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ABSTRACT With the development of autonomous vehicles, advanced driver-assistance systems, and
vehicular social networks, the requirement for vehicle trajectory prediction in lane changing is higher.
Here, we propose a neural-network-based operational level lane-changing model using data-driven methods.
First, we determine the inputs of the lane-changing model by analyzing the influence factors of the lane-
changing behavioral model under the framework of the social force theory. The main influencing factors
include the temporal destination, the historical trajectories of the lane-changing vehicle, and the relative
distance between the surrounding vehicles in our lane-changing model. Our lane-changing model is built
by deep neural networks (DNNs). Then, we determine the suitable network structure and other parameters
by empirical data for the DNN. Finally, tests on empirical lane-changing trajectory data sets show that the
operational level lane-changing model built by DNN is promising.

INDEX TERMS Lane change, simulation, deep learning, neural network, recurrent neural network (RNN),
social force, vehicular social networks (VSN).

I. INTRODUCTION
Similar to car-following (CF), lane-changing (LC) is one of
the primary driving tasks in traffic flow [1]. The LC rules
describe vehicular lateral interactions on the road and thus
play an important role in traffic flow theories [1]. Actually,
LC behavior involves two different levels of behaviors. One
is tactical-level behavior involving judgements and decisions,
that is, lane-changing decision (LCD) behavior [2]. The
LC behaviors on this level are more focused on the drivers’
decision process on conflicting goals. The other is the oper-
ational level behaviors involving operating the vehicle after
the lane-changing decision. LC behaviors on this level are the
specific operations of the vehicles according to the situation
of the surrounding vehicles during the execution of the LC.
The mechanisms of these two levels of behaviors are quite
different [3], [4].

With the autonomous vehicles (AV), advanced driver assis-
tance systems (ADAS), the Internet of vehicles (IOV) and
vehicular social networks (VSN) continue to evolve; there is

a higher requirement for the accuracy of the vehicle’s tra-
jectory prediction [5]–[8], especially the vehicle’s trajectory
prediction in LC, due to the increasing evidence of LC’s
negative impacts on traffic safety [9], [10].

With the recognition of LC’s significant impacts on traffic
safety and congestion, efforts on LC modeling have rapidly
increased over the last decade [1]. Although the conven-
tional LC simulation model has made some achievements,
researchers believe that there is still a lack of a traffic model-
ing tool that fully describes LC behaviors [1].

Most existing LC models (including conventional
Gipps-type, cellular automata-based, or utility theory-based
and Markov process-based models) are simplified for some
reasons [1]. This inevitably lowers the flexibility and accu-
racy of the model, as some of the possible influencing factors
are not considered in the simplified models, such as the car-
following model [11].

With the development of data-driven technolo-
gies [11]–[14], it is natural to explore whether it is possible
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to develop an LC model from empirical data by data-driven
technologies.Some scholars have attempted to apply neural
networks (NNs), fuzzy neural networks and deep neural
networks (DNNs) to predict drivers’ LC decisions on the
tactical level [15]–[19].

These early attempts applied NNs to predict the attempt
of an LC for application in the ADAS, not the behaviors
and decision-making process [15]–[19]. Thus, these models
are not suitable for implementing in microscopic traffic flow
simulations.

Third, most existing LC models process the immediate
states of the subject vehicle and the adjacent influencing
vehicles only [20]. They do not incorporate drivers’ histor-
ical experience or predictive capacity into the model. How
to make a suitable model structure to represent the time-
dependent memory effect in the LC model is one of the key
issues in our modeling.

Therefore, we propose a DNN-based LC model on the
operational level from empirical trajectory data.

Our LCmodel takes the vehicular time-dependent dynamic
states (velocities, positions, velocity differences, and position
differences to surrounding vehicles, etc.) as time series data.
These dynamic state-time series together with the LC type,
vehicle type, and drivers’ expected velocity are inputs of the
model. The model output is the estimated velocity vector
(with a direction and magnitude) of the target vehicle in the
next time interval. The adopted input-output structure has
some benefits. First, the whole model could be trained by
empirical trajectory data, extracted from video data or other
detected data sources. Second, the driver’s historical experi-
ence or the prediction capability can be handled in the DNN.
By regarding the vehicular dynamic states as time series data,
the model is capable of capturing the historical data or the
prediction capability during the LC period.

