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ABSTRACT The rapid development of wireless infrastructure and data acquisition technologies contributes
to the explosive growth of data, especially trajectory data with rich information. Trajectory data, which
records locations of moving objects at certain moments, has long been an important means of studying
human behavior and solving traffic problems. In this paper, we mainly introduce the trajectory data from
the perspective of applications and services. According to the degree of data structured, we divide the
trajectory data into explicit trajectory data and implicit trajectory data, and describe each type in detail.
Then, we introduce the applications of trajectory data from travel behavior, travel patterns, and other
aspects. Combined with case studies, we provide a description to the services of trajectory data in terms
of transportation administration and commercial service. Finally, we focus on challenges in trajectory data,

including privacy protection, human mobility causality, and emission reduction.

INDEX TERMS Trajectory data, human mobility, travel behavior, applications and services.

I. INTRODUCTION

As the information and communication technology develops
rapidly, tremendous volumes of data which are captured by
various Internet of Things (IoT) devices have experienced
exponential growth. In IoT, every data acquisition device
is placed at a specific geographic location and every piece
of data has a time stamp. Time and space are important
dimensions for statistical analysis and their correlation is
an important property of data from IoT [1]. Apart from IoT
services, like Global Position Systems (GPS), Radio Fre-
quency Identification (RFID), Automated Fare Collection
Systems (AFC), GSM beacons, social network data also
contains time and location information to generate trajectory
data.

Trajectory data analysis is of significant practical value.
There are numerous applications and services of trajectory
data for the government, commercial organizations, and indi-
viduals. For the government, trajectory data analysis helps it
to reduce the costs of management and to establish reason-
able strategies for urban planning, e.g., monitoring irregular
behaviors of vehicles, such as overspeed and reverse driv-
ing. Even crime behaviors can be inferred from trajectories.

In urban services, bus and taxi services are vital for citizens’
commuting, and those public services can be optimized by
analyzing historical trajectories. For commercial organiza-
tions, like Didi and Uber, trajectory data analysis can help
understand users’ behaviors to satisfy their needs and to
enhance commercial competitiveness. Moreover, personal-
ized services based on trajectories are of great concern for
customer satisfaction. For individuals, we can understand
residents’ behaviors well by analyzing historical trajectory
data. Some trajectory-based services provided by commercial
organizations bring plenty of conveniences to our daily life.
For example, the real-time traffic detection service ensures
that we can save our time with an optimal route when a traffic
jam occurs. However, people suffer from privacy problems,
like annoying advertisements from unknown sources, if tra-
jectory data is collected inappropriately.

This paper aims to summarize the applications and services
of trajectory data. The rest of the paper is structured as
follows. Section II offers the concepts of trajectory data and
its classifications. A detailed review of trajectory applications
is provided in Section III. Then the services of trajectory data
are described in Section IV. In Section V, the challenges of
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FIGURE 1. Classifications of trajectory data.

trajectory data are discussed. Finally, we conclude this paper
in Section VI.

Il. TRAJECTORY DATA
What is trajectory data? As Zheng [2] defines, the spatial

trajectory is a trace generated by a moving object in geo-
graphical spaces and is usually represented by a series of
chronologically ordered points. Mazimpaka and Timpf also
provide a definition of trajectory data that a trajectory of a
moving object is a discrete trace that the moving object travels
in geographical spaces [3].

In a variety of data, certain types of data display trajectories
of persons, animals, objects and so forth, like GPS data.
There exists such data containing rich spatial and temporal
information. Although they are not the trajectory data we usu-
ally think of, we can extract trajectories from them by basic
data processing operations, such as social data with geotags.
Therefore, trajectory data can be roughly categorized into
explicit trajectory data and implicit trajectory data, as shown
in Fig.1. As the representative of explicit trajectory data, GPS
data records positions of objects continuously and intensively
at uniform time intervals. However, for implicit trajectory
data, the time granularity is relatively large and the distribu-
tion of recorded time points is relatively random, which is
closely related to data sources. In this section, we introduce
the two categories of trajectory data and several types of data
that are quite relevant to trajectory data.

A. EXPLICIT TRAJECTORY DATA
We define explicit trajectory data as a type of well-structured
data which directly provides time and location information
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and have quite strong spatiotemporal continuity. Explicit tra-
jectory data is based on time and locations and GPS data is the
most representative one, which is widely used in researches
of trajectory analysis. Each record of GPS data contains
time, latitude and longitude information, and other additional
information, like speed [4].

B. IMPLICIT TRAJECTORY DATA

Different from the explicit trajectory data, implicit trajec-
tory data has the weak spatiotemporal continuity. More-
over, explicit trajectory data usually has multiple storage
formats. We classify explicit trajectory data into signal-based,
sensor-based, and network-based on the fundamental of data
sources.

