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ABSTRACT Bone-conducted (BC) speech can be used to communicate in a very high noise environment.
In this paper, a method of improving the quality of BC speech is presented. The speech signal of a speaker is
passed through a novel dictionary representation-based encoder-decoder model. In the encoder, our designed
non-negative and sparse long short-term memory (LSTM) recurrent neural network is deployed to generate
combination coefficients on the dictionary established by sparse non-negative matrix factorization. Then, the
decoder is designed and utilized to enhance the dictionary representation based on local attentionmechanism.
Two optimizers are adopted when training the model as a whole and the encoder is pre-trained individually to
make the convergence faster. In experiments, we compare the proposed method with direct transformations
via DNN and LSTMnetworks, and numerous criteria are used for evaluation. Objective and subjective results
demonstrate that our method behaves better and achieves satisfactory performance even when coping with
some challenging cases.

INDEX TERMS Speech enhancement, bone-conducted speech, long short-term memory, attention
mechanism, non-negative matrix factorization.

I. INTRODUCTION
Bone-conducted (BC) microphone utilizes the vibration
of human body like throat [1], skull [2], the skin backed
the ear [3] to conduct electrical signal, and then the
speech is immensely robust even in severely degraded
environments [4]. The BC microphone is widely used in the
communication system of military equipments like tanks or
helicopters, and also has well applications for civil activities,
such as forestry, oil exploration and production, mine, special
agent, emergency rescue and so on. It can satisfy the needs
in special situations, nevertheless, its intelligibility is lower
than air-conducted (AC) one as it faces severe degradation of
high-frequency components due to the attenuation of human
body channel [5], [6], or loses some phonemes like unvoiced
fricatives, plosives and affricates [7], which are generated in
human oral cavity.

In most cases, BC microphone plays an auxiliary
role in improving the quality of AC speech in noise
environments [12], [13]; on the other hand, AC microphone
is needed to help enhance BC speech [9], [11]. But in a
few cases, it is meaningful to enhance the BC speech inde-
pendently, because the corresponding AC speech can be

completely unintelligible in some extreme situations, such
as in forge shops with strong noise. To our knowledge,
the approaches for enhancement can be summarized into
three categories: bandwidth extension, equalization method
and source-filter model. In the first one, the high and low
frequency components in the speech are regarded to have
the same harmonic structures, so the low-frequency spec-
trum can be expended directly to recover the high-frequency
structure. Specifically in [9], the speech generated from bone
and tissue conduction captured using an in-ear microphone
is enhanced using adaptive filtering and a non-linear band-
width extension method. The equalization method aims to
calculate the inverse transformation function of the trans-
mission channel. It was firstly proposed by Shimamura
and Tamiya [11] and a linear-phase impulse response filter
was calculated by taking an inverse discrete Fourier trans-
form of the ratio of long-term AC and BC speech spectra.
Kondo et al. [10] proposed the short-term DFT magnitude
ratio-based method, which estimated the equalization filter
with a frame-by-frame basis approach, and then obtained a
mean estimate by averaging. The source-filter model decom-
poses speech as a combination of excitation and spectral

62638
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-6386-6096


D. Shan et al.: Novel Encoder–Decoder Model via NS-LSTM Used for BC Speech Enhancement

envelope filter [14]. Under the assumption of the identical
excitation between BC and AC speech, these approaches
usually transform the Linear Predictive (LP) family param-
eters like Line Spectral Frequency (LSF), Linear Prediction
Cepstrum Coefficient (LPCC) [15], [16] by neural networks
or Gaussian mixture models. However, the LP-based models
assume the independence of source signal and filter, which
may be problematic in some occasions. To overcome this
problem, the method [18] has trained distinctive GMMs for
different types of phones. Nevertheless, how to recognize
phones correctly and effectively remains challenging.

In this paper, we propose a dictionary representation
based encoder-decoder model for bone-conducted speech
enhancement, specifically it transforms the short-time spec-
tral magnitude of BC speech via an encoder-decoder and
then synthesizes enhanced speech with the phase informa-
tion unchanged. Firstly the sparse dictionary of AC speech
is established by sparse non-negative matrix factorization
(sparse NMF) [21]–[23], and then the encoder transforms
the spectral magnitudes into dictionary representation coef-
ficients by using Non-negative and Sparse Long Short-Term
Memory (NS-LSTM) recurrent neural network, finally, the
decoder with local attention mechanism is aimed to improve
the quality and accuracy of the encoder outputs. In training
stage, two optimizers are allocated to the encoder and decoder
respectively and they are optimized as a whole, and also a
pre-training with the encoder is adopted to provide initial
parameters and accelerate the network’s convergence speed.

