following:
• Top-1 accuracy on the German traffic sign recognition
benchmark (GTSRB) [20]

• Resource usage (model size, number of parameters,
number of multiply-accumulate (MAC) operations,
time-to-compute on a 1.2GHz Cortex-A53 high effi-
ciency processor)

• Information density [4] and NetScore [22]
• Robustness against image degradation
For evaluation purposes, the following state-of-the-art traf-

fic sign recognition networks were also compared:
• STDNN [3], deep convolutional neural network with
spatial transformers,

• HLSGD [12]: hinge loss trained deep convolutional
neural network,

• MCDNN [6]: multi-column deep convolutional neural
network,

• CDNN [6]: Ciresan deep convolutional neural network.

A. DATASET
The German traffic sign recognition benchmark
(GTSRB) [20] used for evaluation purposes in this paper
consists of color images of traffic signs (one traffic sign
per image, with a total of 43 types of traffic signs) with
image sizes varying from 15 × 15 to 250 × 250 pixels.
There are a total of 39,209 color images in the training set
and a total of 12,630 images in the test set. To balance the
number of samples in different classes as well as improve the
generality of the resulting network, a number of different data
augmentation techniques were leveraged including: i) rota-
tion, ii) shifting, iii) sharpening, iv) Gaussian blur, v) motion
blur, vi) HSV augmentation, and vii) mirroring. As standard
for evaluating performance using GTSRB, all images are
cropped and all images are resized to 48 × 48 pixels [6].
To evaluate the accuracy of the network, the top-1 accuracy
was computed on the GTSRB test set.

B. INFORMATION DENSITY AND NETSCORE
The model efficiency of the proposed MicronNet network
and the state-of-the-art traffic sign recognition networks also
being compared were assessed by means of its informa-
tion density [4] and NetScore [22] as well to obtain a better
understanding of the amount of relative performance a given

deep neural network captured with respect to a fundamental
building block.More specifically, the information density (D)
of a deep neural network N is defined as the performance
of the deep neural network (denoted by a(N )) divided by
the number of parameters needed for representing it (denoted
by p(N )),

D(N ) =
a(N )
p(N )

(2)

By taking into account both model size and network per-
formance by means of a single metric, information density
(expressed as percent of top-1 accuracy per parameter in this
study) provides a good representation of the network’s ability
to utilize its full modeling capacity, with higher information
density indicating better network efficiency.

One aspect that information capacity does not account for
is the computational cost for performing inference with a
given deep neural network, which is important for real-time
embedded applications. Therefore, the NetScore [22] metric
was also leveraged in this study for assessing the performance
of a deep neural networkN for practical usage. The NetScore
metric (denoted here as �) can be defined as:

�(N ) = 20 log
(

a(N )α

p(N )βm(N )γ

)
(3)

where a(N ) is the accuracy of the network, p(N ) is the
number of parameters in the network, m(N ) is the number
of multiply-accumulate (MAC) operations performed during
network inference, and α, β, γ are coefficients that control
the influence of accuracy, architectural complexity, and com-
putational complexity of the network on �. We set α = 2,
β = 0.5, and γ = 0.5 as proposed in [22].

TABLE 2. Top-1 accuracy results and number of parameters of MicronNet
on German traffic sign recognition benchmark (GTSRB) [20]. The results of
several state-of-the-art traffic sign recognition are provided, along with
the average human performance, for comparison purposes.