Here, we use empirical trajectory records extracted from
the NGSIM dataset to train and test the DNN-based opera-
tional level LC model. The results of the model tests show
that at the operational level, our LC model is more accurate
than the commercial simulation model. Our study provides
inspiration for capturing drivers’ LC behaviors on the opera-
tional level and for new traffic simulation modeling.

The paper structure is as follows. Section II first ana-
lyzes the influencing factors of LC behaviors on the opera-
tional level and then presents the details of the DNN-based
LC model. Section III presents the parameter settings and
training of these DNNs by empirical trajectory data extracted
from the NGSIM dataset. Section IV reports the LC model
numerical testing results of the LC models. Section V dis-
cusses the results and provides conclusions.

II. DNN BASED LC MODELS
To explore the effect of the NN-based LC model, we pro-
pose a feedforward neural network (FNN) LC model and
gated recurrent unit (GRU) neural network-based LC model
and perform a comparative analysis. The inputs/outputs of
these two models are the same, while the structures of the

FIGURE 1. Main work of DNN-based LC modeling.

hidden layer are different. By comparative analysis, we can
better understand whether the traditional FNN is suitable
for LC modeling. Fig. 1 shows our main work in NN-based
LC modeling.

First, we analyze the influencing factors impacting the
LC model to determine the inputs of the LC models.
Then, we determine the input and output layers of the two
NN models. Next, according to the input and output, the lane
change-related data in the NGSIM database are extracted, and
the operational level LC samples are constructed. We build
the FNN and GRU neural networks for LC models. Then,
by training and cross-validating the samples, we find the
suitable network structures and sample size for the FNN and
GRU networks for the LC models, respectively. Based on
the suitable network structures and sample size, we also find
the suitable historic time interval N by training and cross-
validation. Then, we validate the suitable network struc-
tures and sample size again. Using the iterative method, we
finally determine the suitable DNN-based operational level
LC model.

A. INFLUENCING FACTORS ANALYSIS FOR THE
LC MODELS
The complexity of the LC behavioral model mainly comes
from the conflicting goals and numerous influencing fac-
tors. In traditional simulation models, LC behaviors are usu-
ally divided into ‘‘discretionary’’ or ‘‘mandatory’’ behaviors,
as the behaviors and decision-making processes of these two
types of LC behaviors are significantly different [1], [21].
However, [22] classifies LC behaviors into three types: free,
cooperative and forced LCs. Therefore, although LC type is
an influential factor, it is unsuitable for use as LCmodel input.
This is because the classification of LC types is different, and
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LC types need to be calibrated artificially, which does not
meet the requirements of data-driven modeling.

In recent years, the application of social force (SF) theory
in microscopic traffic flow simulation modeling has gradu-
ally extended from pedestrians to riding behavior models of
bicycles and vehicles [3]. The core idea of the SF behavioral
model is that the change in the individual behaviorB is caused
by the interaction between the individual’s characteristics P
and the external environmental factors E :

B = f (P,E) (1)

where B stands for the behaviors of the subject person,
P stands for the personal characteristics of the person, and
E stands for the environmental influencing factors.

In LC behaviors, the drivers’ personal characteristics
include age, driving experience, gender and occupation. Due
to the limitations of our sample, such features are not consid-
ered in our models. Hence, we mainly focus on the environ-
mental influencing factors E .
Among the external environmental influencing factors E ,

one very important factor is the planned temporal desti-
nation TD, which is the output in the driver’s short-term
path/trajectory planning model. TD usually includes the loca-
tion and expected arrival time [5], [7].

In our LC behavioral model, we assume that the differ-
ent types of LC behaviors (‘‘discretionary’’, ‘‘mandatory’’
or other types) are the results of the interactions of the
LC vehicle (motivated by TD) with the surrounding vehicles.
The LC type is an external phenomenon rather than an inter-
nal cause of LC behavior.