The rest of the paper is organized as follows. The
encoder-decoder enhancement framework is presented in
the next section, and then the NS-LSTM based encoder is
described in Section III. After that, the decoder with local
attention mechanism is illustrated in Section IV. Lastly, the
parallel dataset of BC|AC speech and the experiment results
are presented in Section V.

II. THE ENCODER-DECODER ENHANCEMENT
FRAMEWORK
Our designed framework is illustrated in Fig. 1 In the train-
ing stage, spectral magnitudes of AC and BC speech are
computed by STFT firstly, and then, a log compression [19]
is performed as the raw magnitude usually has very large
dynamic range. To facilitate the training of neural networks,
spectral features are further normalized to a standard normal
distribution, and the mean and variance are recorded subse-
quently. Next, Auto-Regressive and Moving Average Model
(ARMA) [17] filter process is performed to make supple-
ment of missing values and stabilize the signal. Meanwhile,
an AC speech dictionary symbolized as D is computed by
using sparse NMF. After that, the spectral features of BC
are sent to the encoder network for training and the outputs
are the representation coefficients on the dictionary. In the
pre-training stage, the loss function of the encoder is the
difference between linear combination of the dictionary ele-
ments and the true AC speech. Finally, the decoder with local
attention mechanism is utilized to promote the accuracy of

FIGURE 1. BC speech enhancement framework based on
encoder-decoder model.

the encoder outputs, the encoder and decoder are training as a
whole with optimizer for each of them. In this stage, the loss
function is located in the end of the decoder with the error
computed and back-propagated frame by frame.

In the enhancement stage, the magnitude and phase of BC
speech are firstly computed, then the log spectral magnitudes
are normalized according to the recorded mean and variance
of BC speech, also ARMA filter is utilized sequentially.
Next, the trained encoder-decoder model is used to enhance
the feature vectors. The encoder transforms the features to
representation coefficients on a dictionary, and the decoder
generates spectral magnitudes approaching real AC speech
based on the dictionary combination. In the end, the trans-
formed spectral magnitudes are denormalized and used to
synthesize the enhanced speech via inverse STFT together
with the BC phase information.

III. NS-LSTM BASED ENCODER
The encoder network consists of three layers: linear layer,
original LSTM layer and our designed NS-LSTM layer,
which are arranged in a bottom-up manner. The encoder is
aimed to output non-negative and sparse coefficients on the
dictionary elements generated by sparse NMF. Inspired by
the work in [24], where a simple recurrent neural network
was proposed to derive sparse coding, we exploit NS-LSTM
layer to implement the above constrains and exhibit the unit
structure in Fig. 2. The layer’s forward propagation process
is formulated as follows:

ft = σ (WfxXt +Wfhht−1 + bf ) (1)

gt = φ(WgxXt +Wghht−1 + bg) (2)

ot = sh(M ,u)(WoxXt +Wohht−1 + bo) (3)

St = St−1 � ft + gt � (1−ft ) (4)

ht = σ (St )� ot (5)
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FIGURE 2. The inner structure of NS-LSTM unit in the encoder.

where σ (x) = 1
1+e−x and φ(x) = tanh(x); sh(M ,u)(x) =

M (tanh(x + u)+ tanh(x − u)) is the so-called ‘‘double tanh’’
function [24], in whichM is a trainable diagonal matrix and u
a trainable vector. Apparently, the sigmoid function σ in
Eqn. 5 acts for vector compression and non-negative con-
straint, the shrinkage function sh(M ,u) is used to keep sparsity
of the output gate, and as a result, the output of the unit
satisfies the requirements of being Non-negative and Sparse.
The encoder is pre-trained individually to provide better

initial parameters rather than random settings for the whole
model training. The loss function in pre-training stage is pre-
sented in Eqn. 6, and the parameters are updated to minimize
the loss through backward propagation.

min
c

L(c), s.t. c ≥ 0

L(c) = ||D c− Xac||2F + λ||c||
2
1 (6)

where c = [c1, c2, ..., cτ ] is an output matrix comprising
τ coefficient vectors, Xac is the spectral features of one AC
speech sentence, in which each column represents the feature
of one speech frame. The coefficient ct is the output of
each NS-LSTM unit, it satisfies non-negative and sparse con-
straint, and is used to combine the sparse NMF dictionary D
to approach the real speech frame. The regularization term
ensures the sparsity and usually is relaxed to Frobenius norm
to make it differentiable, λ||c||21 → λ||c||2F . Additionally,
when training the model in experiments, speech sentences are
fed in batch style to make the calculated gradient more stable,
then the total loss will be the simple sum with regard to the
sentences in a batch.