C. DISCUSSION
1) TOP-1 ACCURACY
Table 2 shows the number of parameters and the top-1
accuracy of the proposed MicronNet network (both in
half-precision floating-point data representation and 16-bit
fixed-point data representation) on the GTSRB test dataset,
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along with the number of parameters and top-1 accura-
cies for state-of-the-art traffic sign recognition networks.
A number of interesting observations can be made. First,
the resulting MicronNet possesses just ∼510,000 parame-
ters, which is ∼27.5x fewer than the state-of-the-art STDNN
network [3]. Even when compared to the smallest state-of-
the-art traffic sign recognition network compared in this
paper (i.e., the CDNN network [6], which MicronNet outper-
forms), the proposed MicronNet network still has ∼3x fewer
parameters. The significantly smaller number of parameters
in the proposed MicronNet network compared to all of the
evaluated state-of-the-art traffic sign recognition networks
illustrates its efficacy for greatly reducing the computational
and memory requirements, making the use of MicronNet
very well suited for real-time embedded traffic sign recog-
nition purposes. Second, it can be observed that the resulting
MicronNet was still able to achieve a top-1 accuracy of 98.9%
on the GTSRB test dataset, which is just ∼0.8% lower than
that achieved using the state-of-the-art STDNN network, and
∼0.4% higher than that achieved by the smallest tested net-
work outside of the proposed MicronNet (i.e., CDNN [6]).
Third, it can be observed that the top-1 accuracy of the
proposed MicronNet network was equivalent to the average
human performance reported in [21]. The top-1 accuracy
results exhibited by MicronNet illustrates the efficacy of
this proposed network for providing strong embedded traffic
sign recognition capabilities despite its significantly smaller
size compared to other state-of-the-art networks. In addition,
it can be observed that the variant of the proposed MicronNet
with 16-bit fixed-point data representation, while achieving
lower top-1 accuracy than the proposed MicronNet with
half-precision data representation, still managed to achieve
a top-1 accuracy of 98.0% on the GTSRB test dataset.

FIGURE 4. Examples of traffic images from the GTSRB test dataset that
has been misclassified by the proposed MicronNet. It can be seen that in
the example misclassified traffic images, the sign is either heavily
motion blurred (left), partially occluded (middle), or exhibit poor
illumination (right).

To study where the proposed MicronNet encounters dif-
ficulties, we examine some of the traffic images from the
GTSRB test dataset that has been misclassified by the pro-
posed MicronNet (see Fig. 4). It can be observed that in the
examplemisclassified traffic images, the sign is either heavily
motion blurred (left), partially occluded (middle), or exhibit
poor illumination (right). The identification of such mis-
classifications can provide good insight into the weaknesses
of a network, as one potential mechanism for improving
the robustness to such scenarios may be to extend the data

TABLE 3. Information density of MicronNet on German traffic sign
recognition benchmark (GTSRB) [20]. The results of several
state-of-the-art traffic sign recognition networks are provided for
comparison purposes. Higher is better.

augmentation policy to include more synthetic examples at
different forms of occlusions as well as different illumination
levels.

2) INFORMATION DENSITY AND NETSCORE
Table 3 shows the information density of the proposed
MicronNet network on the GTSRB test dataset, along with
the information density for state-of-the-art traffic sign recog-
nition networks. It can be observed that the information
density of the resulting MicronNet is significantly higher
than all of the other tested traffic sign recognition networks,
by as much as ∼75x higher in the case of MCDNN [6]. The
high information density of the proposedMicronNet network,
for both half-precision floating-point and 16-bit fixed-point
data representations, when compared to the other evalu-
ated state-of-the-art traffic sign recognition networks further
illustrate the network efficiency of the proposed network.
Finally, the NetScore of the proposed MicronNet network
was computed to be 102.52, which is quite high and further
reinforces the strong balance between accuracy, architectural
complexity, and computational cost of the proposed network.

3) RESOURCE USAGE
Table 4 shows the resource usage of the proposed MicronNet
network, which is very important for evaluating its efficacy
for real-time embedded applications given that both mem-
ory and computational resources are very limited in such
cases. A number of interesting observations can be made.
First, it can be observed that the proposed iMicronNet net-
work is just ∼1.05MB in size, which can be contributed
to the fact that not only is the number of parameters being
very low compared to existing state-of-the-art networks but
also a result of the fact that the parameters are represented
with half-precision float-point values. Second, it can be
observed that the proposed MicronNet network requires just
∼10.5millionmultiply-accumulate (MAC) operations to per-
form inference, which indicates that the proposed MicronNet
network has low computational requirements for perfor-
mance network inference. To better evaluate the computa-
tional requirements of the proposed MicronNet network in
a real-world embedded scenario, the network was evaluated
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TABLE 4. Resource usage of MicronNet. The time-to-compute was computed on a 1.2GHz Cortex-A53 high efficiency processor.