1) SIGNAL-BASED DATA

Signal-based data collection requires multiple signal sources
to be distributed in different locations, e.g., routers for
wifi, base stations for GSM, CDR, and IoT equipment
for Bluetooth and RFID. Receiving devices like mobile
phones are also required. A single signal source corre-
sponds to multiple receiving devices. What’s more, for
signal-based data, the range of data acquisition is wide,
while the location accuracy is relatively poor. The fields
of signal-based data tend to be complex, such as device
identification, connection/disconnection time, signal strength
and additional information. Based on signal transmission
distance, signal-based data can be further divided into short
distances, including wifi data, RFID, and Bluetooth data, and
long distance, containing CDR and GSM.
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TABLE 1. The summary of applications of trajectory data in travel behavior, travel pattern, urban planning, and others.

A B C D E F G
Travel Behaviors
Human Mobility Pattern [61, [71, [8], [9], [10], [11], [12] [13], [14], [15] [16],[8]  [17],[16], 9], [18] [6] [8] [17], [11]
Activities Prediction [19], [20], [21] [19] [22], [23], [24] [25]  [22], [20], [21] [19], [20]
Anomalous Detection [26], [27] [28], [26], [29], [31] [27]

[30]

Travel Pattern
Trip Purpose Estimation [32], [33] [34] [35], [36] [371, [32], [33], [36] [34]
Destination Prediction [38], [39], [40], [41] [39], [41] [39]
Route Discovery [42], [43], [44], [45] [46] [42], [43] [43] [43]
Travel Modes Analysis [47], [48], [49], [50] [48] [47], [49]
Others
Urban Functions [51], [52] [53], [51], [54] [55]1  [531, [551, [52]
Time Inference [561, [571, [58], [59] [60] [57] [571, [59]
Environmental Monitoring  [61], [62], [63], [64], [65] [63], [66] [67], [68], [65]

A: Explicit trajectory data (GPS) B: Sensor-based data C: Signal-based data (short distance) D: Signal-based data (long distance) E: Network-based data

F: POI G: Map

2) SENSOR-BASED DATA

Sensor-based data is recorded when the object is passing
by the sensor. For example, the traffic monitor can collect
location information of passing vehicles. Due to the physical
location limit of sensors, the scope of data acquisition is small
and the location accuracy is relatively high. Sensor-based
data records object identity, passing-by time and other addi-
tional information. As a representative sensor-based data,
Automatic Fare Collection (AFC) collect smart card trans-
action data and is used to analyze or to improve public
transportation [5].

3) NETWORK-BASED DATA

With the rise of social sites in recent years, growing social
data with geotags can be obtained, which provides a new idea
for analyzing trajectory data. Such kind of data is uploaded by
users and obtained from the entire internet. Thus, we define
it as network-based data. The data from Facebook and Weibo
is the representative of network-based data. Network-based
data is interesting and can offer additional semantic infor-
mation of events, however, due to the high dependence on
users’ behaviors, there are lots of noises and complex data
preprocessing.

C. RELEVANT DATA

Trajectory data contains a wealth of information. However,
in the analysis of trajectory data, researchers usually integrate
it with other data to achieve effective mining of trajectory
data. Here we introduce two common relevant data, POI
(Point of Interests) data and map data.

POI contains information of actual buildings, such as
hotels, hospitals, supermarkets, and stations. With the appli-
cation of POI data, we can transform the longitude and lat-
itude information into meaningful building information and
provide a reasonable explanation of patterns and phenomena
discovered in trajectory data. The region of interest (ROI),
the area of interest (AOI) and the volume of interest (VOI)
are highly relevant to POI data.
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The trajectory data contains a large amount of geographic
information. Urban road networks and terrain distribution
have a huge impact on the formation of trajectories of moving
objects such as persons and vehicles. Therefore, it is a natural
idea and practice to incorporate the trajectory data into a
map, which contains rich information like road networks to
view the distribution of data. The importance of map data for
trajectory data analysis is not negligible. Google Map, Leaflet
API and Mapbox API are typically practical map tools.

Ill. APPLICATIONS OF TRAJECTORY DATA

The trajectory data has high application value in many fields.
In this section, we provide a comprehensive demonstration
of the application of trajectory data from three main aspects,
human behavior, travel pattern, and others.

