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ABSTRACT This paper proposes a 3-D local pose estimation system for a small Unmanned Aerial Vehicle
(UAV) with a weight limit of 200 g and a very small footprint of 10 cm×10 cm. The system is realized
by fusing 3-D position estimations from an Ultra-Wide Band (UWB) transceiver network with Inertial
Measurement Unit (IMU) sensor data and data from a barometric pressure sensor. The 3-D position from the
UWB network is estimated using Multi-Dimensional Scaling (MDS) and range measurements between the
transceivers. The range measurements are obtained using Double-Sided Two-Way Ranging (DS-TWR), thus
eliminating the need for an additional clock synchronization mechanism. The sensor fusion is accomplished
using a loosely coupled Extended Kalman Filter (EKF) architecture. Extensive evaluation of the proposed
system shows that a position accuracy with a Root-Mean-Square Error (RMSE) of 0.20 cm can be obtained.
The orientation angle can be estimated with an RMSE of 1.93◦.

INDEX TERMS DecaWave, extended Kalman filter, pose estimation, UAV, UWB.

I. INTRODUCTION
The DLR Space Agency’s Valles Marineris Exploration
(VaMEx) mission aims to explore the Valles Marineris on
planet Mars, an area that is poorly investigated due to the
challenging topology in this region with deep canyons and
high mountains. The mission concept foresees the use of an
autonomous swarm of agents with different types of locomo-
tion. Multiple Unmanned Aerial Vehicles (UAVs) as well as
Unmanned Ground Vehicles (UGVs) will be deployed from
a lander system [1]. All swarm members act in a cooper-
ative way, i.e. some members explore the terrain inform-
ing the other members about the location of interesting
features.

Within VaMEx, the Local Ad-hoc Positioning and Landing
System (LAOLa) project focuses on the development of a
reliable navigation concept for a later mission on Mars [2].
Due to the conceptional character of this project, its focus
is rather on the development of suitable algorithms than
on the deployment of radiation hardened and space proofed
hardware. One goal of LAOLa is to implement reliable com-
munication and a Local Positioning System (LPS) between
all agents and the lander. Furthermore, the lander should be
able to estimate a global position, thus allowing to reference
all agents globally, too.

A. RELATED WORK
Although, LPS methods based on Ultra-Wide Band (UWB)
technology are well researched and commercial solutions
are already available, use case scenarios are mostly targeted
towards warehouse and industrial applications [3]–[7]. Those
applications assume approximately static but cluttered envi-
ronments where additional a priori known information, such
as existing maps as well as the exact position of the so called
UWB anchors are available. Infrastructure that allows a reli-
able communication between the anchors without occupying
additional bandwidth exists usually. Another major branch
of UWB based navigation research focuses on the seamless
transition between and the combination of different navi-
gation systems. The investigated scenarios typically focus
on multi path prone and GNSS denied environments where
UWB measurements are combined with GNSS observations
and navigation data from other systems, such as optical
and intertial navigation systems [8]–[11]. With the avail-
ability of cost efficient and miniaturized UWB transceivers,
in recent years, the research focus shifted towards the inte-
gration of UWB transceivers for navigation purposes on
small UAVs.

Especially on small UAVs, the high vehicle dynamics,
the very limited computational power and the hard real-time
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FIGURE 1. Different anchor configurations for UWB localization: Tiemann et al. [12] (right), Ledergerber et al. [13] (left), and
in this paper (middle). Anchors with a similar height have the same color.

constraints as well as the required accuracy demands are
challenging.

Tiemann and Wietfeld [12] describe a LPS for a scalable
multi agent UAV system in a warehouse scenario. For each
agent-anchor pair Time Difference of Arrival (TDOA) mea-
surements are obtained and fused in an Extended Kalman
Filter (EKF). In order to obtain valid TDOA measurements
the UWB anchors are wirelessly synchronized [14]. In their
research, the fixed anchors operate as receivers, whereas the
UAVs initiate the TDOA range measurements. The UAV’s
relative orientation between the LPS-coordinate frame and
the UAV body frame is obtained using an external optical
tracking system. In the setup proposed in [12] eight anchors
are used for the localization while an additional anchor is
needed for time synchronization. The implemented system is
based on a Parrot Bebop, running the low-level UAV control
and Linux. A dedicated micro processor for collecting UWB
range measurements was used.

