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ABSTRACT In this paper, a blind phase noise estimation method for a coherent optical orthogonal
frequency-division multiplexing (CO-OFDM) system is considered. Based on the subspace approach,
a simple and robust method is proposed to adaptively estimate and track phase noise in CO-OFDM
systems. The idea behind this novel technique is to estimate the singular vectors that correspond to the
smallest singular values of the noise subspace. A weighting parameter, which is derived based on the
forward—backward linear prediction technique, is subsequently constructed using the obtained singular
vectors of the noise subspace to adaptively estimate the phase noise in the system. Also, a variable step size is
introduced to ensure an improved performance as well as stable convergence. Simulation results are shown to
demonstrate the effectiveness as well as the efficiency of the proposed algorithm, which is implemented in a
polarization multiplexed CO-OFDM system stressed by polarization mode dispersion, chromatic dispersion,

and other polarization-dependent losses along the fiber link.

INDEX TERMS CO-OFDM, OFDM, phase noise estimation, adaptive algorithms, subspace method.

I. INTRODUCTION
High-speed optical networks have become imperative due
to the continuous increase in bandwidth-hungry network
data services. The coherent optical orthogonal frequency
division multiplexing (CO-OFDM) offers several important
advantages such as high spectral efficiency, flexibility, and
robustness against inter-symbol interference (ISI) [1]-[6].
However, phase noise constitutes a major impairment that
degrades the overall reliability, performance and efficiency
of the CO-OFDM system. There are various methods that
are in existence in the literature, to estimate and compensate
the presence of phase noise in CO-OFDM systems. Methods
based on pilots as well as data-aided methods have been
proposed for phase noise estimation [7]-[10]. These methods
have been widely utilized, although they largely result in a
high overhead in the optical system. Radio frequency (RF)
methods have also been proposed in the literature [11], [12].
Using these methods, it is required that some subcarriers
are set aside to form a gap for the RF-pilot insertion. Also,
the power of the RF pilot must be optimized in relation to the
laser linewidth.

Recently, a number of blind estimation methods, which
offer bandwidth efficiency, have been studied and proposed in

the literature [13]—-[18]. In [14], a decision-directed method,
which can be implemented using any modulation format, is
proposed. Another method is reported in [15], which is based
on blind phase search. The performance of the method in [14]
degrades due to error propagation while the method in [15]
requires a large number of test phases, leading to a high
computational cost and complexity.

In this paper, however, the focus is on the implemen-
tation of subspace-tracking based blind phase noise esti-
mation. An efficient adaptive subspace-tracking method is
developed and utilized for phase noise estimation in a practi-
cal CO-OFDM system. There are various subspace-tracking
methods in the literature [19]-[29]. A direct way of estimat-
ing a subspace of interest is by applying the singular vector
decomposition (SVD) on an observation covariance matrix.
The direct SVD approach however results in a high computa-
tional complexity. To address this, alternative methods have
been studied and proposed [20]-[25]. Most of the alternative
methods focus on the signal subspace tracking while little
attention is given to the estimation of the noise subspace.
A direct modification of the signal subspace, to achieve
a low complexity noise subspace tracking is not practi-
cable. This is evident in existing noise subspace tracking
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methods, where high instability and inefficiency become
inevitable [26]-[29].

The fast data projection method (FDPM) as reported
in [30], offers a low complexity, numerically stable, and
robust noise subspace tracking. Hence, for the purpose of this
study, the subspace-tracking method utilized is based on the
FDPM. In order to achieve an adaptive implementation of
the FDPM subspace tracking, the selection of the step-size
becomes imperative, for the convergence of the algorithm.
In [30], utilizing a normalized step-size is proposed. Thus,
the speed of convergence and the overall performance of the
algorithm largely depend on the stringent selection of the
step-size. For an enhanced performance, and to achieve a
more stable as well as fast convergence, this work therefore
proposes the use of a variable step-size. Also, to obtain a
simple adaptive estimate of the phase noise, a prediction
parameter is introduced using the forward backward linear
prediction (FBLP) technique. The prediction parameter is
constructed based on the estimates obtained from the noise
subspace-tracking algorithm.

