
Received September 3, 2018, accepted September 28, 2018, date of publication October 4, 2018, date of current version October 29, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2873718

Reactive Execution of Learned Tasks With
Real-Time Collision Avoidance
in a Dynamic Environment
GANGFENG LIU, (Member, IEEE), CAIWEI SONG , XIZHE ZANG, (Member, IEEE),
AND JIE ZHAO, (Member, IEEE)
School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, China

Corresponding authors: Caiwei Song (16B908052@stu.hit.edu.cn) and Xizhe Zang (zangxizhe@hit.edu.cn)

This work was supported in part by the Natural Science Foundation of China under Grant 91648201, Grant 51521003, Grant 61803126, and
Grant U1713201, and in part by the National Key R&D Program of China under Grant 2017YFB1302301 and Grant 2017YFC0806501.

ABSTRACT This paper addresses the problem of learning from demonstration (LfD) and subsequent robot
safety control in an unstructured dynamic environment different from the demonstrations. Generally, LfD
has been successfully exploited for task programming, but the existing methods have not solved the problem
of allowing the entire arm to avoid obstacles while satisfying the task motion constraints (e.g., the robotic
arm approaching the target object while avoiding obstacles moving within the environment). To achieve
this, we present an incremental LfD approach that combines a task-parameterized probabilistic model and
the robot security domain to control a robot’s behavior during task execution. Specifically, we propose a
safety-oriented and task-oriented control strategy for redundant manipulators that makes full use of the
motion redundancy of the manipulator and the space with no task restraints to satisfy the task constraints
for human-robot coexistence. We then demonstrate the effectiveness of the proposed approach through a
series of pick-and-pour experiments performed by a manipulator with 7 degree of freedom in a dynamic
environment, where the robot must both avoid obstacles and satisfactorily complete the learned task with
constraints.

INDEX TERMS Motion and path planning, moving obstacles, probabilistic modelling, robot learning from
demonstration.

I. INTRODUCTION
Robots have the potential to assist humans by performing a
variety of daily housework and production tasks in houses or
workplaces. For example, a robot can help with housework
and cooperate with workshop employees to complete assem-
bly work. However, in most cases, robots can handle repeti-
tive operations only by executing pre-defined programs. The
key challenge for robots in completing tasks autonomously is
to ensure human safety while planning and executingmotions
in unstructured environments that may contain unforeseen
obstacles. Meanwhile, many tasks must be performed in a
manner that enforces constraints. Humans are aware of such
constraints from context and intuition [1]. For example, when
pouring water into a bucket with a cup, a person moving
the full cup must keep the water approximately level and the
water must be poured over the bucket.

Learning from Demonstration (LfD) provides a path to
solve this dilemma. LfD has been successfully applied to

motion planning and task programming; it allows the human
to avoid complex manual programming [2]. Robot control
no longer requires building complex models or solving cost
functions for planning and optimization; therefore, LfD is
friendly for users without professional knowledge. Moreover,
by introducing definitions of the operating object and prim-
itive motions, LfD allows the robot’s movement to adapt
to new environments and reuses previously learned knowl-
edge by relying on motion primitives when composing new
tasks [3].

To free the robot from a completely structured working
environment, many studies have been conducted in which
a robot performs a learned task while avoiding collisions
with obstacles [4]. Sampling-based motion planning has
been widely implemented in robot collision-free task execu-
tion [5], but its high computational cost and instability limit
its application. A recent popular idea in LfD is to use prob-
abilistic machine-learning methods in a task-parameterized
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framework [6], [7]. Although this approach is capable of
extracting patterns that are important to a given task and
can be generalized to different scenarios, to achieve obstacle
avoidance, obstacles must be considered during the demon-
stration used for model learning [8]. Thus, the availability
of training data limits LfD’s application because—in all but
the simplest domains—the instructor cannot demonstrate all
the possible environmental states and their corresponding
corrective actions. Consequently, there is a question con-
cerning how the robot should respond when it encounters a
new, undemonstrated state (for example, an obstacle cate-
gory not considered during the demonstration). One approach
to dealing with contingencies encountered during execu-
tion is to provide additional data by performing interac-
tive corrections [3], [9]. However, this approach increases
model complexity and makes dealing flexibly with complex
environments and dynamic obstacles difficult [10]. A new
approach is therefore needed to enhance the environmental
adaptability and obstacle avoidance abilities of probabilistic
models. In this paper, we propose a framework that com-
bines probabilistic methods and underlying real-time secu-
rity controls [11] to reap the benefits of both approaches.
This approach allows the probability model to focus on
task-related pattern extraction, while the security of task exe-
cution is guaranteed by the safety field. The robot can adapt
and correct its movement within the task restrictions to cope
with dynamic obstacles in real time.

