
Received August 25, 2018, accepted September 24, 2018, date of publication October 4, 2018, date of current version October 29, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2873815

Integrated Virtual Laboratory in Engineering
Mathematics Education: Fourier Theory
KANG HAO CHEONG , (Member, IEEE), AND JIN MING KOH
Engineering Cluster, Singapore Institute of Technology, Singapore 138683

Corresponding author: Kang Hao Cheong (kanghao.cheong@singaporetech.edu.sg)

This work of K. H. Cheong was supported by the SIT Teaching Excellence Award Grant.

ABSTRACT In this paper, we present a virtual learning laboratory environment for undergraduate mathe-
matics education using an inquiry-based learning approach. The Visible Thinking pedagogical framework is
also suggested to achieve a good complement to traditional lecture–tutorial systems. The virtual laboratory
is implemented in an open-access Java interactive software. We demonstrate a viable instruction procedure,
providing a set of virtual laboratory activities with real-world applications spanning signal processing,
data science and analytics, sustainable infrastructure engineering, and theoretical physics. A preliminary
study on a pilot cohort indicates that the proposed virtual laboratory can enhance students’ learning. The
virtual laboratory implementation is scalable and can be easily expanded in scope to other mathematical
topics; transitioning to a tablet-based system for use in smart classrooms is also readily achieved. The Java
interactive software is freely available on Open Science Framework.

INDEX TERMS Virtual laboratory, engineering mathematics, Fourier theory, interdisciplinary, education,
data science, smart classroom.

I. INTRODUCTION
The lecture-and-tutorial mode of lesson delivery has its
strengths as a form of didactic teaching. Its iterative nature
between rapid content delivery in lectures and rigorous prac-
tice in tutorials with immediate lecturer feedback [1] allows
for the elimination of misconceptions and the quick mastery
of taught content. However, it has long been criticized for
its tendency in turning students into passive learners, who
acquire inert knowledge and are unable to apply them to solve
real-world problems. Recent literature also suggests that cur-
rent pedagogical methods do not fully equip students with
the means of tackling non-routine problems, especially in
mathematics [2], [3]. In these lecture-tutorial environments,
students first learn new content during lectures and then
attempt question sets in subsequent tutorials; there is little
opportunity for students’ discussion and experiential learning
in this process [4]. It is also difficult to incorporate authen-
tic learning experiences involving real-world applications.
Notably, most modern applications involve computational
and technological components that cannot be replicated in
a pen-and-paper environment; furthermore, real-world prob-
lem solving is oftentimes complex, with group-work and
access to interdisciplinary resources being more realistic pro-
visions for students.

In other disciplines, such as the physical and biomed-
ical sciences, lecture-tutorial courses are typically carried
out in parallel with laboratory work to enable the applica-
tion of learnt knowledge [5]–[8]. In engineering and com-
puter science, hands-on project work is also common and
has indeed been shown to be beneficial to students’ learn-
ing outcomes [9]–[11]. In view of the general passivity in
mathematics classrooms, there is a pressing need to explore
alternative teaching approaches that would promote active
learning, engage students in cognitive interaction, and nurture
self-directed and independent learners [12]. Active learning
involves higher-order thinking and metacognition by stu-
dents [13]; opportunities must also be provided for students to
meaningfully discuss, write, read and reflect on the content,
ideas, and concerns of an academic subject [14], arguably
lacking in our local context. The application of knowledge in
realistic scenarios rather than word problem sums is a good
avenue for introducing sophisticated problem-solving strate-
gies and higher-order thinking, hence presenting a way of
mitigating such shortcomings [15]–[17]. It is also paramount
that students are given the opportunities to appreciate the real-
world connections of the pitched content [17]–[20].

In this paper, we propose a virtual laboratory environ-
ment for mathematics education, as a way of providing
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a hands-on avenue for exposure into the real-world appli-
cations of learnt concepts to bring about active learning.
The utilization of virtual laboratories, in which students are
given freedom to explore and experiment, have already been
suggested for chemistry [21], [22], physics [23]–[26] and
engineering [27], [28]; the idea, however, has not been fully
realized in mathematics education, with limited existing stud-
ies on interactive learning software [29], [30]. Our proposed
virtual laboratory is implemented in the form of an interactive
Java applet, which is by design platform-independent and
widely portable; students are hence able to readily access
such resources on their personal computers. We apply the
virtual laboratory concept to the topics of Fourier series
and Fourier transforms; in principle, the pedagogical tool of
virtual laboratories is relevant to a wide range of mathemat-
ical disciplines, including geometry, multivariable and vec-
tor calculus, and differential equations, in which interactive
visualization and free experimentation are greatly helpful for
learning. Tackling real-world problem scenarios through the
virtual laboratory also builds fundamental broad-ranging data
science and data analysis skill-sets.