TABLE 5. Robustness of MicronNet against different levels of
image degradation.

on a 1.2GHz Cortex-A53 high efficiency processor in a
Broadcom BCM2837B0 SoC. It was found that the time-
to-compute was just 32.19 ms on the tested high efficiency
processor in half-precision floating-point (fp16) mode with
power consumption of ∼3W, making it very well-suited for
real-time embedded traffic sign recognition. These experi-
mental results clearly demonstrate that very small yet accu-
rate deep neural network architectures can be designed for
real-time traffic sign recognition that are well-suited for
embedded scenarios.

4) ROBUSTNESS AGAINST IMAGE DEGRADATION
To study the robustness of the proposed MicronNet net-
work against different levels of image degradation, all
12,630 images in the GTSRB test dataset were contami-
nated by Gaussian noise at three different degradation levels
(i.e., σ = 2.5%, 5%, and 7.5% of the dynamic range). Table 5
shows the top-1 accuracy of the proposedMicronNet network
across the different degradation levels. It can be observed that
the proposed MicronNet network is reasonably robustness to
image degradation, still achieving a top-1 accuracy of 92.3%
at the highest tested degradation level (σ = 7.5%).

IV. CONCLUSIONS
In this paper, a highly compact deep convolutional neural
network called MicronNet is introduced for real-time embed-
ded traffic sign recognition. By designing a highly optimized
network architecture where each layer’s microarchitecture
is optimized to have as few parameters as possible, along
with macroarchitecture augmentation and parameter preci-
sion optimization, the resulting MicronNet network achieves
a good balance between accuracy and model size as well as
inference speed. The resulting MicronNet possess a model
size of just ∼1MB and ∼510,000 parameters (∼27x fewer
parameters than state-of-the-art), requires just ∼10 million
multiply-accumulate operations to perform inference (with
a time-to-compute of 32.19 ms on a Cortex-A53 high effi-
ciency processor), while still achieving a top-1 accuracy
of 98.9% on the German traffic sign recognition benchmark,
thus achieving human-level performance. These experimen-
tal results show that very small yet accurate deep neural

network architectures can be designed for real-time traffic
sign recognition that are well-suited for embedded scenarios.

Future work involves exploring extensions upon Micron-
Net across a larger range of traffic datasets to improve gener-
alizability in different scenarios. Furthermore, it is also worth
exploring and investigating this integrated microarchitecture-
level and macroarchitecture-level design principles and opti-
mization strategies on deep neural network architectures for
different tasks outside of traffic sign recognition, and the
fundamental tradeoffs between microarchitecture-level and
macroarchitecture-level design principles and optimization
strategies on such deep neural network architectures and
mechanisms to optimize for such tradeoffs to improve gen-
eralizability of such an approach. Furthermore, model sta-
bility studies that also involve assessing the performance of
this approach in the case of less training data given smaller
model sizes would be quite interesting to explore as future
work. Finally, model performance studies with a wider vari-
ety of embedded processors at different floating-point and
fixed-point precision levels would be interesting to explore
as future work.

ACKNOWLEDGMENT
The authors would like to thank the Natural Sciences and
Engineering Research Council of Canada, Canada Research
Chairs Program, and DarwinAI, as well as Nvidia for
hardware support.

REFERENCES
[1] H. H. Aghdam, E. J. Heravi, and D. Puig, ‘‘A practical approach

for detection and classification of traffic signs using convolutional
neural networks,’’ Robot. Auton. Syst., vol. 84, pp. 97–112,
Oct. 2016.

[2] H. H. Aghdam, E. J. Heravi, and D. Puig, ‘‘A practical and highly
optimized convolutional neural network for classifying traffic signs
in real-time,’’ Int. J. Comput. Vis., vol. 122, no. 2, pp. 246–269,
2017.

[3] A. Arcos-García, J. Álvarez-García, and L. M. Soria-Morillo, ‘‘Deep
neural network for traffic sign recognition systems: An analysis of spatial
transformers and stochastic optimisation methods,’’ Neural Netw., vol. 99,
pp. 158–165, Mar. 2018.

[4] A. Canziani, A. Paszke, and E. Culurciello. (2017). ‘‘An analysis of deep
neural network models for practical applications.’’ [Online]. Available:
https://arxiv.org/abs/1605.07678

[5] D. Cireşan, U. Meier, J. Masci, and J. Schmidhuber, ‘‘A committee of
neural networks for traffic sign classification,’’ in Proc. IEEE Int. Joint
Conf. Neural Netw., Jul./Aug. 2011, pp. 1918–1921.