The key contribution of this work is that it enables the
robot to avoid collisions in dynamic environments using only
a small number of demonstrations yet still being suitable for
any kind of obstacle. In contrast, previous studies have the
problem of robots performing a task only in the presence of
stationary [10], [12], [13] or moving obstacles that are given
special consideration during demonstrations [8].

In addition, we extend LfD to allow our approach to
perform whole-arm obstacle avoidance in addition to end-
effector obstacle avoidance. This aspect of collision avoid-
ance has not received sufficient attention and study in
the existing LfD methods. By introducing a new safety
assessment, called the Elementary Safety Field (ESF), it is
possible to quickly calculate and evaluate the risk of a col-
lision between an operating robot and moving obstacles.
Another contribution of this paper is a task- and safety-
oriented controller based on a variant of the well-known
Closed-Loop Inverse Kinematics (CLIK) algorithm [14]. The
control strategy allows redundant manipulators to achieve
whole-arm collision-free motion planning in a larger space
range beyond the nullspace, while simultaneously performing
the task.

The rest of this paper is organized as follows. We review
related works in Section II and present the overall method for
learning and generalizing tasks in dynamic environments in
Section III. Section IV presents the qualitative and quantita-
tive assessments of our method. Finally, a brief summary of
the entire work can be found in Section V.

II. RELATED WORKS
Dynamical movement primitives (DMPs) have the ability
to model dynamical systems using a set of nonlinear dif-
ferential equations [15]. A number of methods exist that
combine DMPs with a defined control policy for avoiding
collisions [10], [16], [17]. For instance, Kardan et al. [18]
proposed combining the DMPs framework with the virtual
impedance method to avoid obstacles in real-time, which
enabled a non-oscillatory convergence of the end effector
to the desired path. However, traditional DMPs uses only a
single demonstration to learn dynamic models. In fact, a more
ideal model for task representation can be encoded with mul-
tiples demonstrations. To address this problem, a probabilistic
representation of movement primitives (ProMPs) [19], [20]
was proposed to learn the parameters that describe elemen-
tary trajectories, using the concept of phases in the same
manner as DMPs. In [19], ProMPs was used to parametrize
the desired trajectory distribution of the primitive by a
hierarchical Bayesian model with Gaussian distributions.
To implement obstacle avoidance, ProMPs need to adapt an
existing primitive library by prioritizing additional con-
trollers. Although the approaches based on DMPs-enabled
robots to avoid colliding using a predefined security con-
trol policy—which is difficult for non-experts to design—it
accomplished only space obstacle avoidance of the terminal
executor.

Sampling-based motion planners have been widely used
by various robotic systems to calculate feasible motion plans
in complex environments [21], [22]. Some approaches have
combined LfD methods with sample-based motion plan-
ning to satisfy learned features in unstructured environ-
ments [23], [24]. A prior framework presented by the authors
learned the cost-metric-encoded motion features from a set
of demonstrations. Then, the sampling-based motion planner
computed a collision-free motion plan that globally min-
imized the cost metric. These methods select an optimal
solution from a set of candidates sampled from a feasible
configuration space. Although sampling-based methods can
satisfy complex path planning scenarios, these methods are
computationally inefficient compared to real-time obstacle
avoidance methods [25]; therefore, the method was designed
for static execution environments [26]. The high computa-
tional cost to compute a feasible, obstacle-avoiding trajec-
tory is a major inconvenience for applications in dynamic
environments.