We present a theoretical overview of the selected top-
ics in Section II, alongside recommendations for educators
in conducting preparation for the virtual laboratory activi-
ties. The Java virtual laboratory application is then detailed
in Section III. It is essential that the planned virtual laboratory
work be integrated well into the course curriculum [31],
[32]—to this end, we propose leveraging on the connect–
extend–challenge Making Thinking Visible pedagogical rou-
tine framework (Section IV-A). Numerous application-based
problem sets can be integrated with the interactive soft-
ware, spanning related disciplines including signal pro-
cessing, mechanical engineering, and theoretical physics
(Section IV-B). A preliminary study on a class of second-year
undergraduate students has also been carried out (Section V),
with survey results indicating that the virtual laboratory activ-
ities are well-received and indeed achieve the objective of
enhancing learning through experiential, authentic real-world
applications.

II. THEORETICAL REVIEW
An overview of key concepts in Fourier series and Fourier
transforms is first presented, alongside a curriculum pro-
gression that educators may adopt for a smooth review of
the mathematical content to students. It is typical to teach
these topics in a mathematically rigorous fashion in a lecture-
tutorial setting; we are not proposing that this be replaced.
We suggest instead that the review presented be utilized to
ensure a strong foundation after adequate curriculum time,
as preparation for virtual laboratory activities. This has been
identified as an important implementation aspect of the vir-
tual laboratory framework, and will be discussed further
in Sections V and VI.

A. FOURIER SERIES
We begin from the concept of Fourier series; a natural exten-
sion then serves to introduce Fourier transforms within the

established scaffolding. A Fourier series is a decomposi-
tion of a periodic function into a summation of sinusoidal
constituents—specifically, the Fourier series expansion of a
function f (t) integrable on [t0, t0 + T ] and periodic with
period T can be written as:

f (t) =
1
2
a0 +

∞∑
n=1

an cos(nω0t)+
∞∑
n=1

bn sin(nω0t)

=
1
2
a0 +

∞∑
n=1

An sin(nω0t + φn), (1)

where ω0 = 2π/T is the fundamental frequency, and
An = (a2n + b2n)

1/2 and φ = tan−1 (bn/an). If a given
waveform is defined only on the domain [t0, t0 + T ], it can
be made periodic with period T by repeating it end-on-end.
We call a0/2 the average term, and An sin(nω0 t + φn) the
nth harmonic. The amplitudes an and bn are referred to as the
Fourier coefficients.

A natural question then arises—how can these Fourier
coefficients be computed? An important concept is that of
orthogonal functions. For instance, the trigonometric func-
tions sin(mω0 t) and sin(nω0 t) are orthogonal when m 6= n.
The following identities hold for m 6= 0 and n 6= 0:∫ t0+T

t0
sin(mω0t) sin(nω0t) dt = T δmn/2∫ t0+T

t0
cos(mω0t) cos(nω0t) dt = T δmn/2∫ t0+T

t0
sin(mω0t) cos(nω0t) dt = 0∫ t0+T

t0
sin(mω0t) dt = 0∫ t0+T

t0
cos(mω0t) dt = 0 (2)

A sieve can therefore be constructed from these orthogo-
nality relations, such that the amplitude of a particular fre-
quency component can be picked out. This leads us to the
following method of computing the amplitude coefficients:

a0 =
2
T

∫ t0+T

t0
f (t) dt

an =
2
T

∫ t0+T

t0
f (t) cos(nω0t) dt (n ≥ 1)

bn =
2
T

∫ t0+T

t0
f (t) sin(nω0t) dt (n ≥ 1) (3)

It can be observed all an terms will vanish for an odd
function, and all bn terms will vanish for an even function.
Also notable are half-wave symmetries and quarter-wave
symmetries, which also yield simplifications in the Fourier
series expansions; these will be discussed in Section IV-B
under the context of an inquiry-based learning example. It is
recommended that students be exposed to symmetries within
the Fourier scaffolding, to both reduce menial arithmetic and
as a prelude for more advanced topics.
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B. Fourier Transform
The complex exponential relations cos θ = (eiθ + e−iθ )/2
and sin θ = (eiθ − e−iθ )/2i immediately allow Eq. (1) to be
expressed in the more compact form

f (t) =
∞∑

n=−∞

cneinωt , (4)

cn =


(an − ibn)/2 for n > 0
a0/2 for n = 0
(a||n|| + ib||n||)/2 for n < 0.

(5)

The bounds of summation in Eq. (4) has been extended rel-
ative to the single-sided summation in Eq. (1) for n ≥ 0—this
is a natural consequence of the complex exponential trigono-
metric relations used in the derivation. At this point,
a generalization into non-periodic functions can be con-
sidered. We define f̂ (ξ ) such that f̂ (ξ ) = cn whenever
2πξ = nω0. This allows us to compute f̂ (ξ ) in an analogous
fashion as that presented in Eq. (3), thus yielding the follow-
ing computation for f̂ (ξ ):

f̂ (ξ ) =
∫
∞

−∞

f (t)e−2π iξ t dt. (6)

The above is known as the Fourier transform. If t is taken
to represent time, then f (t) is known as the time-domain
representation, and f̂ (t) is known as the frequency-domain
representation. In general, a periodic function will contain
only a discrete set of frequencies, hence the summation in
Eq. (1) and (4); but a non-periodic function will contain
a continuous range of frequency components. The inverse
Fourier transform can also be written:

f (t) =
∫
∞

−∞

f̂ (ξ )e2π iξ t dξ. (7)

There are a number of basic properties of Fourier trans-
forms. Firstly, the Fourier transform is linear, in that if h(x) =
af (x) + bg(x), then ĥ(ξ ) = af̂ (ξ ) + bĝ(ξ ). Next, we have
the time-translation property, in that if h(x) = f (x − x0),
then ĥ(ξ ) = exp [−2π ix0ξ ]f̂ (ξ ). Lastly, time-scaling also
admits a simple formula, in that if h(x) = f (x/a), then
ĥ(ξ ) = |a|f̂ (aξ ).