[6] D. Cireşan, U. Meier, J. Masci, and J. Schmidhuber, ‘‘Multi-column deep
neural network for traffic sign classification,’’ Neural Netw., vol. 32,
pp. 333–338, Aug. 2012.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, ‘‘ImageNet:
A large-scale hierarchical image database,’’ in Proc. CVPR, Jun. 2009,
pp. 248–255.

VOLUME 6, 2018 59809



A. Wong et al.: MicronNet: Highly Compact Deep Convolutional Neural Network Architecture

[8] S. H. Hasanpour, M. Rouhani, M. Fayyaz, M. Sabokrou, and
E. Adeli. (2018). ‘‘Towards principled design of deep convolutional net-
works: Introducing SimpNet.’’ [Online]. Available: https://arxiv.org/abs/
1802.06205

[9] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,’’ in Proc.
IEEE Int. Conf. Comput. Vis., Dec. 2015, pp. 1026–1034.

[10] A. G. Howard et al. (2017). ‘‘Mobilenets: Efficient convolutional
neural networks for mobile vision applications.’’ [Online]. Available:
https://arxiv.org/abs/1704.04861

[11] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer. (2016). ‘‘SqueezeNet: AlexNet-level accuracy with
50x fewer parameters and <0.5MB model size.’’ [Online]. Available:
https://arxiv.org/abs/1602.07360

[12] J. Jin, K. Fu, and C. Zhang, ‘‘Traffic sign recognition with hinge loss
trained convolutional neural networks,’’ IEEE Trans. Intell. Transp. Syst.,
vol. 15, no. 5, pp. 1991–2000, Oct. 2014.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classifica-
tion with deep convolutional neural networks,’’ in Proc. NIPS, 2012,
pp. 1097–1105.

[14] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[15] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
pp. 436–444, May 2015.

[16] J. Redmon. (2016). YOLO: Real-Time Object Detection. [Online]. Avail-
able: https://pjreddie.com/darknet/yolo

[17] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. (2018).
‘‘MobileNetV2: Inverted residuals and linear bottlenecks.’’ [Online].
Available: https://arxiv.org/abs/1801.04381

[18] P. Sermanet and Y. LeCun, ‘‘Traffic sign recognition with multi-scale
convolutional networks,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Jul./Aug. 2011, pp. 2809–2813.

[19] M. J. Shafiee, F. Li, B. Chwyl, and A. Wong. (2017). ‘‘Squishednets:
Squishing squeezenet further for edge device scenarios via deep
evolutionary synthesis.’’ [Online]. Available: https://arxiv.org/abs/
1711.07459

[20] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, ‘‘The German
traffic sign recognition benchmark: A multi-class classification compe-
tition,’’ in Proc. IEEE Int. Joint Conf. Neural Netw., Jul./Aug. 2011,
pp. 1453–1460.

[21] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, ‘‘Man vs. Computer:
Benchmarking machine learning algorithms for traffic sign recognition,’’
Neural Netw., vol. 32, pp. 323–332, Aug. 2012.

[22] A. Wong. (2018). ‘‘NetScore: Towards universal metrics for large-
scale performance analysis of deep neural networks for practical
on-device edge usage.’’ [Online]. Available: https://arxiv.org/abs/
1806.05512

[23] A. Wong, M. J. Shafiee, F. Li, and B. Chwyl. (2018). ‘‘Tiny
SSD: A tiny single-shot detection deep convolutional neural net-
work for real-time embedded object detection.’’ [Online]. Available:
https://arxiv.org/abs/1802.06488

[24] B.Wu, A.Wan, F. Iandola, P. H. Jin, and K. Keutzer. (2016). ‘‘SqueezeDet:
Unified, small, low power fully convolutional neural networks for real-
time object detection for autonomous driving.’’ [Online]. Available:
https://arxiv.org/abs/1612.01051

[25] Y. Wu, Y. Liu, J. Li, H. Liu, and X. Hu, ‘‘Traffic sign detection based
on convolutional neural networks,’’ in Proc. Int. Joint Conf. Neural
Netw. (IJCNN), Aug. 2013, pp. 1–7.