In contrast, probabilistic machine-learning methods are
widely used for task learning and generalization in LfD. The
information provided by only one demonstration is insuffi-
cient to reproduce the task: usually, as more training data
are used to train the robots, the acquired skills become
more robust. Probabilistic models are particularly suitable
for analysing multiple demonstrations. To capture the spatial
correlations, dynamic time warping (DTW) is commonly
used to achieve time alignment of the training data [27]–[29].
The selection of the reference trajectory impacts the results
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FIGURE 1. Block-diagram of the system components, with task learning shown in orange and execution shown in white. The red arrows
indicate execution flow, and the white arrows indicate data flow.

of the DTW application. However, these methods do not
consider the influence of the weights of different components
(such as cartesian distance and orientation deviation) on the
selection of the optimal reference trajectory. This study finds
the optimal alignment by defining a similarity metric.

Calinon et al. proposed a learning by imitation framework
based on a probabilistic model that extracted essential fea-
tures and generalized human-demonstrated tasks [6], [30].
The demonstrated motion trajectories were modelled by
the Gaussian Mixture Model (GMM); then, the generaliza-
tion trajectory was estimated by Gaussian Mixture Regres-
sion (GMR). The GMM/GMR approach can not only cope
with changing object reference frames in new situations but
also take the obstacles in the environment into account. For
instance, Tanwani et al. [7] proposed a movement-encoding
method based on Hidden Semi-Markov Model (HSMM) that
enabled the robot to autonomously replicate a task under
different situations, including different starting positions and
goal poses and with a simple stationary obstacle. However,
to avoid obstacles, these methods must be trained to consider
the obstacles during the demonstration stage [9]. In reality,
we often do not know what kinds of obstacles will occur
in the target environment. To avoid the disadvantages of the
GMM/GMR workflow for avoiding obstacles, we take an
approach that differs from the previous method.

Khatib presented a real-time obstacle avoidance approach
based on the repulsion potential fields concept [11] in which
collision avoidance is treated as low-level real-time control.
The virtual repulsive force generated between potentially
colliding objects and links is converted into the corresponding
joint velocities projected to the task nullspace.Motion control
based on potential fields is a real-time control method that
can effectively guarantee the safe operation of robot [25].
Thus, it is desirable to bridge the gap between the potential
fields and probabilistic methods to reap the benefits of both
approaches.

Although LfD models and obstacle avoidance have been
widely studied, the existing methods do not consider the

impact of the kinematic velocity of robot links and moving
obstacles. In this paper, we present a safety-oriented and
task-oriented control strategy by combining real-time obsta-
cle avoidance and task constraints based on the learned task
model. A simple and feasible whole-arm obstacle avoidance
algorithm is proposed that greatly reduces the computational
overhead. We extract the loose limits of tasks using proba-
bilistic models; this approach provides the basis for a safety
control strategy that can avoid arbitrary obstacles in the
environment. The proposed approach is more versatile than
approaches that integrate task and safety constraints into one
task model, and it also reduces the computational difficulty.

III. METHOD OVERVIEW
We assume that the robot can sense the positions of the task-
relevant objects, which are called landmarks. During execu-
tion, our objective is to compute a collision-free motion plan
that applies to the task-relevant objects while satisfying the
learned constraints. For the task of pouring water, the robot
needs to dynamically adjust the model parameters accord-
ing to the positions of the cup, bucket and obstacles in the
environment, and compute a feasible trajectory. To achieve
this goal, the proposed method is divided into two main
stages: learning a taskmodel from a set of demonstrations and
reactive execution of learned tasks with real-time collision
avoidance. Fig. 1 illustrates an overview of the approach. Dur-
ing the learning phase, the operators provide the robot with
a series of different demonstrations for the same task to
ensure that the obtained model includes sufficient informa-
tion. There is no need to consider the presence of obstacles for
each demonstration. As described in Sec. II-B, first, statistical
methods are used to learn a task model; then, the model can
be mapped to a new situation, where the task-related objects
may appear in different locations.

During the execution phase, the robot first tracks the posi-
tions of task-related objects and obstacles in the current envi-
ronment and calculates the task parameters.We can obtain the
safety field of the entire manipulator based on the algorithm
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proposed in Sec. II-C. The robot then computes a feasible,
obstacle-avoiding trajectory based on the control strategy
presented in Sec. II-D, causing the entire manipulator to avoid
moving obstacles while satisfying the task constraints.