As shown in Table 1, we summarize the applications of
trajectory data in human behavior, travel pattern, urban plan-
ning, and others. From the perspective of the classifications
of trajectory data, we can find that the explicit trajectory data,
GPS, is widely used in the applications of trajectory data
because of its clear structure and rich spatiotemporal informa-
tion. Thanks to the characteristic of easy collections, the uti-
lization of sensor-based data and signal-based data (long
distance) are also relatively high in applications. However, for
signal-based data (short distance), such as wifi data and Blue-
tooth data, the characteristic of small scope limits its range
of applications to just human mobility pattern analysis and
time inference. Compared with other applications, anomaly
detection uses sensor-based data, especially video monitoring
data, having high application value. Activities prediction, trip
purpose estimation, and urban function, highly depend on
POI data. And almost all trajectory application count on map
data.

A. TRAVEL BEHAVIORS

As one of the most important research topics, human travel
behavior has attracted the attention of many studies because
of its complexity and variability for a long time. The rich
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information hidden in trajectory data can help understand
human travel behavior and mine interesting mobility patterns
to improve the quality of urban lives. We introduce human
behavior analysis of trajectory data from three aspects:
human mobility pattern, activity prediction, and anomalous
event detection.

1) HUMAN MOBILITY PATTERN

Human mobility pattern analysis is an important sub-area
of human behavior analysis and it can yield insight into
multiple issues like urban planning. Links among individuals
are highly predictable, but the factors which mostly affect the
human mobility are ambiguous. Giannotti et al. [6] provide a
complexity science perspective on human mobility to analyze
multiple variables of human mobility pattern and to predict
the possibility of people’s movements. Shaw et al. [9] intro-
duce human dynamics and the relations with trajectories in
the mobile and big data era in detail.

Based on specific influencing factors of human mobility
and the clear target of analysis, researchers propose effec-
tive methodologies and frameworks to understand human
mobility pattern. Renso et al. [7] present a semantic-enriched
knowledge discovery process to estimate the human mobility
and make it meaningful, which is evaluated in the applica-
tion domain of traffic management and recreation behavior.
Qiao et al. [18] propose a mobility analytical framework to
analyze massive data traffic from the mobile Internet, and
validate the framework with a few common rules.

Human mobility is a broad concept and contains short-
term, median-term and long-term travel behaviors. The
short-term and median-term travel behaviors have high con-
tingency and variability, which makes them more difficult
to study than the long-term travel behaviors. An example
of long-term study is worker commuting. Zhou et al. [13]
conduct a detailed research about how to increase the effi-
ciency of commuting using smart card data in Beijing and
provide the excess commuting framework. Ma et al. [15]
further analyze the individuals’ commuting pattern consid-
ering multi-variables like departure time, travel distance,
and the number of traveling days. Moreover, they provide
an approach to identify commuters and transit commuting
patterns.

2) ACTIVITY PREDICTION

Trajectory data not only intuitively reflects human mobility
pattern but also contains potential information on human
activities in their daily life. Moreover, predicting human
activities can benefit many transportation planners and com-
panies.

For activity prediction, plenty of prediction methods are
specialized and enhanced to apply to the specific cases.
Researchers apply behavior-based algorithms to identify
activity locations and their types from trajectory data by
generating the simulated cell phone dataset in [22]. Besides
the identification of locations and types of activities, Hasan
and Ukkusuri [25] present a data-driven approach based on
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social networks to account for missing activities and provide
an effective technique to infer disaggregate individual activity
patterns.

Hidden Markov Model (HMM) is a stochastic model which
is widely used to infer the activities. Widhalm et al. [24]
propose a method which models the dependencies among
activity types, trip scheduling, and land occupation types
with a Relational Markov Network (RMN) to reveal activity
behavioral pattern, and analyze relational signatures of activ-
ity time, duration, and land occupation. A similar method-
ology proposed by Han and Sohn [19] uses a Continuous
Hidden Markov model (CHMM) coupled with the spatial and
temporal information on trip chains from smart card data and
land-use types to estimate the sequence of activities for each
trip chain.

In recent years, methods of activities prediction tend to
be specific in different areas especially urban transporta-
tion. Guo and Karimi [20] propose a novel methodology for
the prediction of spatial-temporal activities, e.g., the inflow
and outflow of people in neighborhoods/areas during certain
time periods. The results show that prediction methodology
achieves a high accuracy. Zheng and Zhou [21] propose a
transportation prediction model which is not sensitive to time
to examine the scaling laws of spatial visitation frequency and
understand the influence of the built environment.

3) ANOMALOUS EVENT DETECTION

Regular trajectory data own extreme values that deviate
from other observations, that is abnormal data, which car-
ries useful hidden information. In the traffic field, for
example, there are growingly advanced sensing systems pro-
ducing tremendous trajectory data for not only just ana-
lyzing but also detecting the anomalous events/behaviors
violated traffic regulations, such as overspeed, drunk driv-
ing, traffic collision, hit-and-run, hijacking, and unexpected
stops [31].

