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ABSTRACT The finite-timeH∞ control of a fractional-order hydraulic turbine governing system (HTGS) is
studied. First, a fractional-order HTGS as well as its generalized Takagi–Sugeno fuzzy model is presented.
Then, based on the fractional-order stability theorem, the robust H∞ state feedback control is designed
to guarantee that the HTGS is asymptotically stable with prescribed H∞ performance. Furthermore,
the H∞ control is integrated with finite-time control theory, a finite-time H∞ control is proposed for the
fractional-order HTGS, and the stability condition is given in terms of linear matrix inequalities. Finally,
simulation results verify the validity and superiority of the proposed control method.

INDEX TERMS Fractional-order stability, hydraulic turbine governing system, finite-time control,
H∞ control, linear matrix inequality.

I. INTRODUCTION
With the continuous expansion of the scale of the power sys-
tem, the hydropower station plays a more and more important
role in the task of peak regulation and frequency modulation
in the power system [1]–[4]. Therefore, there is an urgent
need of better regulating performance for the HTGS to meet
the stable operation of power system. However, the HTGS
is a complex nonlinear coupling system involving hydraulic,
mechanical and electrical system [5]–[8]. Many factors make
the control of HTGS very difficult such as the inertia and
fluctuation of hydraulic parameters in the pressure diversion
system, the appearance and attenuation of water hammer
phenomenon, the nonlinear characteristics of mechanical and
electrical coupling of water-turbine generator set, and the
load disturbance of power system [9]–[13]. The increase
of hydropower stations with high head and large capacity
requires desperately better control of the HTGS.

There have been many results on the modeling and
dynamic analysis for HTGS [14]–[19]. The integer-order

calculus is always adopted for HTGS modeling. Recently,
It has been found that fractional calculus has more advantages
in describing soft, memory, strong dependence and viscoelas-
tic attributes of numerous processes and materials [20]–[22].
Many projects could be better described by fractional cal-
culus, such as brushless DC motors [23], wind turbine gen-
erators [24], electromechanical gyrostat systems [25], and
memristor [26]. Therefore, according to the memory char-
acteristics and historical dependence of the hydraulic-servo
system, a more practical fractional-order HTGS is considered
in the study.

At present, the control of the HTGS is mainly focused
on PID control, fuzzy control, sliding model control and
predictive control [27]–[30]. However, the above control
methods are based on the asymptotic stability. Theoretically,
the time that the asymptotic control system tends to be stable
is infinite. From the point of view of the time optimization,
The optimal control method should guarantee the HTGS
stable in a finite time [31]–[33]. Finite-time control can
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improve the transition time of the HTGS. Besides, H∞ con-
trol has a certain effect on enhancing the dynamic perfor-
mance and the anti-interference ability [34]–[37]. Clearly,
both finite-time control and H∞ control have a specific
advantage onHTGS performance. Can the combination of the
twomethods improve the transition process of the HTGS? No
report has been found.

In light of the above analysis, some advantages are
concluded from this study. Based on the generalized
Takagi-Sugeno (T-S) fuzzy model, the fuzzy modeling of a
HTGS is given. Considering the HTGS with uncertainty and
external disturbance, based on the fractional-order stability
theorem, by combining finite-time control and H∞ control
theory, a finite-time H∞ control method for the HTGS is
proposed. The stability condition with prescribedH∞ perfor-
mance is given in terms of the linear matrix inequality (LMI).
Finally, simulation results are in agreement with the theoret-
ical analysis.

II. PRELIMINARIES
A. FRACTIONAL CALCULUS DEFINITION
Definition 1 [38]: The Caputo definition of fractional deriva-
tive is defined as

Dαf (t) =
dαf (t)
dtα

=
1

0 (n− α)

t
∫
0

f n (τ )

(t − τ)α+1−n
dτ,

×(n− 1 < α < n)

where α is the fractional order and the gamma function 0 (·)
is defined as 0 (τ) =

∫
∞

0 tτ−1e−tdt .

B. GENERALIZED T-S FUZZY MODEL
The T-S fuzzy model is described by the IF-THEN fuzzy
rules. Local dynamics in different state space regions are
represented over a linear realization. Then, the combina-
tion of the linear model is used to represent the nonlin-
ear system [39], [40]. The generalized T-S fuzzy model is
the generalization of integer-order fuzzy model, which is
given as:

Rule Ri: IF z1(t) is Mi1 and · · · and zn(t) is Min

THEN
dαx(t)
dtα

= Aix(t)+ Biu(t)+ Bωω(t),

(i = 1, 2, . . . , , r).

where z(t) =
[
z1(t) z(t) · · · zn(t)

]
is the premise variable,

Mij(j = 1, 2, · · · , n) is the fuzzy set, r is the fuzzy rule
number, u(t) is the control input,ω(t) is the external distur-
bance, x(t) ∈ Rn is the state variable, Ai ∈ Rn×n, Bi ∈ Rn×n,
Bω ∈ Rn×n.