A. DATA ACQUISITION AND PREPROCESSING
To build a robot task model using fewer demonstrations, not
only must the demo data be representative, the pre-processing
of the demo data is also crucial.

To enable the robot to obtain the required operating skills in
a messy environment, we randomly place objects in the envi-
ronment and record the pose and orientation of the robot’s end
effector and objects during teaching. Typically, the duration
of each demonstration is different. A better robot task model
can be obtained through this trajectory pre-processing. DTW
is commonly used in the speech recognition field to compare
the similarity between two speeches of different lengths.
A trajectory is essentially a time series of motion futures;
therefore, a trajectory can be processed using the DTW
algorithm. The traditional DTW algorithm often requires the
reference trajectory to be manually specified, and it assigns
the sameweight to each dimension. However, each dimension
has a different impact on the alignment results at different
task stages. This paper proposes a method for automatically
obtaining the reference trajectory from multiple presentation
trajectories. The similarity between two segments is defined
as a ‘‘similarity metric’’ and measured by the total cost of
the positional deviation and orientation of the two trajectories
after twisting. The deviation between two points νandυ can
be calculated as follows:

d (ν, υ) = ανdp (ν, υ)+ βνdo (ν, υ) , (1)

where dp (ν, υ) and do (ν, υ) are, respectively, the cartesian
distance and orientation deviation between two track points,
and αν and βν are their respective weights. We generate
weights for the position and orientation using the inverse
covariance matrix of the generalization trajectory computed
by the GMR (which we will introduce in the next section).
Here, α∗ν is equal to the average of the diagonal entry in
the inverse covariance matrix corresponding to the current
position and β∗ν corresponds to the orientation. Then, we can
obtain

αν =
α∗ν

α∗ν + β
∗
ν

, βν =
β∗ν

α∗ν + β
∗
ν

. (2)

DTW (i, j),∀i, j ∈ {1, 2, ...,M} is used to represent the
overall similarity between the two trajectories, where M is
the total number of demonstrations. The similarity metric
between each demonstration and the rest of the demonstra-
tions is calculated as follows:

similarity(i) =
M∑
j=1

DTW (i, j),∀i ∈ {1, 2, ...,M}. (3)

The demonstration with the minimum similarity is selected
as the reference trajectory. Therefore, we traverse the tra-
jectories for DTW alignment and obtain a GMR as the

reference trajectory. Then, we calculate the similarity metric
of all the trajectories using Formula (3).

Next, we will use the behaviour characterization based
on the Gaussian Mixture Model to code the teaching data,
which is mainly composed of two parts: learning the model
parameters and generalizing to new scenarios.

B. MODEL CONSTRUCTION
The demo data set can be represented as {X j

∈ RD×N
|j =

1, . . . ,M}, which corresponds to matrices composed of
D-dimensions of the observations at N time steps. In this
paper, D = 8, including the time index, cartesian position
and attitude quaternion.

To construct task models related to environmental objects,
the cartesian coordinate and the orientation (in quaternions)
of the gripper’s tip at time step n in the world frame is
expressed as an. In the object coordinate system p, it can be
expressed as apn. Constructing the equation an = An,pa

p
n+bn,p

makes it easier to calculate the Gaussian distribution prod-
ucts, where bn,p represents the offset of the object coordinate
from the base coordinate, and An,p is the transformation
matrix. The parameters of the model with K components
are defined by {πi, {µ

j
i,6

j
i}
P
j=1|i = 1, . . . ,K }, where πi

represent the mixing coefficients and µ
j
i,6

j
i are, respec-

tively, the centre and covariance matrix of the i-th Gaussian
component at frame j. The parameters are determined by
expectation-maximization (EM) continuous iterative learning
until the model finally converges. To prevent the algorithm
from becoming trapped in a local optimum, k-means cluster-
ing is used for parameter initialization.