Thus, the main contributions in this paper include the
following

1. The derivation and the implementation of an adaptive
method based on fast subspace tracking, for phase noise
estimation in optical networks. The method utilizes an
observation vector that is a subset of the total OFDM
subcarrier, in order to adaptively estimate the phase
noise, which constantly changes over an OFDM frame.
The proposed method is derived and investigated in
a practical CO-OFDM system, which considers the
impact of dispersions and impairments along the fiber
link.

2. Convergence speed and stability are important factors
that must be considered while estimating any sub-
space of interest. Existing subspace methods gener-
ally utilizes the regular normalized step-size, which
are carefully selected to ensure stability and speed of
convergence. This work therefore deviates from the use
of the normalized step-size by introducing an adap-
tive step-size, during the implementation of the noise
subspace-tracking algorithm. The unique introduction
of the adaptive step-size for use in the subspace-
tracking algorithm ensures more stable and faster speed
of convergence is achieved while overall system perfor-
mance is enhanced.

3. To achieve a simple way by which the phase noise
can be adaptively obtained based on initial estimates of
the subspace-tracking algorithm, a prediction parame-
ter is introduced. The weighting parameter is derived
using the forward backward linear prediction (FBLP)
technique. The novel combination of the FBLP tech-
nique with the subspace-tracking algorithm ensures
low-complexity and also improves the robustness of the
estimation algorithm. Thus, the proposed approach is
called SS-FBLP and the case where the variable step-
size is introduced is called SS-FBLP-VSS.
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The rest of this paper is organized as follows. Section II
presents the CO-OFDM system model. The CO-OFDM sys-
tem employed is modeled in the presence of phase noise
and other pertinent fiber link distortions. Section III dis-
cusses the proposed subspace-based adaptive estimation
method. Section IV presents a pilot-aided subspace phase
noise estimation approach. Section V discuses the com-
putational complexity of the proposed estimation method.
Section VI presents the simulation results for the proposed
subspace-tracking algorithms. Finally, Section VII gives the
conclusion.

Il. THE SYSTEM MODEL

Considering the transceiver structure of a typical CO-OFDM
system, the binary inputs to the RF-OFDM transmitter are
encoded, before the serial-to-parallel conversion. The con-
verted data are then mapped and converted into time domain
signals by the inverse fast Fourier transforms (IFFT) oper-
ation. The resulting signals are digital-to-analog converted
where the low pass filter is utilized, to address aliasing.
At the RF-to-optical up-converter block, the transmit signal is
transformed from the electrical domain to the optical domain
using an optical in-phase/quadrature (IQ) modulator, which
consists of two Mach-Zehnder modulators (MZMs) with a
90 degree phase offset as shown in Fig. 1 [6].

RF OFDM Transmitter RF-4o-Optical Up-comverter

DAC

DAC

RF OFDM Reciever

ADC

ADC

[ Esimation,
Compeasation, Detecin

FIGURE 1. Block diagram of the CO-OFDM transceiver.

Thus, the baseband transmitted OFDM signal after IFFT is
expressed below as:

J2mnm

N—-1
X (n)=%’;)xf<m)e . (1)

where x; (n) denotes the n™ sample of the i OFDM symbol,
N represents the total number of subcarriers, while X;(m)
denotes the data symbol transmitted on the m™ data subcar-
rier. The received OFDM baseband signal in time domain is
expressed as:

3 =" [T )| +am @
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where I'"!(-) and ® represent the IDFT operation and the
circular convolution respectively. The total amplified spon-
taneous emission (ASE) noise generated from inline optical
amplifiers is represented as g; (n), while Z (m) denotes the
channel impulse response of the fiber link encompassing the
polarization mode dispersion, as well as other polarization
dependent losses (PDLs) [31], [32]. Thus, Z (m) can be
expressed mathematically as [6]:

M
Zom=dwmrkm{ﬂérﬁam+%@>7f}(a

p=1
where the number of the PMD/PDL cascading elements in
the entire fiber link is denoted as M, with each section rep-
resented by its birefringence vector 8, and PDL vector a_),),
as detailed in [6]. The term 2 connotes the Pauli’s vector,
assuming quadratic dependence on frequency while @ (m) is
the group velocity dispersion (GVD), which is given as:

f2

Bmy=m-c-qp -2, @)
fs

As expressed above, @ (m) is primarily a phase shift due to
distortion in the fiber link, where g denotes the chromatic
dispersion in the link, f;, is the frequency for the m™ sub-
carrier and f;, is the center optical frequency. Also, the laser
phase noise in the optical system p; (n) is described as a
Weiner-Levy process, which can be expressed mathemati-
cally as [13]:
n

pi(m)=picit (N =D+ Y sG(N+Ncp)+v), (5)

v=—Ncp

where s(v) is the independently incremental movement of the
phase noise at time instant v, which is Gaussian distributed
with zero mean and variance o2 = 2 hT, where h rep-
resents the combined laser linewidth of the transmitter and
the receiver lasers, while Ncp connotes the cyclic prefix (CP)
length and T is the symbol period.