A similar approach was chosen by Ledergerber et al. [13].
However, in their work the fixed anchors initiate Time of
Arrival (TOA) measurements sequentially, while the UAV
acts as receiver. The advantage of their approach is a higher
scalability since the system performance depends on the num-
ber of anchors rather than on the number of UAVs. Both,
a TDOA and a TOA approach are investigated. Additionally
to the UAV position and attitude, the rotation between the ini-
tial and the body frame is estimated in an EKF. The EKF was
originally proposed in a previous publication byMueller et al.
[15] but utilized Two-Way Ranging with Multiple Acknowl-
edgements (TWR-MA) measurements instead. Again, eight
anchors were used for localization. The system is based on the
Asctec Hummingbird, a commercial drone with a dedicated
low-level flight processor and a high level processor running
Linux. The Hummingbird was additionally equipped with a
Pixhawk Flight Controller for UWB pose estimation.

This paper focuses on a small footprint UAV’s pose esti-
mation based on UWB Components-Off-The-Shelf (COTS)
transceivers. On this small UAV only a single embedded pro-
cessor is used for attitude estimation, UWB pose estimation,
UAV flight control and data logging. While a higher number
and a uniform distribution of anchors decrease the position
inaccuracy of an UWB based navigation system, the com-
munication effort increases drastically. With only four UWB

anchors, a minimal configuration of anchors will be used that
allows a valid 3D position estimation with low communica-
tion load. A comparison of different anchor configurations in
typical test scenarios is given in Figure 1.

FIGURE 2. UAV pose estimation based on DS-TWR. After the configuration
of the fixed anchors is obtained (dotted lines), only the position of the
UAV is estimated (blue lines).

The anchor constellation as well as the UAV position are
estimated usingDouble-Sided Two-WayRanging (DS-TWR)
and Multi-Dimensional Scaling (MDS). In a loosely-coupled
EKF, the UAV position, accelerometer, gyroscope and mag-
netometer data from the IMU as well as barometer mea-
surements are combined. In a future Mars scenario, the mag-
netic heading has to be replaced by another reference system
since there is no global magnetic field available for navi-
gation on Mars. Since the exact position of the anchors is
initially not known within the LAOLa scenario, the full UWB
node constellation will be initially estimated using DS-TWR,
however, during the UAV flight, only the signal propagation
times between the UAV and the anchors are measured using
DS-TWR (see Figure 2).

II. SYSTEM ARCHITECTURE
The proposed system is based on a non-commercial UAV
with a footprint of 10 cm × 10 cm and a weight of less than
200g which was developed at the University of Würzburg.
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Inter-board connectors routing various interfaces of the main
processor allow to easily add different sensors and interfaces,
such as WiFi, GPS or a SD-Card. The UAV’s autopilot runs
on board a cortex M4 processor using the Real-time Onboard
Dependable Operating System (RODOS) [16]. The configu-
ration shown in Figure 3 includes the following components:
• Micro-processor (STMicroelectronics: STM32F407VG)
• Accelerometer, Gyroscope, Magnetometer (STMicro-
electronics: LSM9DS1)

• Barometer (Measurement Specialties: MS5611)
• UWB transceiver (DecaWave: DWM1000)
• Remote receiver (Spektrum: DSMX)
• Electronic speed controller (Sunrise: Cicada-30A-4in1)

FIGURE 3. UAV platform used in this work.