As a prelude to the virtual laboratory activities
(Section IV-B), it is suggested that lecturers point out
the wide-ranging usefulness of Fourier transformations, for
instance in electrical and electronic engineering, signal pro-
cessing [33], theoretical physics, and data analytics. Obser-
vant students may also notice that the discussed mathematical
framework does not carry well for discrete data, such as those
collected via digital instruments. Educators may therefore
wish to introduce the discrete Fourier transform (DFT) [34],
where the integrals in Eq. (6) and Eq. (7) are replaced by
analogous discrete sums. There exists a class of algorithms
known as the fast Fourier transform (FFT) [35]–[37] that
offers efficient computational transform performance. Stu-
dents with computing science background may find details
on the algorithm and computational considerations involved

interesting; otherwise a brief overviewwill suffice. In courses
covering Laplace transforms, connections may also be made
to the Laplace transform on their mathematical similarities
and areas of application.

III. JAVA INTERACTIVE APPLET
Our virtual laboratory environment is implemented in Java
for platform independence, with the user interface built on the
JavaFX platform. In principle, this allows educators to mod-
ify and extend the application via drag-and-drop develop-
ment environments, such as JavaFX Scene Builder or existing
toolkits [38], with minimal code. A tab-based interface is pre-
sented upon start-up, with the current implementation offer-
ing three distinct tabs—Fourier series, Fourier transforms,
and Fourier optics—such a design allows easy expansion to
cover a wider range of content. Screenshots of the interactive
application are presented in Figure 1.

The Fourier series tab (Figure 1a) enables students to
explore the Fourier series expansion of simple periodic func-
tions, including square, triangle, and sawtooth waveforms.
A real-time comparison graph displaying the Fourier series
partial sum and the selected function is shown; a residual
graph is also presented to highlight differences between the
partial sum and the function. A control panel is provided,
on which students may select or deselect harmonics to be
included in the partial sum, and change their frequencies
and amplitudes at will. A shortcut panel is also provided,
to allow convenient selection of combinations of harmonics,
for instance, summing up to the 7th or 21st harmonic. This
tab can be used in activities exploring the mathematical fun-
damentals of Fourier series (Section IV-B.1).

The Fourier transform tab (Figures 1b and 1c) implements
a fast Fourier transform algorithm. The user may import
Waveform Audio (.wav) files into the software for analysis.
The imported data is displayed in a graph for visualization;
the discrete Fourier transform may then be run, whose results
are presented in a zoomable and pannable graph. Exact coor-
dinates of features of interest, for instance, peaks and valleys,
on the graphmay be obtained for analysis via cursor selection.
This tab can be used in activities exploring data analysis and
signal processing applications (Sections IV-B.2 and IV-B.3).

Lastly, the Fourier optics tab (Figure 1d) explores the
application of Fourier transforms to the physical phenomenon
of wave diffraction and interference, specifically demonstrat-
ing the n-slit interference pattern. Users may add additional
slits at will, and independently modify the width, position,
and illumination of each slit. The configuration of the slits,
the associated aperture function, and the predicted interfer-
ence pattern are displayed in real-time. This tab is used in
activities exploring the applications of Fourier transforms in
optical physics (Section IV-B.4).

It is notable that the Java interactive application pre-
sented here does not feature a three-dimensional virtual
environment, unlike existing virtual laboratory environments
for the physical sciences and engineering [21]–[28]; rather,
the user interface is configured in a minimalistic flat layout.
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FIGURE 1. Screenshots of the interactive Java virtual laboratory application. The current implementation includes (a) a Fourier series tab to
reinforce fundamental mathematical concepts of Fourier series expansions; a Fourier transform tab supporting the exploration of real-world
applications, in (b) its initial state and (c) when a file has been imported; and (d) a Fourier optics tab that provides interactive visualization of
multiple-aperture diffraction calculations.

This is intentional, due to the fundamental differences
between mathematics and science education. In the physical
sciences, the manipulation of lab equipment, techniques in
handling materials, and the safe conduct of experiments are
all critical facets to be learnt; but in the current context the
learning emphasis is on the application of abstract mathe-
matical concepts to real-world problems. A minimalistic user
interface is clearer andmore user-friendly for such objectives.