Therefore, when considering the model input, the type of
the LC model is not taken as an influencing factor, but the
vehicle temporal destination TD (including the expected time
to reach the destination) as input of the LC mode is:

−→
TDi (t) = {1

−→
TDi (t) ,1TDi} (2)

where1
−→
TDi (t) stands for the relative distance of the temporal

destination (TD) to vehicle i, 1TDi stands for the relative
expected arrival time at the TD for vehicle i:

1
−→
D i (t) =

−→
D i (t)− Esi (t) (3)

1TDi = TDi − t (4)

where
−→
D i (t) represents the position of the TD of vehicle i

at time t; Esi (t) is the trajectory of vehicle i at time t;
TDi represents the expected arrival time at TD of vehicle i.

Thus, our LCmodel combines easilywith the path/trajectory
planning model [5], [7] at the tactical level. The output of the
LC path planning model —temporary destination TD — is
the input of our operational LC model.

In addition to the TD of the planned path, the most direct
influencing factor of LC behavior is the motion state of the
LC vehicle and the relative dynamic states of the surrounding
vehicles. In a typical process of an LC decision, the driver
needs to choose the target lane and then search for an accept-
able gap (usually defined as the headway gap between his/her

FIGURE 2. Relative dynamic states of surrounding vehicles in a typical
LC schematic.

vehicle (the subject vehicle) and the leading vehicle and
following vehicle in the target lane) and then to execute the
change. During this process, the vehicle may still be in a car-
following situation, so the leading car and following car in the
initial lane may also influence the LC behavior. Therefore,
the factors include the subject vehicle trajectory and velocity,
the relative distances, directions and the relative velocities
to other adjacent vehicles in the initial lane and target lane,
as illustrated in Fig. 2. Here, ‘‘F’’ stands for the following
vehicle, ‘‘L’’ for the leading vehicle, ‘‘TL’’ stands for the
leading vehicle in the target lane, and ‘‘TF’’ stands for the
following vehicle in the target lane.

To embody the direction andmagnitude, the trajectory Esi (t)
and velocity−→v i (t) of the subject vehicle iare both vectors as
follows:

Esi (t) = {xi (t) , yi (t)} (5)

where xi(t) and yi(t) stand for the position of i at the x and
y axes at time t , respectively.

Similarly, the relative distance to the leading and following
vehicles in the initial lane and target lane are all vectors, and
if there is no surrounding vehicle j, the relative distance is set
as infinity:

1Esj,i (t) =

{
Esj (t)− Esi (t) if j exists
∞ else

(6)

and

Esj (t)− Esi (t) = {xj (t)− xi (t) , yj (t)− yi (t) (7)

where xj(t), yj(t) stand for the position components of vehi-
cle j in x and y axes at time t , respectively. Vehicle j usually
includes the leading and following vehicles in the initial lane,
denoted as L and F, and the leading and following vehicles in
the target lane denoted as TL and TF in the subscripts.

The velocity and relative velocity vectors can be derived
directly from the position vectors:

−→v i (t) = 1Esi (t)
/
τ= (Esi (t)− Esi (t−τ))/τ (8)

and

1−→v j,i (t) =
−→v j (t)−

−→v i (t)

= 1Esj (t)
/
τ −1Esi (t)

/
τ

=
Esj (t)− Esj (t− T)

τ
−
Esi (t)− Esi (t− T)

τ
(9)
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where−→v i (t) stands for the velocity components of i at time t ,
1Esi (t)

/
τ for the moving trajectory of i from time t-τ tot .

When the time step τ is small enough,1Esi (t)
/
τ can represent

the instantaneous speed of vehicle i at time t .
Then, by (8) and (9), all the velocity-related variables can

be calculated from the previous and current trajectory data.
Considering the powerful learning and calculation functions
of the DNN models, the velocity data can be omitted without
any information loss when the historical trajectory data are
also put into the model.

Moreover, regarding the drivers’ historical experi-
ence or the prediction capability in the LC models, we also
take the vehicles’ previous trajectory data a few seconds
before.

Thus, the inputs of the social force-based operational level
LC models are as follows:

Input = {
−→
TDi (t) ;Li;Esi (t−τ) ;Lj;1Esj,i (t−τ) ;

Esi (t− 2τ) ;1Esj,i (t− 2τ) ; . . . ...