A. COORDINATE SYSTEMS
Figure 4 gives an overview of coordinate frames that are
relevant for this work. The body frame is fixed to the UAV

FIGURE 4. Important coordinate frames for this work: DecaWave frame
(d ), Navigation frame (n), the body frame (b), the translated DecaWave
frame (d ′) and the projected body frame (b′). A possible UWB anchor
configuration is shown: ID0 (grey), ID1 (red), ID2 (green), ID3(blue).

and its xb-axis is aligned to the UAV longitudinal axis, its zb-
axis is perpendicular to the UAV center plate and intersects
with the UAV’s center of gravity. Its yb-axis is chosen to be
right-handed orthogonal.

The origin of the navigation frame is the position of the
ID0 UWB anchor. Its xn-axis is pointing towards magnetic
north, and its zn-axis in the opposite direction of the Earth’s
gravitational force. The yn-axis is again right-handed orthog-
onal.

The DecaWave frame is constructed based on the position
of the UWB anchors. For simplicity it is assumed that the
anchors ID0, ID1 and ID2 are in the same height on a plane
ground and approximately construct a right-handed coordi-
nate frame while the anchor ID3 is above that plane. Based
on those assumptions, the xd -axis is defined by the ID0-
ID1 anchor line of sight and the xdyd -plane is defined using
anchor ID2 and the direction of the zd -axis using anchor ID3.

Consequently, the origin and the z-axis of the DecaWave
frame and the navigation frame are identical. However,
the two frames are rotated against each other about a fixed
but unknown angle φ. Since the UAV’s position control relies
on measurements in the body frame, position estimates in
the DecaWave frame have to be rotated into the body frame.
In this approach we do not attempt to estimate φ directly,
but rather the rotation angle θ between the projection of the
xb-axis onto the xnyn-plane of the navigation frame and the
virtual xd

′

-axis using an Extended Kalman Filter. The axes
of the translated DecaWave frame are parallel to the axes of
the DecaWave frame, but the origin is the projection of the
UAV’s center of gravity onto the xnyn-plane.
The approach proposed in this work is summarized in

Figure 5. Measurements of the accelerometer yba, the gyro-
scope ybg and the magnetometer ybm are combined to esti-
mate the UAV’s attitude using the approach described in
[17]. Additionally to the attitude quaternion qnb, the bias-
free rotational velocity of the UAV ωb is also estimated. The
output of the Attitude Heading Reference System (AHRS) as
well as the low-pass filtered accelerometer rawmeasurements
ŷba are used to propagate the pose estimation EKF. Using
the UWB network, distance measurements di between the
relevant nodes are collected. Using MDS, the constellation
of the UWB network is calculated and therefore the position
of the UAV relative to the UWB anchors is known. Both,
the UAVposition ydUWB and the barometric height information
ybaro are used in the EKF update steps.

B. DOUBLE-SIDED TWO-WAY RANGING
The distances between UAV-anchor pairs and anchor-anchor
pairs are obtained using Double-Sided Two-Way Ranging as
described in DecaWave’s application note [18]. The main
advantage of DS-TWR is to measure the time of flight toF
between two UWB instances without the need for an addi-
tional clock synchronization. However, compared to other
methods, such as TOA or TDOA based approaches, more
communication between the UWB nodes is required lead-
ing to a higher bandwidth utilization which decreases the
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FIGURE 5. Proposed UWB localization system architecture.

measurement rate. Nevertheless, with four anchors and a
single UAV, a maximum rate of about 5 Hz was achieved,
which is comparable to the update rate of low cost GNSS
receivers that are commonly used in commercial UAVs.

FIGURE 6. Timestamps and communication required for a single
UAV-anchor pair using DS-TWR.