The expected multi-constraint probability distribution can
be represented by the product of each constraint probability
distribution. After obtaining the GMM model of the task in
each object coordinate system, the robot can acquire the task
model according to the objects’ positions and postures in the
new environment as follows:

N (µn,i,6n,i) ∝
P∏
j=1

N (An,jµ
j
i + bn,j,An,j6

j
iA

T
n,j)

6n,i =

 P∑
j=1

(
An,j6

j
iA

T
n,j

)−1−1

µn,i = 6n,i

P∑
j=1

(
An,j6

j
iA

T
n,j

)−1 (
An,jµ

j
i + bn,j

)
.

(4)

Using the GMM parameters computed by (2), a position and
orientation reference is retrieved by the GMR at each time
step. The GMM can be expressed as the joint distribution
P(ξ In, ξ

O
n ), where ξ

I
n is the time step and ξOn is the position

and orientation. The conditional probability P(ξOn |ξ
I
n) is then

estimated as an output distribution N (ξ̂
O
n , 6̂

O
n ) that is also

Gaussian [6].
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C. OBSTACLE AVOIDANCE ALGORITHM
In human-robot cooperation, we must not only consider the
movement of the end effector but also the potential colli-
sion links. The influence of obstacles on motion planning
is reflected not only by position but also by shape, size and
velocity. Due to factors such as computing power and per-
ceptual equipment, this fact is often overlooked. We proceed
from the simplest definition, gradually expand to the rigid
body, and finally, achieve real-time motion obstacle avoid-
ance of the robot arm at a reduced computational cost.

FIGURE 2. Schematic diagram of elementary safety field calculation.
Point ‘‘O’’ represents the moving rigid body, namely, the ‘‘source of
danger’’, expressed in the reference frame l , drawn in red. Point ‘‘P’’
represents any point on the robot link, ‘‘B’’ is the origin of the robot
joint frame l , and w is the world frame.

1) BASIC DEFINITION
We regard the obstacle as a point O and the link of the robot
arm as a rigid body in the world frame w (see Fig. 2). A point
P on the robot link is represented as dP = (xP yP zP)T and
vP in the local reference frame l, which is the robot joint
coordinate system, and the joint rotation axis is its z-axis.
According to the robot kinematics, the velocity of the origin
of the l coordinate system is calculated as vwB, and T is the
transformation matrix between l and w. Then, the velocity of
points B and P in the l coordinate system are, respectively,

vlB =
w
l T
−1
∗ vwB, vP = vlB + ω × dP . (5)

An obstacle is expressed as dO = (xO yO zO)T and vO
in the local frame l. The relative velocity of two points is
v = vO − vP . The angle between the vectors dP − dO and
v is defined as ϕ = 6 (dP − dO, v) ∈ [−π, π). The ϕ can be
computed as follows:

cosϕ =
〈dP − dO, v〉
‖dP − dO‖ ‖v‖

. (6)

We define an Elementary Safety Field (ESF) by the point on
the manipulator and the moving obstacle in the environment.
ESF is represented by the following scalar function:

ESF (dP, dO, v) = ‖dP − dO‖ − αcosϕ ‖v‖ , (7)

where α is a normal number positively related to the control
cycle. When ESF (dP, dO, v) < 0, a collision is imminent,
and the robot movement should be stopped.

2) EXTENSION TO RIGID BODIES
To achieve obstacle avoidance of the entire arm, it is
necessary to calculate the minimum ESF of each link and
accumulate the obstacle-avoiding joint angular velocity gen-
erated by the minimum ESF of each link. The links of most
series manipulators such as the UR and YUMI robots can
be favourably considered as cylinders. Therefore, we can
approximate the robot links as cylinders and pay attention
only to the points on the cylinder axis. Further, order to
calculate the velocities of the points on the cylindrical axis
more efficiently, we divide the links of the robot arm into
two types: the Z axis of the l coordinate system along the
cylinder’s axis and the Y axis of the l coordinate system along
the axis direction.