III. HTGS MODEL
The mathematical model of the HTGS is presented as [5]:

dδ
dt
= ω0ω

dω
dt
=

1
Tab

[
mt − Dω −

EqVs
xd6

sin δ

−
V 2
s

2
xd6 − xq6
xd6xq6

sin 2δ
]

dmt
dt
=

1
eqhTw

[
−mt + eyy+

eeyTw
Ty

y
]

dy
dt
= −

1
Ty
y,

(1)

where δ, ω, mt , and y are the generator rotor angle devia-
tion, the rotational speed relative deviation of the generator,
the hydro-turbine output incremental torque deviation and
the incremental deviation of the guide vane opening, respec-
tively; ω0 is the rated speed; Tab is the inertia time constant
of the rotating part; D is the damping coefficient of the
generator; Eq is the quadrature-axis transient electromotive
force; Vs is the bus voltage; xd6 is the direct-axis transients
reactance of total system; xq6 is the quadrature-axis reactance
of total system; eqh is the transfer coefficient of water head;
Tw is the inertia time constant of water flow in pressure
diversion system; ey is the transfer coefficient of the turbine
torque with respect to the main relay stroke; e is the transfer
coefficient; Ty is the major relay connector response time.

Considering the significant historical reliance of the
hydraulic servo system, the following fractional-order
hydraulic servo system is adopted [41]:

dαy
dtα
= −

1
Ty
y, (2)

where α is the fractional order, and Ty is the major relay
connector response time.

For convenience, the x1, x2, x3 and x4 is used to replace
the δ, ω, mt and y, respectively. Considering the randomness
of the load, and according to (1) and (2), the factional-order
HTGS is represented as:

dx1
dt
= ω0x2 + 0.1rand(1)

dx2
dt
=

1
Tab

[
x3 − Dx2 −

EqVs
xd6

sin x1

−
V 2
s

2
xd6 − xq6
xd6xq6

sin 2x1

]
+ 0.1rand(1)

dx3
dt
=

1
eqhTw

[
−x3 + eyx4 +

eeyTw
Ty

x4

]
+ 0.1rand(1)

dαx4
dtα
= −

1
Ty
x4 + 0.1rand(1).

(3)

For system (3), the parameters are selected as follows:
ω0 = 314, Tab = 9.0s, D = 2.0, E

′

q = 1.35, x
′

d6 = 1.15,
xq6 = 1.474, Tw = 0.8s, Ty = 0.1s, Vs = 1.0, egh = 0.5,
ey = 1.0, e = 0.7, α = 0.98. The state trajectories of
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FIGURE 1. State trajectories of fractional-order HTGS (3). (a) x1 − t . (b) x2 − t . (c) x3 − t . (d) x4 − t .

fractional-order HTGS (3) are shown in Figure (1). It is clear
the system is in irregular and unstable vibrations. So it is
necessary to design a controller.

IV. CONTROLLER DESIGN
Considering the boundedness, select x1 ∈ [−d, d], d = 4.
The following fuzzy rules of fractional-order HTGS (3) can
be obtained.
R1 : IF x1 is M1(x1(t)) (near 0),

THEN
dαx(t)
dtα

= A1x(t)+ B1u(t)+ Bωω(t).

R2 : IF x1 is M2(x1(t)) (near ±d),

THEN
dαx(t)
dtα

= A2x(t)+ B2u(t)+ Bωω(t).

The membership function can be selected as

M1 (x1 (t)) =
1
2

(
1+

x1 (t)
d

)
,

M2 (x1 (t)) =
1
2

(
1−

x1 (t)
d

)
.

According to fuzzy theory, the fuzzy model of fractional-
order HTGS (3) can be got as

dαx (t)
dtα

=

2∑
i=1

hi (z (t)) (Aix (t)+ Biu (t)+ Bωω (t)) . (4)

where 
hi(z(t)) =

n∏
j=1

Mij(zj(t))

r∑
i=1

n∏
j=1

Mij(zj(t))
≥ 0,

r∑
i=1

hi(z(t)) = 1.