The FFT is performed to recover the received OFDM
information symbol, which is given as [33], [34]:

Y; (m) = B; (0) X; (m) Z (m)
N—1
+ Y. Xi(k)Z (k) Bi (k —m) + Gi(m), (6)
k=0,k#m
where B; (m) is a function of the distortion due to the laser
phase noise, which can be expressed as [10]:

N-1
1 i0; f2mnm

Bi(m) = 5 Do %)

n=0

e

. I pi(1)

Bi(0) = > ", (8) ®)

n=0

which is approximated as

B; (0) = |Bi (0)]. C))
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It denotes the phase evolution, which corresponds to the time-
average of the laser phase noise over the i OFDM symbol
and ®; is considered as the common phase error (CPE)
given as [13]:

®; = /B; (0) (10)

The overall interference including the residual interference in
the system is given by

N-1
ICI; (m) = Z Xi(k) - Z (k) - B; (k — m). (11)
k=0,k£m
where
N-l . 2 n(k—m)
Bitk—m) =Y r™. S (12)
n=0

Also, the effective signal-noise-ratio at the detector is
expressed as [35]:

E {B; (0) X; (m) Z (m)}?

SNR' = n .
E {ICI; (m)}* + E {G; (m)}
2Z2
- N—1 G); ) X (13a)
o} 2 _k=0,stm Bi (k —m) Z2 (k) + o}
Z2
SNR' = (m) N 130)
» g,
Aokm BY (k —m) Z2 (k) + 5
ZZ
SNR' = (m) (130

N0k BY (k —m) Z2 (k) + SNR™"

where o2 is the variance of the transmitted information signal

2
and aé is the variance of the ASE noise, while SNR = :—Xz is
G

the original channel SNR without the effect of ICI; (m) [35].
The SNR is related to the optical SNR (OSNR) by the
expression [4]

OSNR(dB) = 10log;( [SNR] + 10log;o B/ . (14)

where By is the central bandwidth while Ry is the symbol
rate [4].

From the expressions in (6)-(14), the received signal can be
analyzed and the impact of the phase noise can be estimated,
evaluated and compensated.

lll. THE PROPOSED SUBSPACE-BASED ADAPTIVE
ESTIMATION METHOD

A. THE SUBSPACE PROBLEM

The subspace problem is generally approached by assuming
a condition where the parameter to be estimated remains con-
stant over the entire OFDM frame. However, such assumption
may not hold in the case of phase noise, which is constantly
changing within an OFDM frame. In order to overcome the
difficulty of adaptively estimating the phase noise, an obser-
vation vector, which is a subset of the total OFDM subcarrier,
is utilized. The observation vector is defined as a portion of
the received signal, which is denoted as Y (j) with length L,
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where L < N. This enables the frequently changing phase
noise to be effectively estimated across Y (j) ... .. Y (L +)).
Hence, the observation sequence on which the phase noise
subspace tracking problem is based can be defined as

Si=[SM) ... SL]=YG...Y L+pl, 15)

Therefore considering a non-negative covariance P with size
L, of the received data sequence S;, by applying singular value
decomposition on P, the following expression is obtained

P=FE [sjsj’] — UAU" (16)

where A = diag{y (1), ... ...... y (L)} denotes the diagonal
matrix of singular values of P = E[S jSJH ], whose elements
are the singular values of P satisfying y(1) > y 2) > ..... >
y (D) > y(D+1) > .....y (L) > 0 while U contains the
corresponding singular vectors with elements u(1)....u(L).
A simple orthogonal iterative method can be used to esti-
mate the subspace of interest, to obtain the singular vectors
corresponding to the singular values of the matrix P. Since
L represents the rank of the subspace of interest, then the
sequence of matrices U (j) is described by the iteration [36]