Esi (t− Nτ) ;1Esj,i (t− Nτ) ; }

j = L,F,TL and TF (10)

where Input stands for the inputs of the operational level
LC model; Li and Lj stand for the vehicle length of vehicles i
and j, which is often closely related to the types of vehicles.
The types of vehicles often includemotorcycles, auto cars and
trucks, sowe took the vehicle length to represent the influence
of the vehicle type. τ is the time step to the calculated velocity,
considering the current development of vehicular social net-
works (VSN) and IOV data acquisition technologies, as well
as speed data accuracy requirements, τ=0.2 s. T stands for
the time interval of the model. Referring to the previous study
on modeling car-following by DNN [11], we set T=1 s.
N stands for the parameter defining the length of the influ-
encing previous time interval NT, and we will discuss this
parameter in section IV.

B. FNN BASED LC MODEL
Based on the above analysis of the influence factors of the
operational level LC model, we propose a feedforward neural
network (FNN) LC model, which is formulated as follows:
−̂→
1si (t|θ) = f


−→
TDi (t) ;Li;Esi (t− τ) ;1Esj,i (t− τ) ;

. . . . . .

Esi (t− Nτ) ;1Esj,i (t− Nτ) ;


Êsi (t|θ) = Esi (t− T)+

−̂→
1si (t|θ)

j = L,F,TL and TF (11)

where
−̂→
1si (t|θ) is the estimated moving distance of the

LC vehicle i from (t-T) to t , Êsi (t|θ) is the estimated trajectory
of the LC vehicle i at t.
Both LC functions f (•) are learned by neural networks.

θ are the parameters of the NN, mainly including the weight
vector and transfer function. Other notations are the same
as (9).

FIGURE 3. The structure of FNN for LC models.

Fig. 3 presents the structure of the FNN-based LC model.
The structure contains three types of layers. The neurons
of the input layer take the inputs, while the neurons of the
output layer generate the outputs [17]. This FNN model con-
tains one or more hidden layers, which contain a number of
neurons.

Here, we take the sigmoid function as a transfer function
for neurons, which has been widely used and proven to be
suitable for the car-following model [11].

According to the data-driven modeling theory, if the sam-
ple size and quality are high enough, the samples reflect all
the mechanisms of drivers’ LC behaviors. The structure of
the neural network is very powerful, which means it can
learn all the mechanisms of drivers’ LC behaviors. Therefore,
we believe that such an NN-based LCmodel can represent the
drivers’ LC behaviors properly.

C. GATED RECURRENT UNIT (GRU) NEURAL NETWORK
BASED LC MODELS
To better capture the drivers’ LC behavior features, we apply
more powerful neural networks to operational level LC mod-
els, which is also formulated as (10).

Scholars have proposed a number of NNs to perform deep
learning. Here, we implement the gated recurrent unit (GRU)
neural network, which is a kind of recurrent neural network
(RNN) [23]–[25]. The structure of GRU networks for the
LC model is shown in Fig. 4. In RNNs, the connections of
the neurons of the hidden layer can form a directed cycle. The
directed cycles create an internal state of the network, making
it possible to exhibit dynamic temporal behavior, such as the
memory effect of the human brain.

In Fig. 3, we can see that all inputs of FNN are independent
of each other. Different from FNN, RNNs can process any
sequence of input with their internal states. For the length
of the paper, neuron output functions are not presented here.
Interested readers can refer to [11] and [24].

The primary purpose of applying deep learning methods
to operational level LC modeling is to enhance the learn-
ing capacity of NNs. In theory, with proper transfer func-
tions and neuronal quantities of the hidden layers, a three-
layered NN also has the power to capture any behavior rules,

57500 VOLUME 6, 2018



L. Huang et al.: Capturing Drivers’ Lane Changing Behaviors on Operational Level by Data Driven Methods

FIGURE 4. The structure of FNN for LC models.

including LC. However, multilayer neural network models
(also called deep learning) have obtained state-of-the-
art achievements in many challenging tasks, including
computer vision, natural language processing, speech
recognition, handwriting recognition, and traffic flow
forecasting [26]–[29].