Before applying anomalous detection algorithms we have
to figure out what are the main issues researchers try
to deal with. Laxhammar and Falkman [27] address some
problems of the detection of anomalous trajectories, e.g.,
the algorithm is designed for offline, insensitive to local
sub-trajectory anomalies, and parameter-laden suffering from
high alarm rates. To handle these issues, lots of algorithms
based on analyzing normal trajectory patterns are proposed.
Piciarelli et al. [28] present an approach, which is based
on single-class Support Vector Machine (SVM) clustering,
to detect anomalous events differing from typical patterns.
Instead of the traditional similarity measurement in anomaly
detection, Chang et al. [26] propose a novel abnormal trajec-
tory detecting model, which is based on the periodic-behavior
rule that moving objects usually follow similar entrances and
exits in their paths. An anomaly model that integrates time,
space, and spatial scale is proposed by Li et al. [29] using a
joint representation of video appearances and it is beneficial
for defining anomalies in various daily contexts, such as
anomaly scale space.
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Different from approaches based on anomaly detection,
approaches based on explicit event/behavior recognition
with semantic interpretations are efficient. For example,
a study [30] defines four types of extreme transit behaviors:
early birds, night owls, tireless itinerants, and recurring itin-
erants. In addition, a framework is developed to identify the
spatiotemporal patterns of four extreme transit behaviors, and
the results are beneficial to public transportation management
for providing public transit services to extreme transit riders.

Human behaviors own complex sequential transition regu-
larities exhibited with time-dependent and high-order nature
and multi-level periodicity. The variability of time and space
in traffic environments brings more complexity to human
mobility in traffic, that is, traffic patterns. Due to the complex-
ity, traffic patterns get more interesting and attract attention
of scholars in various fields. In addition to the three aspects
above, traffic patterns present high academic and practical
values in many sub-fields of urban planning, as well as other
fields, like infectious disease research.

B. TRAVEL PATTERN

Human travel pattern is a crucial part of our daily life. We dis-
play the travel pattern in Fig. 2. We select working, shopping,
going home and others, as our travel purpose, and different
purposes lead to different destinations. Because a pair of an
origin and a destination can not generate a unique route in
urban cities, the route discovery is also important. Besides,
we choose a mode, such as walking, biking, driving or taking
buses, to travel. We give a description of four aspects of travel
pattern, trip purpose estimation, destination prediction, route
discovery, and travel mode analysis.

1) TRIP PURPOSE ESTIMATION

Trip purpose estimation is essential for urban planning,
especially public transportation planning. Krizek [37] pro-
vides a comprehensive perspective on neighborhood services,
trip purposes, and tour-based travel, especially the relation-
ships between neighborhood accessibility and trip purposes.
Besides, tour frequency or complexity is also considered
in analyzing multi-purpose tours. Some researches on trip
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purpose estimation focus on influencing factors. Elldér [69]
confirms that the influence of residential locations on daily
travel distance is highly conditional on trip purposes which
are classified by time-spatial constraints and hypothesized
factors of personal choices. Gong et al. [33] point out a prob-
lem that it lacks semantic analysis of massive trajectory data
is highly valuable for a range of applications and services, and
provide a practical methodology to estimate the trip purposes
of taxi passengers, meanwhile, it enriches the semantics of
trajectory data.

A lot of researches are conducted for the different types
of trajectory data. For the explicit trajectory data, Shen and
Stopher [32] propose an effective process based on GPS data
using additional trip information, such as activity duration
and time of activities. Xiao et al. [36] propose a model for
trip purpose combining artificial neural networks and particle
swarm optimization from GPS data. Besides, the results of
trip purposes are classified to evaluate the performance of this
model.

The implicit trajectory data assumes that every travel
within a trip sequence is based on the origin-destination
matrix. For  the  sensor-based trajectory  data,
Lee and Hickman [34] introduce the practical use of AFC
data to estimate trip purposes and address the problem
of making transit users’ trip purposes sense. As for the
signal-based trajectory data, Alexander er al. [35] extract
daily origin-destination trips by trip purposes using CDR.
They also confirm that land use information can be used to
infer trip purposes.

2) DESTINATION PREDICTION

Destination prediction is essential for many emerging
location-based services such as recommendations from travel
agencies and personalized advertising based on destinations.
In 2013, Xue et al. [38] point out a data sparsity problem
in destination prediction by using common approaches like
deriving the probability of a location being the destination
based on historical trajectories and propose a novel method
named Sub-Trajectory Synthesis (SubSyn), which decom-
poses historical trajectories into sub-trajectories and connect
them into new trajectories. Later in 2015, Xue et al. [40]
improve runtime efficiency and prediction accuracy of Sub-
Syn to validate against a real-world and large-scale taxi tra-
jectory dataset and discuss the data sparsity problem in detail.
Kanno et al. [39] propose a real-time passenger location esti-
mation method using CDRs and a crowdsourcing timetable.