U(j) = orthonorm{PU(G — 1)}, j=1,2,.... (A7)

where orthonorm represents an orthogonal procedure
using the QR decomposition, and given that the matrix
U (j) [u(1)... ..u(D)] is not singular, then

lim UG) = [u(1)... .u(D)] . (18)

As mentioned above, since the aim is to estimate the sub-
space that contains the smallest singular values corresponding
to the smallest singular vectors, two variants of the orthogonal
iteration are presented. These orthogonal iterative methods
ensure the realization of such estimates and also enable adap-
tive implementations. The variants are described below [36]

U(j) = orthonorm {P’IU(]'— 1)} , (19)
U (j) = orthonorm{(Ip, —uP)U (j— 1)}, j=1,2,..
(20)

where i > 0 is the step-size, which is relatively small, while
Ip, is the identity matrix. For the purpose of this work, (20)
will be adopted since it has a lower complexity compared
to (19), which yields a higher complexity due to the matrix
inversion.

In order to achieve an adaptive implementation at an
instance where P is not available, the received vector is
obtained sequentially and the matrix P can be substituted
with an adaptive estimate f’j, which satisfies the condition
E [ﬁj] = P. An orthogonal iterative process is then used to
compute the singular vectors associated with its singular val-

ues. The adaptive orthogonal iterative algorithm is expressed
as:

U(j) = orthonorm {(IL — uPpUG - 1)} @
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The parameter n used above represents the constant step-
size. However, to achieve a better stability and speed of
convergence, an adaptive step-size w (j) is utilized, which is
defined as [37]:

() = S-erf(l —e—“|ff|), (22)

where erf(x) = 2 / JT f; e’ do, represents the error func-
tion operation. The variation rate of the adaptive step-size
is controlled by adjustment factors § and o, while 7; =
Bj — Bj_1 is the error term. Also, the range of w(j) is given
as 0 < u (G < 2/)/(1)’ where y (1) is the maximum
singular value of the covariance matrix. Also, the range of
8 is within the boundary 0 < § < 2/3/ (1) given that 0 <

erf(l - e‘“|rf|) < 1.

B. THE PREDICTION PARAMETER

As U(j) is obtained using the adaptive iterative method, its
corresponding L columns with vectors [u(l).....u(D)] are
therefore utilized to construct the prediction parameter W.
In order to achieve this, a method based on the minimum-
norm solution of the forward-backward linear property in
[38], is employed. Using the singular values as well as
the singular vectors of the estimate U(j), the relationship
between the prediction parameter and the covariance matrix is
derived. Therefore, considering a linear prediction parameter
described by the column vector W

W; = [wi(1), wi2)....wiD)]", (23)

with [.]7 denoting transpose and D < L. Utilizing the
prediction parameter in both forward and backward direction,
the prediction equation can be expressed as [38]:

 Si(D) Si(D—1) LS T
Si(D+1) S;(D) ..S55(2)
: : : wj(1)
Si(L—1) Si(L —2) .Si(L—D) wj(2)
S;‘(2) Sj*(3) ...S]?k(D +1) :
S;‘(3) S]?k(4) ...Sj?"(D +2) wi(D)
_S;(L'— D) Sj*(L —'D +1) S].*'(L)
FSi(D+1) 7
S;(D+2)
Sj (L)
=—| i |, 0
S]?k 1)
5@
s -D) ]
which can be written in a simpler form as:
Rjo = —aqaj (25)
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Thus, the minimum-norm solution to the expressions
in (23)-(24) is expressed as:

W, = —Rj_laj» (26)

where Rj_1 denotes the pseudo-inverse of R;, which can be
expressed as

R =®RR)"'R . 27)
Also, given
P = Rj*Rj; ﬁj = —Rj*aj, (28)

in linear prediction representation, where P is the correlation
matrix and i’j is the correlation vector determined from the
received data sequence while “*”” denotes complex conjugate
transpose. From (28), the prediction parameter W; can be
expressed as:

W;=®R) 'R aj=W;=P'P;. (29)

Therefore from (29) and recalling the SVD expression in (15)
and (16) above, the prediction parameter is obtained as:

D

u(l) .
W= ; 0 ('@ Pr). (30)

As u(l) is the efficient estimates of the singular vectors, W;
also constitutes the estimate of the singular vectors corre-
sponding to the smallest singular values of the subspace of
interest. Thus, the adaptive phase noise estimation is therefore
obtained using (20), which is expressed as:

By = normalize B — - wiOB ] G
d; = /B (32)

where / represents the phase angle. Finally, the compensation
is obtained using the following expression

¥ () = e 7y () (33)

Thus, the relation between the prediction parameter and the
covariance vector is shown. Also, it is seen that the prediction
parameter is a linear combination of the singular vectors of
the subspace of interest.