III. NEURAL NETWORK TRAINING FOR LC MODELS
The training of NNs can be regarded as the process of
minimizing the error between model outputs and samples.
This section contains three parts: performance index, decision
variables and training algorithms of neural networks.

According to [30]–[32], we adopt the widely used mean
squared error (MSE) of empirical and estimated trajecto-
ries as a performance index. For further information on
the MSE formula, interested readers can refer to [3], [11],
and [30]–[32].

There are four types of decisive parameters in our
DNN-based operational level LC models.

A. TIME INTERVAL NUMBER N OF MODEL INPUTS
Here, the value of N represents the amount of vehicle history
trajectory information being input into the neural networks.
The larger N means more historical trajectory information is
put into the neural networks.

To validate the best value of time interval number N,
we trained different neural networks with different N,
from 2 to 9, and tested them with the LC sample database.
Model tests show that N=5 of historical input might be a
reasonable choice. Test results are presented in section IV.

B. TRANSFER FUNCTION
According to [11], the sigmoid function is chosen as the
transfer function for neurons in the input/output layers of the
FNN and GRU neural networks.

For neurons in the hidden layers, the sigmoid function
and ReLU function [24], [25] are chosen as the transfer
functions for the FNN and GRU models, respectively. The
ReLU function is as follows:

gReLu = max {1, z} (12)

FIGURE 5. The study area in the NGSIM U.S. Highway 101 dataset.

C. THE STRUCTURE OF NNS
The structure of neural networks includes the number of
hidden layers and neurons in them.

There is no explicit method to determine the most suitable
structure of neural networks. We can only obtain a suitable
NN structure by empirical data testing. We have trained and
tested several representative NN structures and found that the
structure is highly correlated with the training sample size.
The test results are presented in Section IV.

Corresponding with recent work [11], we apply the back-
propagation (BP) algorithm [33] to train the FNN-based
LCmodels and the stochastic gradient descent algorithm [34]
to train the GRU-based LC models.

Later, the cross-validation method is applied to solve the
problem of underfitting and overfitting of NN-based models.
Thus, we can judge that our DNN-based models are under-
trained, overtrained or trained properly.

Section IV presents the results of model cross-validation.

IV. TESTING RESULTS
In this section, we will perform tests on our LC models using
empirical data. First, we introduce the testing empirical data.
Then, we compare different structures of the FNN- and GRU
NN-based LC models together with different training sample
sizes. Next, based on the appropriate training sample sizes
and structure, we determine the time interval number N. Last,
we compare the performance of the FLOWSIM-LC model
and our DNN-based LC models.

A. TESTING DATA
The next generation simulation (NGSIM) is chosen as our
testing dataset because it provides reliable and accurate
trajectory data and other related information (such as the
initial lane, target lane, leading vehicle ID, and following
vehicle ID), which is ideal for operational level LC behavior
modeling. The dataset is of U.S. Highway 101. The study
area is approximately 640 meters long, with one on-ramp and
one off-ramp. The vehicle trajectory study area and the lane
numbers are shown in Fig. 5.

In sample data preprocessing, we separated successive
LC movements executed by one vehicle into different single
LC cases. For example, LC 4-5-6 (meaning that the vehicle
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FIGURE 6. Schematic of separating successive LC movements into single
LC cases.

moves from lane 4 to lane 5 and then to lane 6, as shown
in Fig. 6), we separated the successive LC cases into two
different LC cases: LC 4-5 and LC 5-6. To obtain as many
data samples as possible, we put all the suitable data of the
lane change case into a single lane change sample.

After preprocessing, we obtained 1378 LC cases and
146,435 records of LC vehicle trajectories for training/
testing. We obtained over 141,127 valid sample records. The
LC samples extracted from the NGSIM dataset are denoted
as empirical LC data.

B. FINDING THE SUITABLE MODEL STRUCTURE AND
SAMPLE SIZE
To implement DNN to a relatively small dataset, we should be
cautious about overfitting and underfitting. As complicated,
NN is prone to overfitting with a small sample size.