IV. INSTRUCTIONAL PROCEDURE
In this section, we present an overview of virtual laboratory
course activities exploiting the interactivity of the applet for
enhanced education outcomes. The Visible Thinking peda-
gogical framework is first detailed (Section IV-A), followed
by a series of inquiry-based virtual laboratory activities,
spanning areas of fundamental mathematics (Section IV-B.1),
signal processing (Section IV-B.2), building engineering
(Section IV-B.3), and theoretical physics (Section IV-B.4),
thereby allowing educators to conveniently adopt the pro-
posed framework for students of diverse backgrounds and
fields.

A. VISIBLE THINKING FRAMEWORK
There are two primary challenges in the implementation
of virtual laboratory sessions within mathematics. Firstly,

because the virtual laboratory differs significantly from typ-
ical pen-and-paper coursework in required depth of thinking
and interdisciplinary breadth, the activities have to be inte-
grated well in the course structure, such that students are
not overwhelmed. Secondly, connections to prior knowledge
and real-world applications must be clearly communicated,
so that students do not perceive the virtual laboratory activi-
ties as purposeless. We adapt from the Visible Thinking ped-
agogical paradigm [39]–[43] in addressing these challenges,
in particular the connect–extend–challenge framework.

Current methods of formal schooling have been argued
to hide key cognitive processes under a veil of invisibil-
ity, to both the educator and the student [39], [40], [44].
Efficiency in conveying factual information is maintained
at an expense of emphasis on the reasoning and strategies
employed in knowledge acquisition and problem-solving;
where they are addressed, exam-oriented formulaic methods
are often scaffolded, thus promoting low-level mechanistic
skills in place of higher-order thinking. As a result, students
rely on the recognition of standard patterns of problem pre-
sentation to find solutions [45]. Moreover, students may not
be able to learn effectively from available resources, in par-
ticular expositions produced by educators and experts, for
they lack a cognitive model in understanding the rationales
and reasoning involved in the production of the work [46].
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FIGURE 2. Flowchart showing the process of virtual laboratory activities, with the modified
connect–extend–challenge Visible Thinking framework integrated.

The Visible Thinking paradigm advocates for educators to
communicate explicitly the key cognitive processes in learn-
ing and problem-solving, such that students are able to con-
struct cognitive models suitable for the discipline.

The connect–extend–challenge framework is a routine
designed to provide accessible starting grounds for students
in tackling new problems, and to promote higher-order cog-
nition and further learning once the student has gained confi-
dence. The connect stage relates the presented information
to existing knowledge that the student possesses, thereby
serving to initiate the learning cycle. We next adapt the
extend and challenge phases into our mathematics education
context. The extend phase tasks students with the application
of their knowledge, in the process elucidating new ideas and
concepts; it is found that contextualizing this phase with real-
life applications allows for a more robust discussion. Lastly,
in the challenge phase, students clarify their remaining doubts
and explore any questions that they may have in mind. Based
on our pilot study elsewhere, it has been noticed that stu-
dents often do not actively pursue the challenge phase; there-
fore prompt questions have been provided for scaffolding.
Figure 2 presents the modified Visible Thinking pedagogical
paradigm, integrated into the virtual laboratory coursework
to promote active learning.

Utilization of the connect–extend–challenge routine in the
entire course will acclimatize students to its structure and
yield maximal effect. It has been established in existing liter-
ature [39] that it is crucial in Visible Thinking to communicate
the processes of the task to students, situate the tasks in
authentic contexts, and vary the diversity of the contexts; the
virtual laboratory environment is inherently suited in all three
aspects.

B. Inquiry-Driven Learning Examples
1) FOURIER SERIES
Using the Fourier Series tab of the virtual laboratory appli-
cation (Section III), lecturers may facilitate an interactive
exploration of the mathematical fundamentals of Fourier
series expansions. Students may investigate and visualize

TABLE 1. A suggested problem set to guide the learning of students on
Fourier series (Section IV-B.1), to be used in conjunction with the virtual
laboratory application.

the expansions of the square, triangle, and sawtooth wave-
forms as a starting point. The control panel allows indepen-
dent modification of the amplitudes and frequencies of the
summed sinusoids; students may hence verify that the Fourier
series expansion indeed gives a goodmatch to the waveforms,
as a qualitative verification of the learnt mathematical tech-
niques (Section II-A). Educators may consider the problem
set in Table 1 to guide students in their learning.

A virtual environment aids greatly in the teaching of
Fourier series, for it presents direct interactive graphical visu-
alizations of the Fourier series expansions, largely unachiev-
able in traditional pen-and-paper approaches. In particular,
students easily observe that the approximation to the original
function improves as the number of sinusoidal terms in the
Fourier series partial sum increases (Figure 3). It is then
intuitive that an equality can be achieved in the limit of an
infinite sum.