IV. PILOT AIDED SUBSPACE PHASE NOISE ESTIMATION
In this section, a variation of the subspace method is pre-
sented, where pilots are used to obtain the initial phase for the
expression in (31). Now considering the case where M), pilot
subcarriers are introduced, and {ml, my, ... .mMp} of pilot
tones are available at each payload OFDM symbol. The phase
is estimated based on pilot subcarriers in OFDM symbols.
Hence, the following expression is obtained:

B 0) = L M (34)

M, }X(HDIY(mN

me{m,
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Hence, the B (0) obtained from (34) is used to compensate the
signal and the following is obtained

Q(m) =Y (m)B(0). (35)

The sequence for the subspace algorithm with pilot
subcarriers becomes §; = [S;(1).....5(L)] =
[oG ... .. Q (L + j)]. Therefore, the non-negative covariance
P with size L, of the received data sequence S, by applying

singular value decomposition, is obtained by P = E[S jS;{ 1=
UAUT.

In the subspace adaptation, the initial value of the phase
can be set as a random value or using B (0) in (34), before the
final estimation is obtained using the subspace approach as
described from (16)-(33). Results show that phase initializa-
tion using B (0) ensures a better performance.

Also, the relationship between the prediction parameter
and the covariance vector is shown in (23)-(29). It is seen
that the prediction parameter is a linear combination of the
singular vectors of the subspace of interest.

TABLE 1. Computational complexity of the subspace methods.

Subspace Method Multiplication Addition
SVD L*(L+2D +2) L(3D? + 2D)
SS-FBLP L(3D + 1) L(5D + 1)
SS-FBLP-VSS L(5D +2) L(7D +2)

V. COMPUTATIONAL COMPLEXITY

Using the direct SVD, the number of operations required
is generally of order O(L?) [30]. The SVD method gener-
ally results in high computational complexity with L>(L +
2D + 2) multiplication operations and L(3D? + 2D) addi-
tion operations [30]. However, the proposed method, which
is based on the FDPM approach, using the normalization
process described in Table 2, ensures a reduced complex-
ity. The sequence {U(j) = norm [H (j)]} have computational
complexity of O((L + D) D) since the normalization of a vec-
tor requires O (L + D) operations. Using the normalization
operation (“‘norm’”) reduces the complexity and ensures that
an order of magnitude is gained as the use of the ““orthonor-
malize” operation is of complexity O((L + D)2 D) [36].
Thus, the proposed SS-FBLP method requires L(3D + 1)
multiplication operations and L(5D + 1) addition operations.
Also, considering the adaptive estimator in (31), the com-
plexity is of order O(D?) due to the fact that the adaptive
expression in (20) is used rather than (19). Using (19) would
have resulted in O(D?) due to the matrix inversion [36]. The
comparison of the considered subspace methods in terms of
the required multiplication and addition operations is pre-
sented in Table 1. Also, the complexity graph of the subspace
methods in comparison with the SVD method is presented
in Fig. 11. It can be seen that the proposed methods come
with a much lower computational complexity in comparison
with the direct SVD method. The summary of the phase noise
estimation algorithm is as shown in Table 2.
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TABLE 2. Summary of the Proposed Estimation Algorithm.

e Fori=12,......10%

e Form=12,......N

e Compute Y;(m) using (6)

e End for

e Forj=12,.....L;L<N

e  Obtain sequence S =[5).....5W)] =

[Y@)....Y(L + )]

e Obtain covariance P = E[S;S%;]

e Obtain U(j) = orthonorm{PU(j — 1)}, using the

FDPM approach.

Initialize with a random orthonormal matrix U(0)

Auvailable from previous instant: U(j — 1)

Compute u

c(j) = UH(G - 1)S;

T()=UG -1+ uS;c())

e b() =c()—llc)lle’, where e' = [10,....0]"

© H() =T0) = 5o [TOBGIB ()

e U(j) = norm[H())],
where norm[.] is the normalization of each column of
H(j)

e  Obtain singular vectors [u(1) .....u(D)] from U(j)
for the construction of W;

e Construct the weighting parameter W; =

J
o ) .
s (' .P,) using (30)

e Compute 1§j using (31)
e Compute <§j using (32)

e End for
e Compute MSE
End.