According to [36], the overfitting problem in trainingNN is
more serious. When the model is overfitting, although the
error of the model on the training dataset is very small,
the error on the testing dataset becomes large. To avoid this
mistake, we test different network structures from simple to
complicated structures.

Because it is difficult to determine the correlation of the
training sample size and the neural network structures [11],
we test different schemes (see Table 1) to find suitable neural
network structures.

We randomly divided the entire empirical LC sample into
three parts: 40% as the training dataset, 30% as the cross-
validation sample, and the remaining 30% as the test dataset.

For all the neural network schemes in Table 1, generally at
least 10,000 to 50,000 samples (8% to 35% of the total sam-
ple) are required. The test results show that most of the weight
coefficients of the models do not approximate 0, which shows
that the proposed NN models work with efficiency by the
cross-validation method.

Figs. 7 and 8 show the MSE values in feet2 of the FNN
model and GRU neural network-based LCmodels in different
training samples and structure schemes, respectively. Here,
the time interval number N of the model input is taken as 5.

The results show that the GRU neural network LC model
with structure scheme 7 in Table 1, trained by 30,000 samples,
obtained the best performance. The FNN LC model with
structure scheme 3 in Table 1, trained by 25,000 samples,
obtained the best performance.

We chose the neural network structure with the best
performance as our LC model structure and called it the

TABLE 1. NN structure schemes tested.

FIGURE 7. MSE in feet2 of FNN with different structure schemes and
training sample sizes (N=5).

FNN-LC model (structure scheme 3, N=5) and GRU-LC
model (structure scheme 7, N=6).
The results on the NN structures indicate that DNNs are

better than shallow NNs in modeling LC behaviors on the
operational level.
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FIGURE 8. MSE in feet2 of GRU neural networks with different structure
schemes and training sample sizes (N=6).

FIGURE 9. MSE in feet2 of FNN- LC and GRU-LC models with different
time interval numbers N.

C. THE APPROPRIATE VALUE OF TIME
INTERVAL NUMBER N
Before finding the best structures of the FNN and GRU
LC model, we selected 10,000 training samples to test and
compare different Ns. The preliminary results show that
N=5 or 6 are appropriate choices.

Then, we chose N=5 to test and compare the different
network structure schemes and training sample sizes and

obtain the optimal structure schemes and the correspond-
ing training sample sizes for the FNN-LC model and the
GRU-LC model, respectively (details see section IV-B).

Next, with the best network structures and corresponding
training sample sizes, we tested the FNN-LC model and the
GRU-LC model with different N values, and the results are
shown in Fig. 9. The results show that N=5 for FNN-LC and
N=6 for GRU-LC achieve the best performance.

D. COMPARISON OF TRAJECTORY PREDICTION
ACCURACY
To examine the trajectory prediction accuracy of our LCmod-
els, we compared the distributions of trajectory deviations
of the FNN-LC model, the GRU-LC model and the
FLOWSIM-LC model in the test LC dataset.

The FLOWSIM-LCmodel is the LCmodel in the commer-
cial microscopic traffic flow simulation model—FLOWSIM
2.1 version. The vehicles’ car-following and LC behav-
ioral model of FlowSIM 2.1v are both based on fuzzy
logic [37]–[39].

The test dataset was randomly extracted from the
NGSIM empirical LC test dataset.

According to the statistical facts of the samples from the
NGSIM dataset, the parameters of this FlowSIM simulation
model were set as [11].

Fig. 10 compares the distributions ofMSE on the trajectory
of LC vehicles of the FNN-LC Model, the GRU-LC Model
and the FlowSIM-LC models.

Fig. 10 shows that the GRU-LC model is more accurate
than the other models in trajectory prediction of the subject
vehicles in LC situations.

To give an illustration of the spacing estimation errors,
we randomly selected one ‘‘Mandatory’’ and one ‘‘Non-
mandatory’’ LC case in the US 101 dataset. Here, we set all
LC cases for vehicles that finally exited via lane 8 as
‘‘Mandatory’’ and for vehicles entering from the on-ramp
(i.e., lane 7) and then changing from lane 6 to lane 5 as
‘‘Mandatory’’ (this case should be viewed as a ‘‘Manda-
tory’’ case as if the vehicle had not changed lanes, it would
soon exit via lane 8 in 150 m). Other LC cases were set as
‘‘Nonmandatory’’ cases.