This, however, is complicated by the Gibbs phe-
nomenon [47], [48], referring to the significant deviations
observed near jump discontinuities. Such deviations converge
to a finite value as the number of terms in the partial sum is
increased. In other words, for periodic functions with jump
discontinuities, point-wise but non-uniform convergence
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FIGURE 3. Screenshots of the Fourier series tab of the virtual laboratory application, showing (a) the sawtooth waveform with up to the n = 3
harmonic included in the Fourier series partial sum, and (b) up to n = 21 harmonic included. The improvement in approximating the sawtooth
function can be clearly observed.

is achieved. In the limit of an infinite sum these deviations
are constrained to exist only at the points of discontinuities;
in practice, a partial sum of sufficient number of terms
will squeeze the deviations into such small widths that
their significance may be reasonably neglected. Lecturers
may wish to discuss the Gibbs phenomenon as a challenge
for students; additional reading may include the possible
methods to reduce the Gibbs deviations, such as using
Lanczos sigma factors [48], [49]. The Gibbs phenomenon
is a significant source of ringing artifacts in signal process-
ing [50], [51], for instance, in magnetic resonance imaging
applications [52], [53].

Concepts of symmetry may also be discussed, in par-
ticular half-wave and quarter-wave symmetries, the former
responsible for the vanishing even harmonics in the square
and triangle waves. Half-wave symmetry is present when
f (t) = −f (t − T/2). Clearly this can only be satisfied
by sinusoids of the form sin((2k + 1)ω0 t + φ), k ∈ Z,
hence an = bn = 0 for all even n in the Fourier series.
The symmetry condition also implies a vanishing average
value. On the other hand, a quarter-wave symmetric function
possesses half-wave symmetry and is even-symmetric about
the midpoints of its positive and negative half-cycles; such a
function can always be made even or odd via translation.

2) DOPPLER RADAR
Using the Fourier transform tab of the virtual laboratory
application, various real-world application examples may
be introduced to students. One interesting interdisciplinary
example involving basic signal processing is that of Doppler
radars. The frequency components of sound emitted by the
object of interest during approach and departure can be ana-
lyzed, and the velocity of the object calculated.We apply such
a technique to Formula One racing in this example.

A video of a race car traversing pass at high speed is
provided (Figure 4); the Doppler shift from high to low in
the audible pitch of the engine is easily observed. Two audio
files are also provided, one recorded during the approach
of the vehicle, and one during the departure of the vehicle.

TABLE 2. A suggested problem set to guide the learning of students on
the Doppler Radar virtual laboratory activity (Section IV-B.2).

Lecturers may consider the problem set in Table 2 to guide
students in this virtual laboratory activity.

To promote higher-order thinking, lecturers may wish to
discuss the last sub-problem in greater detail, for it leads
to intriguing insights that generalize beyond introductory
Fourier theory. In the current context of the Doppler radar,
there is an intrinsic trade-off between the measurable preci-
sion in an object’s position and its velocity; more generally,
there is a trade-off in the variance of a quantity and its
Fourier transform. A qualitative conceptualization of such a
property is not difficult to achieve. An active Doppler radar
may measure the position of an object by sending a signal
pulse of finite duration 1t , and measuring the time elapsed
before the reflected signal is received. The uncertainty in the
measurement of the time elapsed is approximately propor-
tional to 1t . At the same time, the radar may measure the
velocity of the object by analyzing the Doppler shift in the
reflected signal. As the signal is finite in duration, there must
be some spread in its frequency components, resulting in an
uncertainty of 1f .
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FIGURE 4. Snapshots of a video of a Formula One race car pass-by, on (a) approach and (b) departure with respect to a stationary observer, used
in the Doppler Radar virtual laboratory activity (Section IV-B.2). Fast Fourier transform results of the recorded sound as computed within the
virtual laboratory are also shown, for (c) approach and (d) departure, with most significant peaks at approximately 899.3 Hz and 561.5 Hz
respectively. Such a Doppler shift corresponds to a co-linear velocity of 285.5 km/h. Users may zoom and pan the graph on the interactive
application to observe the spectrum in greater clarity.

To enhance precision in the measurement of position,
the signal can be made shorter in duration, such that 1t is
reduced. This naturally results in an inflation of 1f , as can
be observed in the time-scaling mathematical property of
Fourier transforms (Section II-B). The precision in the mea-
surement of velocity is therefore compromised. On the
other hand, precision in the measurement of velocity can
be enhanced by using a longer signal, such that 1f is
reduced; this inevitably leads to a larger 1t . There is there-
fore an inherent trade-off between the two. To substantiate
this qualitative argument, a simple worked example may be
given, for instance, by considering a Gaussian signal pulse of
variance σ 2. The signal f (t) and its Fourier transform Fξ {f }
are

f (t) = C1e−t
2/2σ 2 ,

Fξ {f } = C2e−2π
2ξ2σ 2 , (8)

where C1 and C2 are normalization constants. The trans-
form of a Gaussian signal of variance σ 2 therefore
produces a Gaussian frequency-domain representation of
variance 1/4π2σ 2, implying var f varFξ {f } = 1/4π2. The
Heisenberg uncertainty principle is well-known in quantum
physics [54], [55], which indicates that σxσp ≥ h̄/2, where
σ denotes the standard deviation, and x and p denotes the
position and momentum of the examined particle respec-

tively. The uncertainty principle and the precision trade-off
discussed here are indeed related; in quantum mechanics,
position and momentum are related by a Fourier trans-
form. In general, similar uncertainty principle analogues also
appear in signal processing and data analytics, where Fourier
transforms are utilized. Such an insightmay interest engineer-
ing, physics, and applied maths students.