Taking the uncertainty into consideration, and for the
fractional-order HTGS (4), x1, x2 and x3 is chosen as sub-
system S1, and x4 as subsystem S2. There is,
dαxi (t)
dtα

= (Aii +1Aii) xi (t)+ (Bi +1Bi) ui (t)

+

2∑
j=1,j 6=i

(
Aij +1Aij

)
xj (t)+ Bωiωi (t) , (5)

zi (t) = Cix (t)+ Diu (t) , (6)
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where i = 1, 2, xi(t), ui(t), ωi(t) and zi (t) are the state,
control input, disturbance input and performance output of
the ith subsystems, respectively. The real matrices Aii ∈
R2×2,Bi ∈ R2×2,Aij ∈ R2×2,Bωi ∈ R2×2,Ci ∈ R2×2,Di ∈
R2×2 are constant. Aij and1Aij are the interconnection matri-
ces from subsystem j to subsystem i. The real matrices1Aii ∈
R2×2,1Bi ∈ R2×2 and 1Aij ∈ R2×2 denote time-invariant
uncertainties in the system, control input and interconnection
matrices, respectively. The uncertain matrices 1Aij and 1Bi
are assumed to be of the following form:

1Aij = MaijFaijEaij,

1Bi = MbiFbiEbi,

where Faij and Fbi are real uncertain matrices of appropriate
dimensions satisfying:

FTaijFaij ≤ I ,F
T
biFbi ≤ I .

Maij, Eaij, Mbi and Ebi are known real constant matrices of
appropriate dimensions, which specify how the elements of
the system nominal matrices Aij and Bi are affected by the
uncertain parameters in Faij and Fbi.

Further, the HTGS (5) can be represented as

dαx (t)
dtα

= (A+1A) x (t)+(B+1B) u (t)+ Bωω (t) . (7)

Define A = A + 1A, B = B + 1B and a state feedback
controller is adopted as

ui (t) = Kixi (t) ,

where the gain matrix Ki ∈ R2×2 is the fixed gain that will be
designed later.

Therefore, the HTGS (7) is rewritten as

dαx (t)
dtα

= (A+ BK ) x (t)+ Bωω (t) ,

z (t) = Cx (t)+ Du (t) = (C + DK ) x (t) , (8)

where

ω =
(
ωT1 , ω

T
2 , ω

T
3 , ω

T
4

)
εR4,

K = diag (K1,K2) ∈ R4×4,

Bω =
[
Bω11 Bω12
Bω21 Bω22

]
∈ R4×4.

For convenience, the HTGS (7) is simplified as

dαx (t)
dtα

= Aclx (t)+ Bωω (t) ,

z (t) = Cclx (t) , (9)

where Acl = A+ BK ,Ccl = C + DK ,

Acl =
[
Acl11 Acl12
Acl21 Acl22

]
∈ R4×4.

Then the transfer function from the disturbance to the
output is obtained as:

Tzω (s) = Ccl
(
sαI − Acl

)−1 Bω. (10)

The objective is to get the state feedback gain matrix Ki
such that the fractional-order HTGS (9) is finite-time stable
and satisfies the H∞ performance. The following Defini-
tion and lemmas are given.
Definition 2 [42]: An n-by-n Hermitian matrix A is said to

be negative definite if for all non-zero x ∈ Cn,

x∗Ax < 0. (11)

Definition 3 [43]: The time-varying linear system

ẋ(t) = Aclx(t), t ∈ [0,T ] ,

is said to be finite-time stable (FTS) with respect to
(c1, c2,T ,R), with c2 > c1 and R > 0 if xT (0)Rx (0) ≤
c1 ⇒ xT (t)Rx (t) < c2, ∀t ∈ [0,T ].
Assumption 1: As to the following system

dαx (t)
dtα

= Aclx (t)+ Bωω (t) ,

for the given positive constants c1, T and a positive definite
matrix R, suppose that xT0 Rx0 ≤ c1 (∀t ∈ (0,T )). Here,
∀ω (t)T ω (t) ≤ m, m is the upper bound of the product of
ω (t)T and ω (t).
Lemma 1 [44]: for any matrices X and Y with appropriate

dimensions and any ε > 0, the following inequality holds:

X∗Y + Y ∗X ≤ εX∗X + ε−1YY ∗. (12)

Lemma 2 [45]: if there exists γ > 0 and X =

X∗ which satisfy the following inequality, then the
fractional-order HTGS (9) is asymptotically stable and
satisfies||Tzω (s) ||∞ ≤ γ . sym {Acl (eθ iX + e−θ iX)} ∗ ∗