Figure 6 summarizes the communication flow for a single
UAV-anchor pair. The DS-TWR is initiated by a poll message
sent from the UAV addressing an anchor with a certain ID.
The transmitting time tsp and the receiving time trp are logged
before the anchor with the correct ID responses to the poll
message. Again, the transmitting time of the response tsr as
well as the receiving time of the response trr are logged on the
anchor and the UAV, respectively. The distance measurement
is finalized with a third message reporting the times measured
by the UAV to the anchor. The third message includes its own
transmission time stamp tsf . Using the time measurements
received from the UAV, the previously recorded timestamps
as well as the receiving time of the final message trf the time
of flight for a message between both nodes can be computed
by:

toF =

(
trr − tsp

)
(tsr − trr )−

(
tsr − trp

) (
trf − tsr

)
tsf − tsp + trf − trp

(1)

Using the speed of light in air, the distance between both
nodes can be easily calculated with:

d = toF · cair (2)

Once the distance between a node pair is calculated,
the result is reported back to the UAV, resulting in a total
number of four messages per distance measurement. In addi-
tion to those four messages, mechanisms to coordinate the
channel utilization and the communication between all nodes
are required. In the proposed approach, the UAV itself acts as
master, initiating distance measurements to the other anchors
sequentially. Before take-off, the distance measurements col-
lected for the fixed anchors are averaged. Once the UAV is
air born, only the distances between the UAV and the fixed
anchors are measured.

C. MULTI-DIMENSIONAL SCALING
UsingMulti-Dimensional Scaling, particularly classical scal-
ing, which was first introduced by Torgerson [19], and the
distance measurements dij obtained with DS-TWR, the full
UWB node configuration can be estimated. In our approach,
the algorithm determines a set of 3-dimensional points
x1, ..., xN ∈ R3 for each UWB node with ID i = 1, ...,N ,
in such a way that the difference between the observed dis-
tances dij and the computed distance

∥∥xi − xj∥∥ is minimized.
In order to determine the best fitting set, the loss function in
Equation 3 was introduced by Kruskal [20]:

lossd (x1, ..., xN ) =

√√√√√ N∑
i=1,i6=j

(
dij −

∥∥xi − xj∥∥)2 (3)

The loss function can be efficiently minimized using a
gradient descent approach, iteratively moving the 3D point
estimates x1, ..., xN until a suitable set is found. Since the
points of the solution are not referenced to the DecaWave
frame, the estimated constellation is transformed according
to the setup of the DecaWave frame described in Section II.

D. EXTENDED KALMAN FILTER
The position estimate obtained from the MDS algorithm,
inertial navigation data measured on the UAV and the UAV’s
barometric altitude are combined in an Extended Kalman
Filter in order to estimate the UAV’s position and velocity
in the DecaWave frame. Furthermore, the rotation angle θ
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between the UAV fixed body frame and the DecaWave frame
is estimated.

1) MEASUREMENT MODELS
The MDS UAV position estimate is assumed to have Addi-
tivie White Gaussian Noise (AWGN) only. The position
measurement model ydUWB is therefore the sum of the actual
position pd and additive noise υUWB with a variance σUWB2:

ydUWB = pd + υUWB (4)

The IMUprovides 3-dimensional gyroscope and accelerom-
eter measurements in the UAV’s body frame. The gyroscope
measurement ybg can be modeled by:

ybg = ω
b
+ bg + υg (5)

where ωb is the angular rate in the body frame, bg is the
temperature depended gyro bias and υg is AWGN with a
variance of σg2.
The low-pass filtered accelerometer measurement ŷba is

modeled as:

ŷba = ab − gb + ba + υa (6)

where ab is the acceleration acting on the UAV, gb is the
Earth’s gravity vector expressed in the body frame, ba is the
accelerometer bias and υa is AWGN with a variance of σa2.
Finally, the barometric altitude measurement ybaro can be

modeled as:

ybaro = ρbaro +1z+ υbaro (7)

where ρbaro is the height of the UAV, 1z is the known
altitude offset between the DecaWave frame and barometric
height and υbaro is AWGN with a variance of σbaro2.