3) EARTHQUAKE ANALYSIS
Vibration and structural analysis are of great relevance to
mechanical and civil engineering. The interactive virtual lab-
oratory application can be used to perform power spectrum
analysis on recorded earthquake vibrations, thereby demon-
strating the usefulness of Fourier transforms in building engi-
neering. An extract of vibrational data of the 2011 Honshu
earthquake [56] is provided, which can be loaded into the
interactive software (Figure 5). Lecturers may play the audio
file as a demonstration—a low-pitched hum with no distinc-
tive pattern can be heard. The problem set in Table 3 can be
considered to guide the learning of students.

In this context, a simplistic vibrational model for the
building structure is considered, in that it has a readily
excited natural frequency close to a significant frequency
component of the earthquake. It is reasonably assumed
that the building is underdamped, and that power transfer
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FIGURE 5. Audio waveform and FFT results of the recorded vibrational
data for the Earthquake Analysis virtual laboratory activity
(Section IV-B.3), as seen on the interactive application. Significant
vibrations can be observed in the 100 Hz–320 Hz displayed range,
corresponding to approximately 6 Hz–20 Hz after accounting for the
blue-shifting in the data recording process. The most significant
peak is at approximately 143.5/16 ≈ 8.97 Hz.

TABLE 3. A suggested problem set to guide the learning of students on
the Earthquake Analysis virtual laboratory activity (Section IV-B.3).

between the earthquake driving vibrations and the build-
ing is efficient, leading to a collapse. However, modern
buildings in earthquake-prone zones typically employ a
range of structural reinforcements and isolation techniques to
improve earthquake resilience, such as the usage of damping
bearings [57], [58], shear walls that exploit buckling behavior
to absorb energy [59], and tuned mass dampers [60].

4) FOURIER OPTICS
Fourier transforms are also greatly applicable in the mod-
elling of optical phenomena. The field of Fourier optics
focuses on such analyses [61], [62], and is particularly suc-
cessful in the description of diffraction, interference, and
defocusing. In this example, an introductory prelude on the
application of Fourier optics in multi-aperture diffraction and
interference is demonstrated, which may be of considerable
interest to mathematical courses catering to physics and engi-
neering students.

Consider a plane P0 containing an arbitrary arrangement
of apertures, described by an aperture function A(x0, y0)
(Figure 6a). The aperture function takes on a non-zero value
where there is an aperture and is zero everywhere else;
specifically, if each apertureAj receives illumination hj, then
A(x0, y0) = hj whenever (x0, y0) ∈ Aj and is zero otherwise.
Placed z distance away is the image plane P with coordi-
nate system (x, y). For an incident plane wave and ignoring
the phase factors, the Fresnel-Kirchoff diffraction integral
expresses the electric field E on P for x0 � z and y0 � z:

E(x, y) ∝
∫∫

A(x0, y0)

× exp
[
2π i
λ

(
x20+y

2
0

2z
−
2xx0+2yy0

2z

)]
dx0dy0 (9)

With x20/λz � 1 and y20/λz � 1, the system is reduced
into the Fraunhofer regime:

E(x, y) ∝
∫∫

A(x0, y0) exp
[
−
2π i
λz

(xx0+yy0)
]
dx0 dy0 (10)

The Fraunhofer diffraction equation is mathematically
equivalent to the Fourier transform of the aperture func-
tion A(x0, y0), from position variables (x0, y0) to the conju-
gate variables (x/λz, y/λz)—this forms the theoretical basis
for this virtual laboratory exploration activity. For simplic-
ity, a one-dimensional arrangement of slits Aj each with
position dj, width aj, and illumination hj is considered.
A schematic of this system is shown in Figure 6b. The aper-
ture function is then:

A(x0) =
∑
j

hj rect
(
x0 − dj
aj

)
(11)

Denoting the Fourier transform of frequency ξ as Fξ {·},
it is deduced that E(x) = Fζ {A} with ζ = x/λz. The useful-
ness of such a method lies in that the Fourier transforms of a
wide variety of functions are well-established, and therefore
the electric field is easily evaluated. It is, for instance, known
that Fξ {rect u} = sinc ξ . Exploiting the properties of Fourier
transforms (Section II-B), the following can be easily derived:

E(x) ∝ Fζ {A} =
∑
j

Fζ
{
hj rect

(
x0 − dj
aj

)}
=

∑
j

[
ajhj exp

(
−
2π ixdj
λz

)
sinc

(
πxaj
λz

)]
(12)

The Fresnel-Kirchoff condition of x � z implies x/z ≈
sin θ . The light intensity at the image plane is then given by:

I (θ ) = |E |2

∝

∣∣∣∣∑
j

[
ajhj exp

(
−
2π idj sin θ

λ

)
sinc

(
πaj sin θ

λ

)]∣∣∣∣2
(13)

The Fourier Optics tab in the virtual laboratory software
implements such a theoretical framework. Students may add
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FIGURE 6. (a) Schematic of a general multiple-aperture optical system with a two-dimensional aperture plane, and (b) the multiple-slit system
examined in the virtual laboratory.