3) ROUTE DISCOVERY

Rapid urbanization and increasing travel demand make route
discovery a critical task for urban planners. Route discovery is
usually based on destination prediction. A practical method-
ology is proposed to predict a personal route over an entire
day from candidate routes generated based on stay points
detected from historical locations using CDRs and GPS
data [42]. Apart from trajectory data, its related data is also
quite useful in analyzing candidate routes. Toole et al. [43]
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present a flexible and efficient system to estimate the travel
demand and the routes most traveled using CDRs and GIS
information, utilize massive raw data to analyze road network
and build an interactive web visualization based on GIS
information to explore road usage patterns and help make
these results of route demands accessible to consumers and
policymakers.

At the methodology level, the approaches of route dis-
covery can be further extended by abstracting road net-
works to graph models. Tang et al. [44] propose a novel
time-dependent graph model to predict the most likely route
within a transportation network to analyze the uncertainty.
Besides time-dependent model, space factors can enhance the
availability of models. Yang et al. [45] present a space-time
trajectory cube, which is organized by origin, destination, and
time, and propose a framework which is used to compute the
important information and extract the fine-grained experience
of drivers from real trajectory data. Probabilistic models are
also suitable for route discovery. Besides, a probabilistic
model is developed to estimate passenger route choices in a
complex metro network [46].

4) TRAVEL MODE ANALYSIS

Travel modes of individuals are becoming increasingly var-
ied with rapidly growing travel demand. Effect factors of
travel modes are significant. Anable and Gatersleben [70]
separately discuss the travel mode choice of work travel
and leisure travel and the results reveal that the variables of
identifying mode users’ evaluations of performance on the
aspects are vitally important to them.

A simple and general approach to estimate travel modes
is based on travel time and speed with clear effect fac-
tors and specific targets. Bohte and Maat [47] propose a
practical method by calculating the average and maximum
speed to identify walking, biking or driving, and using GIS
data like trackpoints to identify other modes of travel which
have similar speed. There also exists another similar study.
Yang et al. [49] propose an innovative method to estimate the
travel information including travel modes, mode-changing
time and location, and other attributes. It analyzes four kinds
of machine learning algorithms for identifying walking, bik-
ing or driving, then proposes a critical point matching algo-
rithm combining individuals GPS data with bus stop GIS
information for better performance.

However, the speed-based methodologies above usually
need trajectory related data like GIS to provide the extra
information which makes it difficult to implement. Therefore,
Zheng et al. [48] provide a comprehensive perspective about
understanding travel modes based on GPS data, and propose
a graph-based post-processing algorithm which is superior to
normal post-processing. Jiang et al. [50] analyze three kinds
of travel modes (taxi, subway, and bus), and point out that
the displacements of taxi and bus trips follow the differ-
ent exponential distribution, or the displacements of subway
follow the gamma distribution. The results of this research are
significant for travel mode estimation.
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C. OTHERS

In this section, we give a detailed introduction of applications
of trajectory data from three aspects which are not assigned
to the above two categories, urban function, time inference,
and environments.

1) URBAN FUNCTIONS

In urban function field, the applications of trajectory data
are of great concern to deal with urban puzzles, especially
for the government. Understanding urban function deeply
can help urban planners to make reasonable policies and to
improve traffic conditions. However, the discovery of urban
functions is challenging due to the massive urban buildings
and complex influencing factors. Zhong et al. [53] propose a
method to estimate urban functions at the building level using
smart card data. A probabilistic framework, which is based
on daily activities can reveal how people use urban space in
reality. Then it is established on the basis of relations among
trips, stops, and buildings. Hu et al. [55] propose a framework
to understand the urban AOI using DBSCAN clustering algo-
rithm, which extracts the distinctive texture information from
geotag photos and analyze the spatial dynamics as well as the
insights derived from urban AOI. Sun et al. [51] provide a
practical community detection method and a comprehensive
analysis of community structure in urban traffic zones in
network science. The results reveal that traffic communities
are also related to the travel demand distribution. As for
influencing factors of urban function analysis, Zhu et al. [52]
point out that streets, as the basic elements of the urban cities,
are significant for depicting urban functions and they discuss
the differences or relationship of the linear street units and
traditional areal units.