In the backpropagation process, the gradients of two hid-
den vectors are computed as a prerequisite:

δ
(t)
h =

∂L
∂ht
=
∂L
∂ct

∂ct
∂ht
= 2DT (Dct − X (t)

ac )+ 2λct (7)

δ
(t)
S =

∂L
∂St
=

∂L
∂St+1

∂St+1
∂St
+
∂L
∂ht

∂ht
∂St

= δ
(t+1)
S � ft+1 + δ

(t)
h � σ (St )(1− σ (St ))� ot (8)

The parameters’ gradients can be calculated based on the
above ones, we list one of them below and deduce the rest in

the appendixes.

∂L
∂Wfh

=

τ∑
t=1

∂L
∂St

∂St
∂ft

∂ft
∂Wfh

=

τ∑
t=1

δ
(t)
S � St−1 � ft (1− ft )(ht−1)

T (9)

IV. LOCAL ATTENTION MECHANISM BASED DECODER
The encoder-decoder model is widely used in Sequence to
Sequence machine translation [31], [32], and to the best of
my knowledge, we are the first to introduce this model to
speech enhancement. Based on the encoder illustrated in the
section above, we redesign and utilize the decoder with local
attention mechanism to improve the quality and accuracy of
the dictionary representation, and achieve better performance
when copingwith the silent frames in BC speech (no salient in
AC speech) or the ones accompanied by noise. Our designed
decoder structure is depicted in Fig. 3.

FIGURE 3. The structure of the decoder network.

The output of the attention layer is calculated by weighted
linear combination of the local encoder outputs:

ai =
∑
j∈N (i)

ωijej (10)

whereN (i) is neighbors of the j-th encoder output ej, we adopt
10 neighbors with half on each side in the experiments, ωij is
the combination weight.

ωij =
exp(scoreij)∑

j∈N (i)
exp(scoreij)

, scoreij = dTi−1Waej (11)
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where di−1 is the decoder output in the last time frame, and
Wa is the linear layer matrix of the attention mechanism. The
local attention ai is concatenated with the corresponding ei as
input of the decoder’s LSTM layer.

The mean square error (MSE) is calculated between di
and the ground truth, and the decoder is optimized frame
by frame. Specifically, with regard to one speech frame in
a sentence, loss (i.e. MSE) is back propagated to compute
gradients of the model’s parameters, and then, optimizers of
the decoder and encoder steps respectively to update their
own parameters. The process should be executed sequentially
for each frame. After that, all the sentences in dataset are used
for training sequentially. The training repeats a number of
epoches until convergence.

V. EXPERIMENTS
A. TM SPEECH DATASET
One thousand of Chinese Mandarin sentences are selected
as corpus, and each of them lasts for 3 to 5 seconds.
Eight male and eight female speakers are required to
read 200 sentences selected from the corpus randomly, and
the speech materials are recorded by air-conducted micro-
phone and throat-conducted microphone simultaneously. For
each person, 160 sentences are used for training and the
rest for testing. All the utterances are recorded at 32-kHz
sampling rate, and the corpus is open on the web site:
https://github.com/cvcoding/BC-Speech-Dataset.

B. EXPERIMENTAL SETUP
In our experiments, we train an enhancement model for each
speaker. The duration of training speech is about 11 min-
utes, while the testing data is about 3 minutes. Both of the
training and testing data are down sampled to 8 kHz, and
129-dimensional spectral magnitudes are extracted, where a
feature window of 23 frames (11 frames to each side of the
current frame) are used.