In condition 1, joint angular velocity does not affect the
velocity of point P, which means that vP = vlB. The ESF
at the point closest to the obstacle is minimal. The nearest
point S and the shortest distance ‖dP − dO‖S can be obtained
according to the distance equation from a dot to a straight line;
therefore, we can obtain the minimum ESF as follows:

ESFS = ‖dP − dO‖S − r − αcosϕ
∥∥∥vlB − vO∥∥∥ , (8)

where r is the diameter of the enveloping cylinder.
In condition 2, the coordinates of the point on the axis of the

cylinder can be expressed as (0, yP, 0), where vP is affected
by the joint angular velocity and can be expressed as

vP =
(
vlB,x , v

l
B,y, v

l
B,z

)T
+ (−ω ∗ yP, 0, 0)T

=

(
vlB,x − ω ∗ yP, v

l
B,y, v

l
B,z

)T
(9)

‖dP − dO‖ =
√
x2O + (yO − yP)2 + z2O. (10)

By deriving from Formula (5), we obtain

ESF

=

√
x2O + (yO − yP)2 + z2O − r − αcosϕ

×

√(
vlB,x−ω ∗ yP−v

l
O,x

)2
+(vlB,y−v

l
O,y)

2+

(
vlB,z−v

l
O,z

)2
.

(11)

Then, by computing the partial derivative of ESF with
respect to yp, we let ∂ESF∂yP

= 0 and obtain yp = y1, y2, . . . yn ∈
(0,Y ), where Y is the length of the link. Finally, we can
find ESFS .

We want the avoidance response of the robot arm to be a
function of the ESFS such that as the arm moves closer to an
obstacle the response becomes stronger:

1pS =

η (ρ0 − ESFS)2
∂ESFS
∂x

, ESFS ≤ ρ0

0, ESFS > ρ0,
(12)

where ρ0 is the threshold distance at which the avoidance
function is activated, ∂ESFS

∂x is the partial derivative of the
ESFS from the point on the arm to the obstacle, and η is
a gain term. For a single desired displacement 1pS of the
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point S located on the manipulator’s arm, the corresponding
increment of the joint angle 1qS is obtained by

1qS = kpJTS,v(q)1pS, (13)

where JTS,v (q) represents the first three rows of the Jacobian
matrix JTS (q) associated with point S, and kp is a positive real
parameter. By dividing the sampling time on both sides of
Formula (11), the joint velocity command can be expressed as
q̇S = kvJTS,v(q)1pS,. The robot’s overall velocity command
accumulates the evasive velocity caused by all the points S on
the robot arm:

q̇0 =
∑
S

kvJTS,v(q)1pS. (14)

D. MISSION-ORIENTED SECURITY CONTROL STRATEGY
In Sec. II-B, we obtained the desired position and orientation
of the end effector xn at each sample time step n. The CLIK
algorithm can be used to combine a task-related command
with the obstacle avoidance command. The standard CLIK
algorithm is shown in Fig. 3.

FIGURE 3. A diagram of the standard CLIK algorithm, using the signal q̇0
computed by ESF to avoid collisions.

The task-related velocity can be calculated by q̇T =
J†(q)Ke(xn − x), where Ke is a positive definite symmetric
matrix. However, in reality, algorithms often fail to meet the
demand for obstacle avoidance. We added the controllable
variable k to the standard CLIK algorithm, which is related
to the smallest ESFS of all links.

q̇ = k q̇T + [I − kJ†(q)J(q)]q̇0. (15)

The obstacle avoidance velocity command causes the
position of the end effector to deviate from the desired
position. Since xn is the optimal estimate of the distribu-
tion N (ξ̂

O
n ,6̂

O
n ), xn should be within a certain range. Let

{x jn|j = 1, . . . ,D} represent a variable for each dimension of
xn, and σ

j
n represent the standard deviation of the dimension j

obtained from the covariance matrix 6̂
O
n . Then, the value

range can be defined as follows:

x jn − λσ
j
n < x j < x jn + λσ

j
n, (16)

with a positive constant λ.
The k value determines the proportion of task-related

velocity and evasive velocity; thus, it affects the obstacle
avoidance and task execution performance. Defining the

thresholds ρ0, ρ1 and ESFmin = min(ESF lS |l = 1, . . . ,L),
when ESFmin is less than ρ0, the standard CLIK algorithm
is activated, and when ESFmin is less than ρ1, the variant
CLIK algorithm (15) is activated. The continuous decrease of
ESFmin indicates that the control strategy can no longer avoid
the obstacle. Therefore, the value of k should be changed
to increase the weight of the obstacle avoidance velocity
command. We iteratively update the k values at the current
time based on the klast and ESF lastmin values from the last update
cycle and the current ESFcurrentmin , as shown below:

k = klast + klast
ESFcurrentmin − ESF lastmin

ESF lastmin

= klast
ESFcurrentmin

ESF lastmin

.