TABLE 4. A suggested problem set to guide the learning of students on
the Fourier Optics virtual laboratory activity (Section IV-B.4).

an arbitrary number of slits into the system, each with inde-
pendently variable position, width, and illumination; the aper-
ture function and predicted intensity pattern are computed
and displayed in real-time. Lecturers may consider the prob-
lem set in Table 4 to guide students in their investigations.

Lecturers may note that substituting the double-slit con-
figuration into Eq. (13) yields I (θ ) ∝ cos2 (πd sin θ/λ)
sinc2 (πa sin θ/λ) where d is the distance between the slits
and a is the width of the slits, which matches the intensity
pattern typically taught in freshman physics class. The cosine
term can be interpreted as manifesting from the interference
between light from the two slits, while the sinc term is due
to the diffraction of light at the slits. There is an exceed-
ingly wide range of advanced applications of Fourier optics,
including telescope and interferometer design [63]–[65],
laser optics [66], rendering engines [67], plasmonics [68], and
quantum systems [69].

V. CASE-STUDY
As a pilot programme, we have implemented the proposed
virtual laboratory learning environment in a second-year
engineering mathematics course of N = 101 students
majoring in the Sustainable Infrastructure Engineering
degree in Spring 2018. A study was conducted to assess
students’ perception of the effectiveness of the virtual labora-
tory environment, as well as their overall reception response.

The teaching methodology and virtual laboratory activities
had been discussed in Section IV—in particular, the Visible
Thinking framework, and the emphasis on exposing students
to a wide range of real-world applications. In considera-
tion of the student demographics (engineering mathematics),
the first three activities were included in full in the virtual
laboratory session (Sections IV-B.1, IV-B.2 and IV-B.3),
with the remaining activity on Fourier optics left as optional
worked examples. The class was divided into two batches,
each attending an identically-conducted virtual laboratory
session spanning an hour. The interactive application and
supporting materials were distributed to students in advance
for self-reading and preparation, and a comprehensive revi-
sion (Section II) had been carried out in prior lectures. The
sessions were held during scheduled tutorial timeslots, so that
students need not spend additional extracurricular time. It was
also communicated clearly that the virtual laboratory course-
work, as a pilot programme, would not be included in the
calculation of module grades.

At the conclusion of the virtual laboratory session,
an anonymous voluntary survey implementing a five-point
Likert scale rating was conducted. The survey questions
and results are presented in Tables 5 and 6. Students may
also submit voluntary free-response feedback. Notable survey
responses and the implications of these results are discussed
in the next section. In general, the cohort comprised students
of diverse mathematical aptitude, therefore making this a
good case study on the utilization of virtual laboratory activ-
ities in mathematics.

VI. DISCUSSION
The evaluation survey results (Table 5) indicate that the
student cohort is in general supportive of the inclusion of
the virtual laboratory activities as part of coursework. Stu-
dent responses to all six Likert rating survey questions are
positive, with average scores and 95% confidence intervals
≥ 3.75 throughout. In particular, survey questionsQ2,Q3 and
Q7 stand out with the highest mean Likert ratings of 4.07.
These responses reflect that the virtual laboratory activities
were perceived to be greatly beneficial at enabling stu-
dents to apply their learnt knowledge to authentic prob-
lems, in the process promoting deep connections between
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TABLE 5. Survey questions and results as evaluated by the pilot cohort. The survey implements a 5-point Likert scale rating across 6 questions, where a
score of 5 represents a stance of ‘‘strongly agree’’, and a score of 1 represents ‘‘strongly disagree’’. The frequency counts of the students’ responses were
collated, from which the average scores and confidence intervals were calculated. Response rate is 75/101 ≈ 74.3%.

theoretical concepts and practical application. Students gen-
erally were appreciative of such a learning environment, and
were motivated to extend their understanding of mathematics
into real-world industrial and scientific applications. These
being the key focal points of the virtual laboratory learning
environment, it can be concluded that the proposed imple-
mentation is successful to a good extent.

The virtual laboratory activities were also perceived to
have reinforced the students’ understanding of the examined
concepts (Likert rating 3.99), whichwere previously taught in
a pen-and-paper lecture-tutorial environment. The activities
also appear to have stimulated students’ interest in pursu-
ing further education in mathematics (Likert rating 3.96).
In direct support of the ratings, the free-response section
of the survey reflects that the virtual laboratory was well-
received. A significant number of students were positive
about the activities; as a way of illustration, we quote from
a few students:
• ‘‘The activities include real-life examples which are not
featured in traditional lecture-tutorials... allows us to
apply the formulae learnt’’;

• ‘‘It makes me more interested in how we can apply
what we have learnt onto real-life situations. Next time
when we walk around we can confidently say, oh this
equipment makes use of these concepts to operate’’;

• ‘‘Applications are pretty eye-opening’’;
• ‘It helped me connect what I learned in class to real life.
Very few modules let us understand why we are learning
the content’’;

• ‘‘It is definitelymore hands-on and interesting compared
to just doing lectures and tutorials’’;

• ‘‘It is the first time I am able to appreciate mathematics.
Everything seemed so abstract and murky until now.
The interactive software helped a lot with visualization.
More modules should be taught this way’’;

• ‘‘Brings backmemories... where we characterized vibra-
tional modes of antibubbles using DFT. This is like a
mini-research task—very lively and fascinating’’.