Ccl
(
eθ iX + e−θ iX

)
−γ I ∗

BTω 0 −γ I

 < 0, (13)

where θ = (1− α) π2 .
Lemma 3 [46]: If there is a positive definite matrix Pwhich

satisfies J = xTP d
αx
dtα ≤ 0(xTP d

αx
dtα is named as J function),

then the fractional-order HTGS (9) is globally asymptotically
stable and satisfies ||Tzω (s) ||∞ ≤ γ , J = xTP d

αx
dtα ≤ 0 is

equivalent to

J0 = xTP
dαx
dtα
+
dαx
dtα

T

Px ≤ 0. (14)

Theorem 1: The fractional-order HTGS (9) with state
feedback controller is finite-time stable and satisfies
||Tzω (s) ||∞ ≤ γ if there exists a positive definite Hermitian
matrix Xi = X∗i ∈ Cni×ni and Yi ∈ Rmi×ni , scalars
βi > 0, εii > 0, δji > 0, µji > 0 (i, j = 1, 2....,N ,
i 6= j), σi ≤ 0, positive definite matrices Pi > 0, Qi > 0
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such that the inequalities (15)-(17), [(15), as shown at the
bottom of this page.] holds.

[
PiAclii + ATcliiPi − σiPi PiBωii

BTωiiPi −σiQi

]
< 0, (16)

c1λmax
(
P̃i
)
+ diλmax(Qi) < c2e−σiTλmin

(
P̃i
)
, (17)

where i, j = 1, 2, ...N , i 6= j.

011
i = Sym

{
Aii
(
eθ iXi + e−θ iXi

)
+ BiYi

}
+ γ−1BωiBTωi

+βiMbiMT
bi + εaiiMaiiMT

aii

+

∑N

j=1,j 6=i

{
δijAijATij + µijMaijMT

aij

}
.

P̃i = R1
1
2PiR−

1
2

The Ki is obtained as

Ki = Yi
(
eθ iXi + e−θ iXi

)−1
, i = 1, 2, . . . ,N . (18)

Proof:first, according to Schur complement, Lemma 2 is
equivalent to

� = sym
{
Acl

(
eθ iX + e−θ iX

)}
+ γ−1BωBTω

+ γ−1
[
Ccl

(
eθ iX + e−θ iX

)]T
×

[
Ccl

(
eθ iX + e−θ iX

)]
< 0. (19)

From Definition 2, there is

ξ∗�ξ

= ξ∗{sym
[
Acl

(
eθ iX + e−θ iX

)]
+ γ−1BωBTω

+ γ−1
[
Ccl

(
eθ iXi + e−θ iXi

)]T
Ccl

(
eθ iX + e−θ iX

)
}ξ

=

N∑
i=1

ξ∗i {sym{(Aii +1Aii + (Bi +1Bi)Ki)

×

(
eθ iXi + e−θ iXi

)
}

+ γ−1
[
(Ci + DiKi)

(
eθ iXi + e−θ iXi

)]T
×

[
(Ci + DiKi)

(
eθ iXi + e−θ iXi

)]
+ γ−1BωBTω}ξi

+

N∑
i=1

N∑
j=1,j 6=i

ξ∗i sym{(Aii +1Aii)

×

(
eθ iXi + e−θ iXi

)
}ξi < 0. (20)

From Lemma 1, one can be obtained

Sym
{
1BiKi

(
eθ iXi + e−θ iXi

)}
= Sym {MbiFbiEbiYi}

≤ βiMbiMT
bi + β

−1
i [EbiYi]T [EbiYi] . (21)

Similarly, one gets

Sym
{
1Aii

(
eθ iXi + e−θ iXi

)}
= Sym

{
MaijFaijEaij

(
eθ iXi + e−θ iXi

)}
≤ εiiMaiiMT

aii + ε
−1
ii

[
Eaii

(
eθ iXi + e−θ iXi

)]T
×

[
Eaii

(
eθ iXi + e−θ iXi

)]
. (22)

N∑
i=1

N∑
j=1,j 6=i

ξ∗i Sym{Aij
(
eθ iXi + e−θ iXi

)
}ξj

≤

N∑
i=1

N∑
j=1,j 6=i

{δijξ
∗
i AijA

T
ij ξi

+ δ−1ij ξ
∗
j

(
eθ iXj + e−θ iXj

)T
×

(
eθ iXj + e−θ iXj

)
ξj}

=

N∑
i=1

N∑
j=1,j 6=i

ξ∗i {δijAijA
T
ij + δ−1ij

(
eθ iXi + e−θ iXi

)T
×

(
eθ iXi + e−θ iXi

)
}ξi. (23)