(17)

FIGURE 4. A diagram of the variant CLIK algorithm. In each control cycle,
the robot calculates the task-related velocity q̇T and evasive velocity q̇0.
Then, Formula (15) is used to calculate the final control command.
To select the k value, we need to consider both the task constraints and
the obstacle avoidance requirement. If the end-effector is beyond the
expected range, we set k = 1 to force it back into the desired trajectory.
When ESFmin is less than ρ1, which implies that the robot is at risk of
collision, we should update k according to the variation trend of ESFmin
and the last k value klast .

This process causes the robot to dynamically adjust
the k value based on its previous state and the distance change
trend and guarantees that k remains in the range of 0 to 1.
Fig. 4 shows a diagram of the framework, while Table 1
summarizes our approach and its different stages.

IV. EXPERIMENTS
A YUMI 14-DOF dual-arm cooperative robot is used in this
experiment. The goal is for the robot to grasp a can and
track a bucket to imitate the action of people pouring water
while avoiding obstacles in the operation space. We track the
positions of target objects and obstacles in real time through
vision sensor, as the robot performs tasks in a dynamic
environment. We provide 12 successful presentations with
different can and bucket positions. The object manipulation
task consists of the following actions: picking up the can with
the left robot arm, keeping the can vertical and tracking the
bucket position, and then pouring the contents of the can into
the bucket, as shown in Figure 1.

In this experiment, three candidate frames (P = 3) are
considered, namely, the frames representing the locations of
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TABLE 1. Overall framework of complete system.

FIGURE 5. The teaching trajectories and the trajectories alignment results
using the traditional DTW method and method proposed in this paper
respectively. The traditional method assigns the same weight to position
deviation and orientation deviation, while our method dynamically
changes the weights according to the importance of the components
shown in task models. In the third column, we can see that the trajectory
gets better alignment in the quaternion components.

the main objects (can, bucket) and the robot’s basal coordi-
nates (world frame). During task reproduction, the objects’
positions are obtained in real time by a Primese 1.09 camera
and transferred to the model. We can obtain the temporary
GMM parameters using (4) and a new attractor location is
retrieved in each time step n. As mentioned in Sec. II-A,
in previous works, DTW is unable to obtain the optimal
reference trajectory, and it assigns the same weight to each
dimension. Fig. 5 shows the differences in the results when

using the traditional DTW and using our method to process
data. As shown, the trajectories achieve relatively good align-
ment in the x, y and z dimensions but are unsuitable in the
orientation dimensions when using the traditional method.
However, the data alignment results are more consistent in
the orientation dimensions when using the proposed method,
which reflects the consistent movement characteristics
(keeping the can upright and pouring water).

FIGURE 6. YUMI robot performs picking and pouring task with different
object frames. After probabilistic model with 10 Gaussian components
has been learned from training data, the robot acquire the new GMM task
model according the objects’ position and posture in the new
environment. A1 is the robot basal coordinates and A2 and A3 represent
can and bucket coordinate systems, respectively.

Fig. 6 shows the generalization results of the attractor
trajectory computed from (4) with different object frames.
The smooth movements are reproduced by learned model
and the task constraints are extrapolated to new situations.
Note that the reproductions are locally consistent when the
robot approaches the initial location of the can (frame A2);
the end effector dumps the can’s content after it reaches the
bucket position (frame A3). This is reflected by the small
and narrow ellipsoids at the corresponding stages of the task.
The attractor trajectories with large and broad ellipsoids at
the other stages are not consistent and contain no useful task
information; therefore, we can use these loose restrictions to
achieve obstacle avoidance. We apply the GMR to obtain a
position and orientation reference at each time step, as shown
in Fig. 7.