[26] Z. Zhong, J. Li, Z. Luo, and M. Chapman, ‘‘Spectral–spatial residual
network for hyperspectral image classification: A 3-D deep learning frame-
work,’’ IEEE Trans. Geosci. Remote Sens., vol. 56, no. 2, pp. 847–858,
Feb. 2018.

ALEXANDER WONG (M’06–SM’16) received
the B.A.Sc. degree in computer engineering,
the M.A.Sc. degree in electrical and com-
puter engineering, and the Ph.D. degree in sys-
tems design engineering from the University of
Waterloo, Waterloo, ON, Canada, in 2005, 2007,
and 2010, respectively. He is currently the Canada
Research Chair of Artificial Intelligence and Med-
ical Imaging, the Co-Director of the Vision and
Image Processing Research Group, an Associate

Professor with the Department of Systems Design Engineering, University
of Waterloo, and a member of the College of the Royal Society of Canada.
He has authored over 450 refereed journal and conference papers and patents,
in various fields, such as computational imaging, artificial intelligence,
computer vision, graphics, image processing, and multimedia systems. His
research interests focus on integrative biomedical imaging systems design,
operational artificial intelligence, and scalable and explainable deep learning.
He has received a number of awards, including twoOutstanding Performance
Awards, the Distinguished Performance Award, the Engineering Research
Excellence Award, the Sandford Fleming Teaching Excellence Award,
the Early Researcher Award from the Ministry of Economic Development
and Innovation, the Best Paper Award at the NIPS Workshop on NIPS
Workshop on Transparent and Interpretable Machine Learning (2017),
the Best Paper Award at the NIPS Workshop on Efficient Methods for Deep
Neural Networks (2016), the two Best Paper Awards by the Canadian Image
Processing and Pattern Recognition Society in 2009 and 2014, respectively,
the Distinguished Paper Award by the Society of InformationDisplay (2015),
the two Best Paper Awards for the Conference of Computer Vision and
Imaging Systems in 2015 and 2017, respectively, the Synaptive Best Medical
Imaging Paper Award (2016), the two Magna Cum Laude Awards and one
Cum Laude Award from the Annual Meeting of the Imaging Network of
Ontario, the AquaHacking Challenge First Prize (2017), the Best Student
Paper at Ottawa Hockey Analytics Conference (2017), and the Alumni
Gold Medal.

MOHAMMAD JAVAD SHAFIEE received the
B.Sc. and M.Sc. degrees in computer science
and artificial intelligence from Shiraz University,
Shiraz, Iran, in 2008 and 2011, respectively, and
the Ph.D. degree in systems design engineer-
ing from the University of Waterloo, Waterloo,
ON, Canada, in 2017. He is currently a Research
Assistant Professor with the Department of Sys-
tems Design Engineering, University of Waterloo.
He has authored over 70 peer-reviewed scientific

articles at top journals and conferences. His research interests include com-
puter vision and machine learning. His main focus is on deep learning,
statistical learning, and graphical models. He has received a number of
awards, including the Best Paper Award at the NIPS Workshop on Efficient
Methods for Deep Neural Networks (2016).

MICHAEL ST. JULES received the B.Math. and
M.Sc. degrees in mathematics from Carlton Uni-
versity, ON, Canada in 2014 and 2016, respec-
tively, and the M.Math. degree in computational
mathematics from the University of Waterloo,
Waterloo, ON, Canada, in 2017. He is currently
a Research Developer at DarwinAI. His research
interests are focused onmachine learning and deep
learning.

59810 VOLUME 6, 2018


	INTRODUCTION
	NETWORK ARCHITECTURE OF MICRONNET
	NUMERICAL MICROARCHITECTURE OPTIMIZATION
	SPECTRAL MACROARCHITECTURE AUGMENTATION
	PARAMETER PRECISION OPTIMIZATION AND ACTIVATION FUNCTION SELECTION
	TRAINING

	EXPERIMENTAL RESULTS AND DISCUSSION
	DATASET
	INFORMATION DENSITY AND NETSCORE
	DISCUSSION
	TOP-1 ACCURACY
	INFORMATION DENSITY AND NETSCORE
	RESOURCE USAGE
	ROBUSTNESS AGAINST IMAGE DEGRADATION


	CONCLUSIONS
	REFERENCES
	Biographies
	ALEXANDER WONG
	MOHAMMAD JAVAD SHAFIEE
	MICHAEL ST. JULES