2) SYSTEM PROPAGATION MODEL
Additionally to the position pd , the velocity vd and the rota-
tion angle θ , the accelerometer bias should be estimated.
In order to reduce the EKF complexity we do not estimate
the accelerometer bias in the body frame but rather in the
projected body frame bb

′

a where the zb
′

-axis is aligned with
the Earth’s gravity vector. The full EKF system state x̂(k|k)
at the time k is therefore given by:

x̂(k|k) =
[
pd (k|k)T vd (k|k)T θ(k|k) bb

′

a (k|k)
T
]T

(8)

The system state is propagated at a fixed rate which corre-
sponds to the sampling time1t of the IMU. The system prop-
agation is modeled by a non-linear function that depends on
the previously known state, the accelerometer measurement
in the projected body frame yb

′

a and the rotational velocity
around the zb

′

-axis ωb
′

z :

x̂(k + 1|k) = f
(
k,1t, x̂(k|k), ŷb

′

a (k), ω
b′
z (k)

)
(9)

In Equation 9, yb
′

a and ωb
′

z are obtained by utilizing the atti-
tude quaternion qnb and the bias-free rotational velocity ωb

that were previously estimated using the AHRS as depicted

in Figure 5. The two required EKF inputs are calculated by
rotating the raw measurement yba and the bias-free rotational
velocity ωb around the roll and pitch angle that are encoded
in the quaternion qnb.
In detail, the complete system propagation is given by the

following set of equations:

pd (k + 1|k) = pd (k|k)+1t · vd (k|k)

+
1
2
1t2Rz(θ (k|k))·(ŷ

b′
a (k)−b

b′
a (k|k)) (10)

vd (k + 1|k) = vd (k|k)

+1tRz(θ (k|k)) · (ŷ
b′
a (k)− b

b′
a (k|k)) (11)

θ (k + 1|k) = θ (k|k)+1t · ωb
′

z (k) (12)

bb
′

a (k + 1|k) = bb
′

a (k|k) (13)

where Rz(θ ) is simply the rotation matrix around the z-axis
for a given angle θ :

Rz(θ ) =

cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 (14)

The system state covariance matrix P is propagated using
the following equation:

P(k + 1|k) = ∇Fx(k)P(k|k)∇Fx(k)T

+∇Fu(k)U∇Fu(k)T (15)

where ∇Fx and ∇Fu are the Jacobians of the system
prediction function f with respect to the system state x̂(k|k)
and the system input u, respectively.
The Jacobians of the system prediction function are there-

fore:

∇Fx(k) =
∂f (k)
∂x

∣∣∣∣
x=x̂(k|k)

(16)

∇Fu(k) =
∂f (k)
∂u

∣∣∣∣
u=
[
yb
′

a (k) ω
b′
z (k)

]T (17)

The noise matrix U is given by:

U =

σ 2
a 0 0
0 σ 2

a 0
0 0 σ 2

g

 (18)

3) MEASUREMENT UPDATES
Measurement updates can occur at different times and are
integrated into the EKF at their respective rates, i.e. a new
position measurement ydp is received every 200ms and the
barometric height ybaro is measured every 30ms. The mea-
surement update for the system state and the system state
covariance are given by the following equations:

x̂(k + 1|k + 1) = x̂(k + 1|k)+W (k + 1)

·
(
zi(k + 1)− ẑi(k + 1|k)

)
(19)

P(k + 1|k + 1) = P(k + 1|k)

+W (k + 1)Si(k + 1)W (k + 1)T (20)
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where zi is the latest measurement and ẑi is the current
measurement prediction.W is the Kalman Filter gain and Si
is the residual covariance matrix. Depending on the sensor
source, we can select i ∈ {UWB, baro}. The Kalman Filter
gain and the residual covariance are given by:

Si(k + 1) = H i(k + 1)P(k + 1|k)H i(k + 1)T + Ri (21)

W (k + 1) = P(k + 1|k)H i(k + 1)TSi(k + 1)−1 (22)

where H i is the matrix that predicts the next measurement
based on the current state estimation and Ri is the respective
sensor noise term.