In the pre-training stage, the encoder network is trained
by using Adaptive Moment Estimation (Adam) optimizer,
the dropout [25] ratio is set to 0.2 with regard to all hidden
layers, the initial global learning rate is set to 0.01 which is
reduced by half once the validation loss is not reduced. The
training sentences are fed in batch style and the batch size is
set to 8. The best model is chosen to initialize the encoder in
the combined training stage according to the least validation
loss. In the next stage the decoder network is trained by
another Adam optimizer, with the dropout ratio 0.2 and the
learning rate 0.001. The encoder is updated from the initial
state together with the decoder, and its learning rate is set to
0.0005 now.

In the model, only spectral magnitude feature is used for
training. Here we also adopt another two features to test
the influence on performance. At first, the spectral magni-
tude (129-dimensional), MFCC (13-dimensional) [27] and
LPC (13-dimensional) [26] are normalized by feature scaling
respectively, then they are concatenated to formulate a 155-

dimensional features, lastly normalization is performed and
the results are used as the networks’ input, the networks’ out-
put are also spectral magnitude features which are compared
to the ground truth to calculate loss. Additionally, we use the
model to construct the relationship of spectrum parts between
BC and AC, and the phase part is assumed to be unchanged.
In the experiment, we try to transform the phase of BC to the
phase of AC by using the encoder-decoder model but without
dictionary, and then synthesize enhanced speech according to
the estimated phase.

Three metrics including Perceptual Evaluation of Speech
Quality (PESQ) [28], Short-Time Objective Intelligibility
[29] (STOI) and Log-Spectral Distance [30] (LSD) are used
to measure the speech quality objectively. PESQ score mea-
sures the overall speech quality, STOI score measures the
speech intelligibility, while LSD measures the log-spectral
distance between two signals.Moreover, ABX preference test
is utilized to evaluate the results subjectively.

C. RESULTS AND ANALYSIS
1) RESULTS WITH SPECTRAL MAGNITUDE FEATURES
Table 1 is the objective evaluation results about DNN net-
work, LSTM network and our model, where DNN and LSTM
comprise two hidden layers and connect with a linear layer.
The same training scheme as our encoder is used for DNN and
LSTM. Fig. 4, Fig. 5 are two samples of speech spectrograms
comprising male and female speech.

FIGURE 4. Spectrograms of one male utterance. (a) BC speech, (b) speech
enhanced by DNN, (c) speech enhanced by LSTM, (d) speech enhanced by
our method, (e) speech enhanced by our method with multiple feature,
(f) AC speech.

‘‘BC’’ column is the evaluation of BC compared with AC
speech. We can see that majorities of PESQ scores are under
2.2 and STOI are under 0.60, which indicates the low intelligi-
bility and quality of BC speech. From Fig. 4, Fig. 5(a), severe
high-frequency components (2-4kHz) loss can be observed,
and the energy of the middle-frequency is higher than the
corresponding components of AC speech.

The restoration of high-frequency components can be seen
in Fig. 4, Fig. 5 (b),(c) and (d), which indicates the effec-
tiveness of the three models. The average PESQ and STOI
scores have been improved significantly, which means the
enhanced BC speech can be understood. From the figures
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TABLE 1. Objective Evaluation Results of DNN, LSTM, NS-LSTM model with single feature (Ours1), NS-LSTM model with combined features (Ours2) and
NS-LSTM single feature model with estimated phase (Ours3).

FIGURE 5. Spectrograms of one female utterance. (a) BC speech,
(b)speech enhanced by DNN, (c) speech enhanced by LSTM, (d) speech
enhanced by our method with single feature, (e) speech enhanced by our
method with multiple feature, (f) AC speech.

we can see that, DNN and LSTM model seems incapable
of inferring the missing parts while our model can fill the
blank with the help of dictionary. Among three models, our
proposed one scores much better than others on the three
metrics. DNN ranks last because it stacks linear layers sim-
ply and ignores the inherent sequential relationship of the
sentences. LSTM is a kind of recurrent neural network and
capable of utilizing the former information. Our model ranks
the first owe to its recurrent structure, dictionary representa-
tion and local attention mechanism. Additionally, the male
speech scores better than female because female voice is
more challenging for the existence of more high-frequency
components. Ourmodel still achieves the best with the female
speech data. The code is publicly available on the web site:
https://github.com/cvcoding/BC-Speech-Code.

2) RESULTS WITH COMBINED FEATURES
The generated spectrograms of our model with multiple fea-
tures (spectral magnitude, MFCC and LPC) are depicted in
Fig. 4(e) and Fig. 5(e). Compared with the spectrograms of
single feature, we can find that there is no apparent progress
by using multiple features as input. The network can extract
useful features by large-scale training, input of multiple fea-
tures will not exert obvious influence on the generated spec-
tral magnitudes. The objective evaluation results are exhibited

in Table 1. The average metrics indicate almost the same
performance.