After learning, two types of tests were conducted to test
the method’s reproduction and generalization performance.
We test the generalization capabilities of the method by
placing the can and bucket at different locations on the
desktop. In addition, we quickly move the bucket to a dif-
ferent random location when the manipulator approaches
it (Fig. 8(a), (b) and (c)). A test case is considered
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FIGURE 7. The generalized trajectory computed by the GMR
(the blue lines). The value range computed by (16) when λ = 1 is
represented by the red lines. We can see that the trajectories are highly
constrained by time between 8 s and 10 s (when reaching for the can).
The trajectories are also highly constrained when pouring water into the
bucket. The snapshots below the graphs illustrate that the robot performs
a reproduction attempt according to the extracted constraints.

FIGURE 8. a), (b) and (c) show the snapshots that robot tracks the moving
bucket while keeping the can straight up. (d) and (e) show that the robot
performs nullspace motion to avoid collision using the ESF when the
obstacle (blue box) moves to the robot link. (f) is the snapshot that the
robot avoids collision between the can and the moving obstacle (red
cylinder) which is moved intentionally to cause a collision.

successful if the robot: 1) grasps the can and transfers it to
the bucket without spilling and 2) accurately tracks and aligns
the bucket. The probability of success on these tests reached
eighty percent. In the failed tests, the robot was unable to
grasp the can because the deviation of the attraction point
from the target exceeded the threshold.

The second test consisted of avoiding moving obstacles
to evaluate the robot’s obstacle avoidance capability. In this
experiment, we set the parameters to ρ0 = 0.3, ρ1 = 0.2
and λ = 1. First, we verify the effectiveness of the obstacle
avoidance algorithm proposed in Sec. II-C. Fig. 8(d) and (e)
shows two snapshots of the robot performing the nullspace
motion to prevent possible collisions with a moving obsta-
cle. Next, the robot must conduce motion planning in the
dynamic environment, where a cylindrical red object is being
moved intentionally to cause a collision with the manipulator
(see Fig. 8(f)). This experiment verifies the effectiveness of

FIGURE 9. The upper half of the Fig. shows the corresponding trajectory
of the robot’s end-effector (blue line) and the moving obstacle
(black line) in the x, y plane of the robot basal coordinates. As the
obstacle approaches the robot arm, the robot performs an obstacle
avoidance response within the allowable range (denoted by the dotted
lines). The red line in the bottom half of the Fig. shows how the k value
varies with the position of the end effector.

our task-oriented security control strategywithmoving obsta-
cles. Fig. 9 shows the corresponding trajectory of the end
effector and the obstacle and illustrates that when the obstacle
approaches the robot arm, the robot performs an obstacle
avoidance response within the allowable range. We also show
how the k value varies with the end effector position.

We can conclude that although the k value varies dras-
tically due to the limitations of all dimensions, obstacle
avoidance is still accomplished. In addition, all the com-
putation was performed on a PC with an eight-core Intel
Core i7-7700 processor, 8 GB of RAM and a real-time Linux-
based operating system. The minimum and maximum time
durations required to compute the proposed control strategy
were 13.85 [ms] and 28.34 [ms].

V. CONCLUSIONS
In this paper, we propose a safety- and task-oriented control
strategy for redundant manipulators based on a probabilistic
model and underlying real-time security controls. Unlike pre-
vious methods, this approach uses the concept of an elemen-
tary safety field to enable the entire robot arm robot to achieve
obstacle avoidance and respond quickly to moving obstacles.
We propose a modified DTW algorithm that uses a similarity
metric defined in this paper to find the optimal reference
trajectory and alignment results. The ESF is a novel concept
in the robot safety field that can be used to predict collisions
between the entire manipulator and moving obstacles. In this
study, we use the ESF to calculate the desired displacement
of the manipulator to avoid obstacles. Furthermore, based
on the learned task-parametrized probabilistic model, kine-
matic redundancy and the space with no task restrictions are
exploited to simultaneously improve task performance and
avoid moving obstacles.
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The presented experimental results show that the approach
proposed in this paper not only successfully models the task
but also enables the robot to avoid a moving obstacle while
still satisfying the task constraints. The proposed framework
is suitable for all types of obstacles and has good real-time
performance. Moreover, compared with the traditional CLIK
algorithm, the control framework proposed in this paper
achieves a wider range of obstacle avoidance. This aspect is
crucial for human-robot coexistence when human and robot
operating spaces overlap.
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