VI. SIMULATION AND DISCUSSION

The performance of the proposed algorithm is investigated in
a 20 Gb/s CO-OFDM system. In the simulation, the sampling
frequency of the OFDM symbol is 28.8ns, with IFFT/FFT
chosen as 256, L = 128, D = 96 while a 12.5% cyclic
prefix is used. The quadrature phase shift keying modulation
format is adopted. The practical fiber link consists of ten
spans of 80km standard single mode fiber (SSMF) with fiber
dispersion 17ps/km/nm, differential group delay of 5ps/./km
as well as loss coefficient of 0.2dB/km. A total number
of 1000 OFDM symbols is used for each bit-error-rate simula-
tion. Also optical amplifier, EDFA has 16dB gain with noise
figure of 4dB and the non-linear coefficient of the fiber is
1.32/W /km. The parameters are as shown in Table 3.

The FDPM subspace-tracking algorithm as described
in Table 2 depends on the selection of the step-size for sta-
bility and convergence. In [30], it has been suggested that a
value close to unity ensures the needed stability and speed
of convergence. Therefore, with the range 0 < u < 1,
the constant step-size parameter is varied in this simulation
between values 0.90 and 1.0, to ascertain the most suitable
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TABLE 3. Simulation parameters.

Parameters Specifications
FFT size 256
Modulation format QPSK
Data rate 20 Gb/s
Cyclic prefix 12.5%
Sampling frequency 28.8 ns
Fiber dispersion 17 ps/km/nm
Differential group delay 5 ps/vkm
Loss coefficient 0.2 dB/km
Wavelength 1550 nm
Amplifier gain 16 dB
Noise figure 4 dB
Non-linear fiber coefficient 1.32/W/km

0 5 10 15 20 2 30
OSNR

FIGURE 2. MSE versus SNR plot for the SS-FBLP method with varied
values of the step-size p.

TABLE 4. Acronyms and description of techniques.

ACRONYM DESCRIPTION OF
TECHNIQUE
SVD Singular Vector
Decomposition
Subspace Forward Backward
Linear Projection Technique
Subspace Forward Backward
Linear Projection Variable
Step Size Technique

SS-FBLP

SS-FBLP-VSS

value for the SS-FBLP method. Fig 2 shows the mean square
error (MSE) plot for the SS-FBLP method, with varied values
of step-size. The MSE of the phase noise is defined as MSE =

. 2
E |:‘ZB]~ - ABj‘ ] Although the step-size value u = 1.0

gives a desirable performance especially for lower values
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5, “Pra=1
N &-a=5

“F =10

0 5 10 15 2 2 30

OSNR

FIGURE 3. MSE performance of the SS-FBLP-VSS method with varied
values of the adjustment variable «.

of SNR, the preferred selection is © = 0.98, due to the
consistent and stable MSE performance offered across all the
values of SNR. Hence, the step-size value u = 0.98 will
be utilized for subsequent analysis of the SS-FBLP method.
Also, the introduced adaptive step-size as described in (22)
brings new dynamics such as the selection of the appropriate
value for the adjustment variables § and «. For the purpose
of this study, the value of the variable § is set to unity i.e.
8 = 1, to achieve good steady-state performance. The value
selected for the factor o has a more prominent influence on
the variation rate of the step-size and the overall stability of
the SS-FBLP-VSS method. Thus, the most suitable selection
for « is investigated as shown in Fig. 3, where the value of
« is varied starting from o = 1. It becomes evident that the
MSE performance is improved as the value of « increases.
However, at some point, the MSE performance ceases to
show any further marked improvement. Hence, the selection
of ¢ = 50 is considered appropriate and will be used for
the subsequent analysis and comparison with the SS-FBLP
method.