The measurement prediction matricesHUWB andHbaro are
simply:

HUWB =

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0

 (23)

Hbaro =
[
0 0 1 0 0 0 0 0 0 0

]
(24)

The measurements and the corresponding noise matrices
are given by:

zUWB = ydUWB, RUWB = diag
(
σ 2
UWB

)
(25)

zbaro = ybaro −1z, Rbaro = σ 2
baro (26)

4) EKF INITIALIZATION
In order to detect whether θ is estimated correctly, multiple
instances of the proposed EKF run simultaneously. While
the same measurements are used, the filters are initialized
with different start values for θ . Additionally, the assumed
gyroscope noise in the system propagation noise covariance
matrix U is increased, in order to allow the EKF instances
to converge faster. Once all filters converged within a certain
threshold towards a common value, the assumed gyroscope
noise is decreased to its original value again and only a single
EKF instance continues to run. Figure 7 shows the estimated
θi from three different EKF instances during an ideal circular
calibration maneuver. The convergence criteria for N EKF
instances and a threshold of δTh is:

N∑
i=1

θi − N∑
j=1

θj

N

 < δTh (27)

FIGURE 7. θ estimates from a simulation for the three EKF instances. The
three initial estimates are at

{
−120◦,0◦,120◦

}
and converge within 20 s.

III. RESULTS
The proposed system was implemented on a single processor.
Using the IMU data, the EKF was propagated at 200Hz,
while the DecaWave position and the barometric height mea-
surement updates were integrated at their sampling rates
of 5Hz and 30Hz, respectively. Both experiments presented
in this section were conducted in the indoor flight cage of the
University of Würzburg as shown in Figure 8.
For reference, the UAV’s true position was determined

using the OptiTrack Flex 3 optical tracking system and its
data was logged using an external ground station while the
EKF states were logged using a SD card extension on the
UAV. Both systems, the UAV and the ground station, were
time synchronized. In order to evaluate the proposed system,
two different scenarios were investigated. First, the qual-
ity of the UAV’s rotation angle θ estimation is analyzed.
Therefore, after a random, manual calibration flight for EKF
convergence, the UAV is commanded to hold its position
while the EKF states are logged utilizing the DecaWave posi-
tion estimates as position control-loop feedback. The second
experiment examines the UAV’s position accuracy. In this
setup no initial calibration flight is performed but the UAV is
commanded to follow a specific path with a fixed orientation
using optical tracking data as reference instead.

A. ROTATION ANGLE ESTIMATION
This experiment can be divided into two stages. During the
first stage, the UAV is commanded manually to allow the
three simultaneously running EKF instances to converge. In
the second stage, which begins shortly after the θ estimates
converged, the UAV is commanded to hold its position using
the EKF position and velocity estimate. The results of this
experiment are outlined in Figure 9.

Flying a random pattern, the three EKF instances take
almost 65 s to converge. Once a valid θ estimate is found,
the error between the EKF estimate θ and angle measured
with the optical tracking reference system remains within a
3.5◦ error band with a RMSE of 1.93◦. The θ error quantiles
are compared for the first stage, the second stage and the
complete experiment in Table 1. Table 2 outlines the position
error quantiles during the first stage, while Table 3 gives the
error quantiles during the second stage. The horizontal RMSE
during the second stage is found to be 0.12 cm and the 3D
position RMSE is 0.19 cm.

TABLE 1. θ Error quantiles.

Comparing both tables, it can be clearly seen that the error
quantiles during the second stage are smaller than during
the manual calibration flight. There are two reasons for this
observation. First, the estimated θ angle is more accurate and
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FIGURE 8. Indoor flight cage at the University of Würzburg.

FIGURE 9. Position pd and rotation angle θ estimated using the proposed EKF (blue) compared to the optical
tracking reference (red). The time needed for the filter to converge is indicated using a gray background and
ends approximately 65 s after take off.

therefore the system state propagation equations 10 and 11
are a more reliable estimation of the true system propagation.
Second, the position accuracy of the UWB MDS algorithm

depends heavily on the system dynamics, sinceMDS assumes
that the distances are obtained simultaneously. However,
the measurements are obtained sequentially and each of the
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FIGURE 10. Each axis plot individually during the second experiment: The optical reference system (red) and the
EKF position estimate (blue). A systematic error can be observed for each axis.