In the ‘‘Mandatory’’ LC case, the ID of the LC vehicle is
4 changes from lane 6 to 5, without the leading vehicle or tar-
get lane leading vehicle, the ID of the following vehicle is 6,

FIGURE 10. Distributions of trajectory deviations of three models in all LC situations.
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FIGURE 11. The LC vehicle trajectory replicated by different models in ‘‘Mandatory’’ and ‘‘Nonmandatory’’ LC situations.
(a) ‘‘Mandatory’’ LC situation. (b) ‘‘Nonmandatory’’ LC situation.

and the ID of the target lane following vehicle is 14. In the
‘‘Nonmandatory’’ LC case, the ID of the LC vehicle is 233,
changing from lane 5 to 4. The ID of the leading vehicle,
the following vehicle, the target lane leading vehicle and the
following vehicle are 231, 246, 228 and 245, respectively.
Fig. 11 shows the LC vehicle trajectory replicated by different
models.

V. DISCUSSIONS & CONCLUSIONS
Like all data-driven models, the quality and quantity of train-
ing samples determine the performance of the FNN and GRU
neural network-based LC models.

First, the relative distance and relative speed of our vehicle
and the surrounding vehicles were used as inputs to the
model. However, in the actual operation, the velocity must be
in the form of a vector in LC samples. The speed data of the
original NGSIM do not contain this information. We tried to
use the trajectory information to calculate the velocity vector,
but the result was not ideal, as many speeds exceeded the
actual speed range. Therefore, the results of the training were
not satisfactory.

Then, we input the immediate and historical trajectory
information and relative distance simultaneously, instead of
the original trajectory, relative distance, velocity, and relative
velocity input. The results of training were satisfactory this
time, as the quality of the sample was guaranteed.

However, this also indicates that our FNN-LC and
GRU-LC models trained by the limited samples in the
NGSIM dataset cannot meet the simulation requirements of
all situations. However, our main contribution of the work
is attempting to apply social force (SF) behavior theory and
data-driven modeling to more complex driving behaviors,
such as operational level LC behavior modeling.

In addition to providing a basic model framework and
methodology for building localized online simulation mod-
els, the NN-based operational level LC model can also be
applied to intelligent vehicle research, as in the advance driv-
ing assistant system (ADAS). The LC model can be applied
to predict the trajectory of the front adjacent lane vehicle
in an LC case and provide basic information for further
safety judgement and strategy. Another promising use is to
apply an NN-based LC model to estimate the surrounding

human-driven vehicles in virtual tests of ADAS in intelligent
vehicles or AVs [5].

In this paper, we attempt to build an NN-based operational
level LC model using pure vehicle trajectory data. Empirical
data tests showed that the new NN-based operational level
LC model was more accurate in trajectory prediction than
existing LC models of commercial simulation software.

The research results may be part of the response to the
question proposed by [11]: ‘‘Whether is it possible and
whether is it necessary to build a new traffic simulation
software in a pure deep learning way?’’.

Our test results show that with the proper model
input/output from the theoretical framework support, we can
build a relatively simple NN structure with a medium sample
size with satisfactory results. For instance, in this paper,
the three-layered FNN model with 100 neurons in the hidden
layer, trained by a 25,000 sample, we can obtain satisfac-
tory results. However, the performance of the more complex
GRU-LC model generally performs better than FNN.

Therefore, we believe that with the support of a proper
theoretical framework (such as the social force behavioral
model framework), we can make better use of data-driven
modeling methods. We can build simulation models using
a simple NN structure with a medium training sample size
and obtain satisfactory simulation results as well. In addition,
this research can provide a useful reference to many research
fields about future vehicles and transportation, both of which
are used in future energy and smart cities [40]–[44].

The lane change is a series of complicated behaviors con-
taining tactical and operational levels of behaviors. There-
fore, a more appropriate approach may be to build the two
different levels of LC behavior models (tactical and opera-
tional level) separately. Our future work will attempt to build
LC models that incorporate these two levels of LC behaviors.
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