3) RESULTS WITH ESTIMATED PHASE
In this section, we use the encoder-decoder model to enhance
the speech log spectral magnitude part, and then, we use the
model with minor changes to enhance the phase part. The
modified model discards the speech dictionary and replaces
NS-LSTM units by conventional LSTM units. The network
input is 129-dimensional BC phase feature and the output
is enhanced phase. Finally, the enhanced spectral magnitude
and phase are combined to synthesize the enhanced speech.
The results are exhibited in Table 1.

4) ABX PREFERENCE TEST
In the ABX preference test, twenty listeners (ten males and
ten females) are asked to choose which sample (A or B)
sounds more similar to X, if they can not distinguish between
the two, no preference (N/P) can be selected. Forty test-
ing sentences are evaluated and the results are depicted in
Fig. 6. We conduct four sets of comparative experiments:
DNN with Ours1 (NS-LSTM with single feature), LSTM
with Ours1, Ours1 with Ours2 (NS-LSTM with combined
features), and Ours1 with Ours3 (NS-LSTM with estimated
phase). P-values are used to determine the significance of the
results, the small p-value indicates large significance and vice
versa.

FIGURE 6. ABX preference test results, The p-values of the four pairs are
6.64 × 10−7, 1.89 × 10−5, 0.8118 and 0.35.

From the first two bars, we can see that our model behaves
much better than DNN and LSTM. The third bar shows that
our model works at the similar levels with single feature or
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combined features. The fourth bar indicates that our model
performs a little better when the phase transformation is
utilized.

VI. CONCLUSION
In this paper, we propose an encoder-decoder based
bone-conducted speech enhancement framework, in which
the encoder via non-negative and sparse LSTM network
is used to generate the representation coefficients, and the
decoder with local attention mechanism is combined to
further improve the speech quality. In the experiments,
we adopted two methods for comparison, and the results
demonstrate that our method behaves well when reconstruct-
ing the high-band components. Nevertheless, our work is
based on specific speaker, in the future work, we would like
to propose a framework that realizes speaker-independent
effect, and meanwhile, the loss function can be exploited and
re-designed to improve the enhancement performance.

Appendices for Section III, the gradients are listed as
follows:

∂L
∂Wfx

=

τ∑
t=1

∂L
∂St

∂St
∂ft

∂ft
∂Wfx

=

τ∑
t=1

δ
(t)
S � St−1 � ft (1− ft )(Xt )

T (12)

∂L
∂Wgh

=

τ∑
t=1

∂L
∂St

∂St
∂ft

∂ft
∂Wgh

=

τ∑
t=1

δ
(t)
S � (1− ft )� gt (1− gt )(ht−1)T (13)

∂L
∂Wgx

=

τ∑
t=1

∂L
∂St

∂St
∂ft

∂ft
∂Wgx

=

τ∑
t=1

δ
(t)
S � (1− ft )� gt (1− gt )(Xt )T (14)

∂L
∂Woh

=

τ∑
t=1

∂L
∂ht

∂ht
∂ot

∂ot
∂Woh

=

τ∑
t=1

δ
(t)
h �σ (St )�o

′
t (WoxXt+Wohht−1+bo)(ht−1)T

o′t (x) = M (2− tanh2(x + u)− tanh2(x − u)) (15)

∂L
∂Wox

=

τ∑
t=1

∂L
∂ht

∂ht
∂ot

∂ot
∂Wox

=

τ∑
t=1

δ
(t)
h �σ (St )�o

′
t (WoxXt+Wohht−1 + bo)(Xt )T

(16)

∂L
∂M
=

τ∑
t=1

∂L
∂ht

∂ht
∂ot

∂ot
∂M

=

τ∑
t=1

δ
(t)
h � σ (St )� (tanh(1+ u)+ tanh(1− u))

1 = WoxXt +Wohht−1 + bo (17)

∂L
∂u
=

τ∑
t=1

∂L
∂ht

∂ht
∂ot

∂ot
∂u

=

τ∑
t=1

δ
(t)
h �σ (St )�M (tanh2(1−u)−tanh2(1+u))

1 = WoxXt +Wohht−1 + bo (18)
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