2) TIME INFERENCE

Time inference is particularly significant for improving urban
traffic operations, assessing the efficiency and performance
of transportation networks and management systems. It can
not only benefit passengers from accurate time informa-
tion, which brings great convenience to individuals’ daily
life, but also can offer opportunities for travel companies to
make choices for users by minimizing overall travel time.
Mori et al. [58] provide a comprehensive perspective of time
inference and differentiate travel time estimation from travel
time prediction. However, several problems bring resistance
to the analysis of time inference. Data sparsity, an opti-
mal combination of routes to estimate time is hard to find
the query efficiency [57]. For the data sparsity problem,
Sanaullah et al. [59] identify a series of influencing factors,
e.g., GPS sampling frequency, vehicle penetration rate, and
length of the time window, in order to develop a practical
method for travel time estimation. Zhan et al. [56] propose
a data-driven model using large-scale taxi data which lacks
the information of actual paths taken by the drivers, and use
an embedded MNL model to compute the probability of a
given path in the constructed candidate paths. Signal-based
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trajectory data can also be utilized to estimate time of short
distance travel. Abedi et al. [60] propose a method to estimate
the travel time of walkers, runners, and cyclists in the real
scenario by analyzing Wi-Fi and Bluetooth data.

3) ENVIRONMENT MONITORING

The expending of urbanization leads to the increase of
exhaust gas emissions. Researches on environmental pol-
lution based on trajectory data provide critical insights for
a series of future social and environmental implications
on urban transportation management. Fuel consumptions
and emissions of vehicles can be predicted using explana-
tory variables like instantaneous speed and acceleration [61].
An extended Kalman filter algorithm, which contains var-
ious elements including the dynamic model, measurement
equations and the formulation of the EKF, is designed for
the navigational function of a real-time vehicle performance
and emissions monitoring [62]. Using Aggregated Tracking
of GPS-equipped Vehicles data, Chen et al. [64] present a
methodology to analyze the traffic-related air pollution emis-
sions with multiple traffic-related variables. It can estimate
ambient pollutant gases by using a non-linear model that
includes basic dispersion properties and then can validate
them. Considering the impacts of traffic congestion, a novel
framework to quantify air pollution is presented to combine
the localized air quality records from AQS monitors and the
annual pollution reported by the NEI [66]. Luo et al. [65]
present a detailed energy consumption and emissions analysis
in Shanghai, China, and explore related spatial and tem-
poral features of emissions which present a distribution of
dual-core cyclic structure.

IV. SERVICES OF TRAJECTORY DATA

Applications of trajectory data are mainly to solve a specific
problem by a single method. Such problems are abstracted
from real life, academically and idealized. In this section,
we focus on the services of trajectory data. Different from
applications, services are closer to real life. Moreover, a vari-
ety of techniques and methods are integrated to solve practi-
cal problems. It can consider issues from the perspective of
users. So next we provide a comprehensive introduction of
the services of trajectory data from the perspective of two
types of users, such as the government and the commercial
organizations.

A. TRANSPORTATION ADMINISTRATION

The main purpose of the services provided by the urban
administrators is to meet the needs of residents rather than
gain income. Thus, the services of urban management mainly
focus on three aspects: urban planning, public services, and
real-time monitoring.

1) URBAN PLANNING

With the explosive growth of urban population and vehi-
cles’ number, various urban problems being solved emerge
constantly, such as traffic congestion and exhaust emissions.
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In-depth understanding of cities through trajectory data of
residents or vehicles is an effective means of solving urban
problems.

Urban structure planning is a basic and crucial issue in
urban planning, such as land use and transportation network
design. Liu et al. [71] reveal the temporal variations of urban
land use such as features and densities, and characterize traf-
fic source-sink areas by land use features. A two-stage algo-
rithm is presented to plan and design the smart railway trajec-
tory on GIS system considering the distance factor, the con-
struction cost, the altitude factor and the comfortability [72].
By inferring the transportation demand under monitoring
territory, Nanni et al. [73] present a practical process for
transportation planning. A node place model is proposed to
identify the most effective transportation and land use dynam-
ics in station areas by analyzing the spatial relationship with
other transportation and land uses [74]. Using a large sample
of user location data, Pinelli et al. [75] present a data-driven
methodology to design the transit network with spatial reso-
lutions at the level of cell tower locations, which provides a
service that would be effective for all citizens. Su et al. [76]
propose an approach for intra-urban food service planning by
analyzing healthy food accessibility of urban communities
based on the travel time calculations considering the vari-
ables.

Urban infrastructure planning is a long-term process which
requires analysis and consensus of multiple demands and
complex goals. By analyzing the charging demand using the
taxi trajectory data, Shahraki et al. [77] propose a novel model
to select the optimal location of public charging stations for
maximizing the vehicle-miles-traveled. A practical method-
ology is presented for designing large-scale infrastructure,
like Electrical Road Systems, to help urban planners and
decision makers electrify urban transport systems [78].