TABLE 2. Error quantiles during the first stage of the first experiment.

TABLE 3. Error quantiles during the second stage of the first experiment.

measurements is error afflicted due to the movement of the
UAV. Consequently, there is a systematic error in the MDS
position estimation, which increases with the system dynam-
ics. During position hold, the UAV is able to remain within
a 3σ bound of 0.15 cm in x and y direction and 0.30 cm in z
direction.

B. REAL-TIME LOCATION SYSTEM ACCURACY
In the second experiment we evaluate complete proposed
Real-time Location System accuracy with higher system
dynamics. Therefore, the UAV is commanded to fly on
a predefined circular trajectory with 1m/s utilizing the
optical tracking system as trajectory reference for the
UAV control.

The optical tracking position measurements are transferred
to the UAV wirelessly in real-time using a second UWB
module whereby, in order to avoid UWB cross talk, one UWB
channel is applied for communication and another one for the
distance measurements.

The error quantiles for this second setup are outlined
in Table 4. Themean horizontal position RMSE is found to be
0.18m while the RMSE for the mean 3D position is slightly
higher with 0.20m.

TABLE 4. Error quantiles during the second experiment.

Figure 11 shows the horizontal trajectory of the UAV
and the UWB anchor positions. From Figure 11, an error
can be observed which most likely correlates to the three
anchors that are in the same height and the orientation of the
UAV UWB antenna. During the transition form one anchor
to another, the position estimate differs from the reference
trajectory, while they are in close agreement once the UAV is
close to one of the anchors.

The systematics of this error can also be observed if
each axis is plotted individually as in Figure 10. The most
likely explanation is the antenna orientation on board the
UAV and therefore a non-isotropic antenna radiation pat-
tern which is additionally distorted by the influence of UAV
structure. Since the UAV’s attitude remained constant during
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FIGURE 11. 2D trajectory during the second experiment: The optical
reference system (red) and the EKF position estimate (blue). Additionally,
the anchor positions are indicated (x). The anchors in yellow are at a
common height of approximately 0.3 m, while the purple anchor is at a
height of 4.1 m.

this experiment, depending on the UAV position, different
anchors have different visibility which causes anchors that
are not in a direct line of sight to the antenna to be more error
afflicted resulting in degraded distance measurements.

IV. CONCLUSION
This paper presents an approach for a 3D local pose
estimation for a small UAV using a single embedded pro-
cessor for attitude and pose estimation, collecting UWB dis-
tance measurements, UAV flight control and data logging at
200Hz. The proposed approach estimates the UAV position
using MDS and additionally the UAV’s rotation between the
UWB based coordinate frame and the UAV body frame. The
range measurements required for MDS are obtained using
DS-TWR, thus eliminating the need for an external clock
synchronization mechanism. A major drawback of the pro-
posed approach based on DecaWave modules is the increased
bandwidth utilization required for a single distance measure-
ment. In terms of scalability, an approach similar to the one
described by [13] is definitely favorable.

Additionally, the distance measurements are obtained
sequentially while MDS assumes that the distances were
obtained simultaneously, resulting in a systematic error that is
depended on the vehicle dynamics. However, for low vehicle
dynamics, the position can be estimated with a RMSE of
0.19mwhile it is slightly higher at 0.20m considering vehicle
dynamics of up to 1m/s. These observations are consistent
with the conclusions drawn by [12] and [13]. Compared to
the systematic errors introduced by a non-isotropic radiation
pattern, the systematic errors based on the sequential distance
measurement are small.

The rotation between the UWB based coordinate frame
and the UAV body frame can be reliable estimated with a
RMSE of 1.93◦. Depending on the calibration flight maneu-
ver, different convergence times for the rotation estimate were
achieved. While a detailed classification was not carried out
within the scope of this work, circular calibration flights with
a continuous change in the UAV’s orientation showed to be
more effective regarding the convergence time.
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