Fig. 4 shows the BER performance of the proposed
SS-FBLP and the SS-FBLP-VSS estimation methods. These
methods are compared with the maximum likelihood (ML)
approach, the data-aided (DA) method, the pilot-aided (PA)
scheme as well as the direct SVD method. From the plot it
is seen that the SS-FBLP follows closely the performance of
the direct SVD method. However, the SS-FBLP comes with
a significantly lower computational cost. The SS-DBLP-VSS
at « = 50 offers a superior performance compared to
the SS-FBLP and the SVD methods. This shows that along
with the desired stability that the adaptive step-size offers,
it also comes with a more favorable overall performance
as compared to the other methods. Also, it can be seen
from the plot that the SS-FBLP-VSS method at « = 50
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==*-= without phase noise
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FIGURE 4. BER sensitivity for the proposed estimation algorithms in
comparison with the direct SVD method.
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FIGURE 5. MSE performance of the proposed algorithms with linewidth
set to 100 KHz and 400 KHz.

outperforms the DA method as well as the ML scheme.
However, the pilot-aided technique, which is implemented
with 8 pilots, outperforms the proposed methods. In terms
of spectral efficiency, the proposed method is more attractive
and desirable as the PA method comes with a higher overhead.
A direct comparison of the proposed algorithms is as shown
in Fig. 5. The methods are implemented with the linewidth
set to 100 KHz and 400 KHz. Although the SS-FBLP-VSS
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FIGURE 6. MSE plot showing the convergence behavior of the proposed
algorithms.
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FIGURE 7. MSE plot showing the convergence behavior of the proposed
algorithms with pilots.

clearly outperforms the SS-FBLP, both methods offer MSE
performances, which are considerably stable across all SNR
values.

In Fig. 6 and 7, the convergence behaviors of the proposed
methods are shown. In addition, Fig. 7 also includes the per-
formance of the algorithm using pilot subcarriers. From the
plot, it can be seen that the MSE performance of the proposed
methods decreases monotonically and then converges to
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FIGURE 8. MSE plot showing the convergence behavior of the proposed
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FIGURE 9. MSE versus linewidth plot for the proposed estimation
algorithms.

a steady state. The SS-FBLP-VSS converges and attain
steady-state faster than the SS-FBLP method. In Fig. 8§,
the initial value of the phase is set to the value of B (0)in (34),
instead of initializing using a random value as in Fig. 7.
It can be seen from the plots that Fig. 8 gives an enhanced
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FIGURE 10. Performance of the proposed estimation algorithms with
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FIGURE 11. Complexity graph of the proposed schemes as compared to
the SVD method.

performance using B (0) for the phase initialization. The vari-
able step-size used, accounts for the excellent convergence
behavior of the SS-FBLP-VSS method. Also, the superior
MSE performance exhibited by the SS-FBLP-VSS method
could be attributed to its fast convergence as a result of the
adaptive step-size utilized instead of the fixed step-size used
in the other method.
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The proposed algorithms are executed in such a way that
they can be compatible for future implementation in real-time
digital signal processing (DSP) circuits. The specifications
used in the simulations are similar to the ones used in the
existing theoretical phase noise estimation schemes, which
may not be efficiently compatible with existing DSP circuits.
However, with improvements on the processing speed of
these circuits, the proposed methods would be practically
realizable with the aid of these emerging high-speed DSP
circuits. In Fig. 9, the MSE versus the linewidth plot is shown.
The performance of the SS-FBLP method is compared to
the SS-FBLP-VSS method across different linewidth values.
It is seen that both methods exhibit moderate robustness
with increasing linewidth. Also, the graph in Fig. 10 shows
the behavior of the proposed methods, as the length of the
optical channel is increased. Although the performance of
the proposed methods are affected, the methods especially the
SS-FBLP-VSS method exhibits a rather graceful decline and
fair stability across the distance.

VII. CONCLUSION

A blind estimation method, based on the subspace-tracking
approach, has been proposed and implemented for phase
noise estimation in CO-OFDM systems. The proposed
SS-FBLP method is derived in such a way that the estimate of
the phase noise, which is constantly changing over an OFDM
frame, is achieved adaptively. The adaptive implementation
is enhanced by employing the FBLP method, which ensures
low complexity. Also, a variable step-size is introduced in
the SS-FBLP-VSS method, to achieve better convergence and
stability. Results show that the proposed methods perform
considerably well in the practical CO-OFDM system utilized.
The prosed methods achieve a superior performance as com-
pared to the direct SVD method. Also, the results show that
the SS-FBLP-VSS method offers an enhanced overall system
performance compared to its SS-FBLP counterpart. Thus,
in addition to the better convergence and stability that comes
with the introduction of the adaptive step-size, an improved
overall system performance is also achieved.
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