In a word, based on the trajectory data, urban planning is
more reasonable than the planning done by experience. The
government can provide residents with a more comfortable
travel environment.

2) PUBLIC SERVICE OPTIMIZATION

Public service is a significant part of citizen daily life espe-
cially public transportation services, like buses and taxis.
However, a series of troubles need to be solved to facilitate
public transportation services, and transportation managers
are faced with massive challenges about unstable traffic
conditions, e.g., the mismatch of taxi services and mobility
demand, poor on-time performance and bunching problems
of bus services.

A methodology is presented to deduce passengers’ route
choices, which is important for analyzing passenger services
in terms of travel time [79]. A reliable method is presented
to analyze individuals’ mobility demand and transportation
network services, and accurately identify areas with serious
mismatch problems between travel demand and transporta-
tion services [80]. Farber et al. [§1] compare the mobility
demand and the transit service supply based on travel times,
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and characterize the transit supply using a three-dimensional
transit travel time cube. The results confirm the theory which
is “‘more marginalized groups demand travel between loca-
tions at times of the day that are poorly served by transit™.
A practical methodology for real-time trajectory monitor-
ing is presented to improve taxi services [82]. To quantify
the demand dynamics for supporting optimal taxi services
strategies, Kourti et al. [83] apply dynamic clustering and
“heatmap” analyzing to a complex and realistic GPS dataset
to preliminarily identify the alternative Taxi-Services Strate-
gies in urban cities.

We can trust that in the future, people can not travel without
the help of trajectory data. Trajectory data is a valuable asset
in terms of route planning and taxi services [84].

3) REAL-TIME MONITORING

Trajectory data not only provides urban dynamics of traffic
control but also monitors the spreading of infectious diseases
even human contact pattern. A practical method is proposed
to analyze and evaluate the spatial spreading of infectious
diseases in both sort-scale commuting and long-range airline
traffic [85]. Zhu et al. [86] propose a practical visualization
technique to discover and analyze the time and the position
that people from different locations move into the same places
and make contact. A real-time urban monitoring system is
developed to obtain the instantaneous location of buses and
taxis and collect the traffic voice and data to describe the
traffic statues [87]. Based on the systematic analysis of traffic
requirements, a comprehensive and flexible architecture is
proposed to inform real-time traffic control logic and accel-
erate transportation operation [88]. Zhu et al. [86] propose a
framework to instantly detect suspicious companion vehicles
when they pass through monitoring systems in city.

In short, real-time monitoring is an extremely accurate
application, which needs dynamic real-time trajectory data.
The government can use trajectory data to set up the monitor-
ing and precaution system.

B. COMMERCIAL SERVICES

Commercial organizations provide competitive and attrac-
tive services to maintain a customer base to make prof-
its. For example, compared with taxis, Didi and Uber
can offer a cheap and efficient mode to take short trips.
The personalized recommendation is an effective way to
improve customers’ satisfaction with services offered by
commercial organizations. Trajectory recommendation prob-
lems can be divided into three categories: activity-based
recommendation, GPS-based recommendation and hybrid
recommendation [89]. A comprehensive perspective of rec-
ommendation services based on network-based trajectory
data summarizes the methodologies employed to generate a
recommendation [90]. Leung et al. [91] propose a framework
called collaborative location recommendation by dividing
users to different classes to address two problems of cluster-
ing user location matrix: the difficulty of selecting the optimal
candidate location from numerous similar locations, and the
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time consumption and efficiency of clustering massive loca-
tion matrix.

In addition, a time-location-relationship combined taxi
service recommendation model is proposed to solve the
empty carrying phenomenon and improve the taxi drivers’
profits and satisfy the passengers traveling need [92].
Hwang et al. [93] analyze the vital factors which infect the
quality of recommendation systems, e.g., distance to the rec-
ommended location, waiting time for the next passengers, and
expected fare for the trip. And they discuss the influence of
driver experiences or preferences which are key factors in
detail. In the waiting time aspect, Xu et al. [94] propose a
practical system called Taxi-hunting Recommendation Sys-
tem to pick up passengers efficiently with a short waiting
time. As for distance, Yang et al. [95] propose Adaptive
Shortest Expected Cruising Route algorithm and implement
a novel data structure to improve the performance of recom-
mendation systems.

Different from the government service, the commercial
service aims at gaining profit. With the help of trajectory data,
companies and enterprises can gain the maximum benefit
with minimal resource consumption, and provide the best
service to users.

V. CHALLENGES

In previous sections, we survey several key issues of trajec-
tory data, including the classifications, the applications and
the services of trajectory data. However, there are still many
challenges which are representative of critical directions.
We give some challenges that seem promising for further
research in this section.