The reception of the virtual laboratory programme is evi-
dently generally positive. However, when inquired on their
preference between traditional lecture-tutorial programmes

TABLE 6. Survey results on student preference between traditional
lecture-tutorial and the proposed virtual laboratory activities,
indicating an approximately even split. Students were given the
hypothetical context of the replacement of tutorials with virtual
laboratory learning sessions. Response rate is 75/101 ≈ 74.3%.

and virtual laboratory activities, the student population dis-
played an approximately even split (Table 6), reflecting
a largely neutral stance. An analysis on their open-ended
responses indicate two primary reasons for the observed
neutrality. Firstly, there is an immense concern on the final
course examination, and the virtual laboratory activities were
perceived to be inferior to traditional tutorials in preparing
for the assessment. Secondly, the pilot class may not have
been sufficiently prepared in their mathematical foundations
to tackle the virtual laboratory effectively. Students have indi-
cated that ‘‘it was difficult to follow the virtual lab if we had
not revised the lectures and tutorials’’. While review sessions
had been carried out, not all students may have had adequate
time to internalize the foundational content. This is plausibly
connected to the comparatively poor response with regard to
confidence in practical problem-solving (Likert rating 3.95).

These findings suggest plausible routes for improvement in
future virtual laboratory implementations. An overly exam-
oriented assessment environment has been shown here to
hinder opportunities to participate in these learning activities;
educators may hence consider restructuring grade weightages
to reduce emphasis on written assessments. An alternative,
as suggested by students in our pilot programme, is to imple-
ment the virtual laboratory as a separate module, in sim-
ilar fashion to science courses. For such a solution to be
viable, the content coverage of the virtual laboratory has to
be expanded, perhaps in a way that a single virtual laboratory
module may support multiple theoretical courses. Educators
should also note the importance of laying firm foundations
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before the virtual laboratory activities, which demand higher-
order inquiry-driven thinking.

The lecture-tutorial system and the proposed virtual
laboratory environment ought to be considered comple-
mentary, and should not be seen as mutually exclusive; a
mixture of both should be implemented for the best educa-
tional outcome. The two learning environments carry dis-
tinct advantages and shortcomings—in particular, the former
excels at efficiently communicating fundamental concepts
and drilling foundational skills, whilst the latter enables the
application of learnt knowledge in authentic contexts and
promotes deeper learning depth. Indeed, a significant number
of students have explicitly indicated that they would pre-
fer a near-equal balance of tutorials and virtual laboratory
sessions.

VII. CONCLUSION
In this study, we have proposed a virtual laboratory learning
environment in mathematics education. Our Java interactive
application is readily adopted by educators and students;
an accompanying review of introductory Fourier theory to
facilitate instruction and a set of inquiry-based learning vir-
tual laboratory activities integrated with the software have
also been presented, spanning related disciplines of data
science, signal processing, mechanical and civil engineer-
ing, and physics. The wide-ranging interdisciplinary links
within these real-world application problems enable stu-
dents of diverse backgrounds to be engaged effectively,
and fundamental broad-ranging data analysis skills to be
built. We have also suggested that a modified connect–
extend–challengeVisible Thinking pedagogical framework be
integrated into the virtual laboratory environment, thereby
creating a structured, systematic approach to inquiry-based
learning in authentic contexts. Results from our pilot pro-
gramme indicate that the virtual laboratory implementation
is well-received by students, with considerable perceived
benefits in enhancing conceptual understanding, improving
exposure and confidence in the application of learnt knowl-
edge, and in stimulating interest in learning mathematics.

By incorporating hands-on application-based interactive
environments in which students may conduct free explo-
ration, the shortcomings of traditional lecture-tutorial sys-
tems can be addressed. Such an improvement may take the
form of seminar-style course structures, comprising inte-
grated lectures, tutorials, and virtual laboratory sessions.
Future work may involve the expansion of the current imple-
mentation to span other topics in mathematics, such as geom-
etry and calculus. Additional interdisciplinary examples may
also be included, for instance electrocardiogram analysis
in biomedical engineering [70], [71]. The Java interactive
application was designed to be lightweight, hence enabling
a feasible transition to an app-based platform, suitable for
deployment on tablets and smartphones—this is a suitable
step into the smart classroom paradigm [72]–[74]. It is our
hope that educators canmake use of our exposition in improv-
ing mathematics education.

VIII. VIRTUAL LABORATORY
The Java interactive software and test examples are freely
available on Open Science Framework (OSF): VirtualLabo-
ratory.jar of https://goo.gl/uk2Xjz.
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