A. PRIVACY PROTECTION

The ubiquity of mobile devices and the improvement of
coverage and accuracy for GPS receivers make the privacy
issue a difficult problem. Considering the worst case of track-
ing bound and achieving significant data accuracy, a time-
confusion criterion and an uncertainty-aware path cloaking
algorithm are proposed to hide location samples to overcome
the challenges of failing to provide privacy guarantees in a
low-density area [96]. Hoh er al. [97] develop a system based
on virtual trip lines which can indicate where vehicles provide
location information and utilize associated cloaking tech-
niques to avoid the particularly privacy sensitive locations.
Hwang et al. [98] present a novel time-obfuscated algorithm
for trajectory privacy protection which combines ambient
conditions to cloak location information and is able to prevent
malicious LBS reconstructing trajectory. A new trajectory
privacy-preserving framework is proposed by Gao et al. [99]
and this framework improves the mix-zones model con-
sidering the time factor, and evaluates the effectiveness
on the basis of information entropy with previous models.
Theodorakopoulos et al. [100] present a method to achieve
location privacy-preserving mechanisms considering the pre-
dictability of passengers’ whereabouts and sequential cor-
relation. This method is the first to protect the privacy of
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transitions between locations. Considering the density of
trajectories and diversity of users, a methodology is pro-
posed to produce a privacy-preserving heat map with user
diversity [101].

At present, none of the existing privacy-preserving
task allocation mechanisms can provide personalized loca-
tion protection considering different protection demands
of workers. Wang et al [102] propose a personalized
privacy-preserving task allocation framework for mobile
crowdsensing that can allocate tasks effectively while pro-
viding personalized location privacy protection. Besides,
Wang et al. [103] study the problem of real-time crowd-
sourced statistical data publishing with strong privacy pro-
tection under an untrusted server. They propose a novel
distributed agent-based privacy-preserving framework that
introduces a new level of multiple agents between the users
and the untrusted server.

B. HUMAN MOBILITY CAUSALITY

There are lots of studies about the changes of human mobility
and the influence factors. Araki et al. [11] conduct a basic
analysis of the impacts of seasonal factors on human mobility
by using random forest model and GSP data. The global or
local spatial variation and correlation of urban human mobil-
ity are revealed by Li et al. [12]. Briand et al. [14] analyze
year-to-year changes in passengers’ mobility pattern in public
transport using smart card data. Feng et al. [104] provide
multi-variate analysis about mode choice for commuting and
shopping-leisure trips and daily travel distance using the
data of 2008-2011 in Nanjing. Co-occurrence pattern is an
interesting human mobility pattern, which means people from
different places visit the same urban regions at same time
intervals and can be mined from GPS data and CDR [105].
However, while a lot of influence factors of human mobility,
it is still hard to describe and predict the human mobility.
In the future, researchers need to develop standard rubrics and
benchmarks for evaluating these different factors.

C. EMISSION REDUCTION

With the development of motor vehicles, the estimating total
emission and local contributions of carbon emission are also
worth to be studied. Nowadays, although researchers have
present many methods to decrease the carbon emission, there
is still a long way to get satisfactory results.

Novel detection models can be built by combining
sensor-based trajectory data and related data. Wang et al. [67]
develop a GIS-based software to identify potential sources
from long-term air pollution utilizing various trajectory sta-
tistical analysis methods. An online model is proposed for
air pollution monitoring using the GPRS public network and
adopts the data of pollutant gases such as CO, NO;, and SO»,
which are collected by city buses, and transmitted through
Google Maps to make the data available [63].

As for local contributions of carbon emission,
Liu and Wang [68] present a multiproxy allocation system
to identify and map local contributions of carbon emissions
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from urban motor and metro transports, meanwhile they
use a top-down approach to allocated local carbon-emitting
quantities from total, per capita, and per unit perspectives so
as to reveal the spatial differences between these perspectives.
This study provides insights into the effective and reasonable
allocation of transport carbon emissions on local.

VI. CONCLUSION

In this paper, we provide a literature review on categories,
applications, service and privacy protection of trajectory data.
At first, we introduce the concepts of trajectory data and
classify the trajectory data by the data forms into explicit
trajectory data and implicit trajectory data. Then we offer a
systematic review of applications of various trajectory data.
Many issues still exist in the applications of trajectory data,
e.g., data sparseness, and the efficiency of processing and
querying massive trajectory data. However, the development
of data acquisition technologies and methodologies of tra-
jectory data mining can solve these problems to some extent
in the future. Additionally, we provide a comprehensive per-
spective on the services of trajectory data that is discussed in
detail both from the aspects of the government and commer-
cial organizations. Finally, the significant challenges in the
trajectory data analysis are discussed in detail as well.
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