N∑
i=1

N∑
j=1,j 6=i

ξ∗i Sym{1Aij
(
eθ iXj + e−θ iXj

)
}ξj

=

N∑
i=1

N∑
j=1,j6=i

ξ∗i Sym{MaijFaijEaij
(
eθ iXj + e−θ iXj

)
}ξj}

0i =



011
i ∗ ∗ · · · ∗ · · · ∗ · · · ∗

Ci
(
eθ iXi + e−θ iXi

)
+ DiYi −γ I ∗ · · · ∗ · · · ∗ · · · ∗

Eaii
(
eθ iXi + e−θ iXi

)
0 −εiiI · · · ∗ · · · ∗ · · · ∗

...
...

...
. . .

...
. . .

...
. . .

...(
eθ iXi + e−θ iXi

)
0 0 · · · −δjiI · · · ∗ · · · ∗

...
...

...
. . .

...
. . .

...
. . .

...

Eaji
(
eθ iXi + e−θ iXi

)
0 0 · · · 0 · · · −µjiI · · · ∗

...
...

...
. . .

...
. . .

...
. . .

...

EbiYi 0 0 · · · 0 · · · 0 · · · −βiI


< 0, (15)
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≤

N∑
i=1

N∑
j=1,j 6=i

{µijξ
∗
i MaijMT

aijξi

+µ−1ij ξ
∗
j

[
Eaij

(
eθ iXi + e−θ iXi

)]T
×Eaij

(
eθ iXi + e−θ iXi

)
ξj}

=

N∑
i=1

N∑
j=1,j 6=i

ξ∗i {µijMaijMT
aij

+µ−1ij

[
Eaji

(
eθ iXi + e−θ iXi

)]T
×Eaji

(
eθ iXi + e−θ iXi

)
}ξi. (24)

Substituting (21)-(24) into (19), one has

ξ∗�ξ

≤

N∑
i=1

ξ∗i {Sym{Aii
(
eθ iXi + e−θ iXi

)
+ BiYi}

+ γ−1BωBTω + γ
−1
[
(Ci + DiKi)

(
eθ iXi + e−θ iXi

)]T
×

[
(Ci + DiKi)

(
eθ iXi + e−θ iXi

)]
+ βiMbiMT

bi

+β−1i [EbiYi]T [EbiYi]+ εiiMaiiMT
aii

+ ε−1ii

[
Eaii

(
eθ iXi + e−θ iXi

)]T
×

[
Eaii

(
eθ iXi + e−θ iXi

)]
+

N∑
j=1,j 6=i

{δijAijATij

+ δ−1ji

(
eθ iXi + e−θ iXi

)T
×

(
eθ iXi + e−θ iXi

)
}

+

N∑
j=1,j6=i

{µijMaijMT
aij + µ

−1
ji

[
Eaji

(
eθ iXi + e−θ iXi

)]T
×Eaji

(
eθ iXi + e−θ iXi

)
}}ξi. (25)

Then,

Sym{Aii
(
eθ iXi + e−θ iXi

)
+ BiYi} + γ−1BωiBTωi

+ γ−1
[
(Ci + DiKi)

(
eθ iXi + e−θ iXi

)]T
×

[
(Ci + DiKi)

(
eθ iXi + e−θ iXi

)]
+βiMbiMT

bi + β
−1
i [EbiYi]T [EbiYi]+ εiiMaiiMT

aii

+ ε−1ii

[
Eaii

(
eθ iXi + e−θ iXi

)]T
×

[
Eaii

(
eθ iXi + e−θ iXi

)]
+

N∑
j=1,j 6=i

{δijAijATij

+ δ−1ji

(
eθ iXi + e−θ iXi

)T (
eθ iXi + e−θ iXi

)
}

+

N∑
j=1,j 6=i

{µijMaijMT
aij + µ

−1
ji

[
Eaji

(
eθ iXi + e−θ iXi

)]T
×Eaji

(
eθ iXi + e−θ iXi

)
} < 0, i = 1, 2. (26)

According to the Schur complement, (26) is equivalent
to (15).

Next, it is proved that if the inequalities (16) and (17) hold,
the HTGS (9) will be finite-time stable.

Select J function as

J (x (t) , ω (t)) = xTPix + ωTQiω.

Assume that(
dαx
dtα

)T
Pix + xTPi

(
dαx
dtα

)
< σiJ (x (t) , ω (t)) . (27)

Since J (x (t) , ω (t)) > 0, σi < 0, according to (27), there
is(
dαx
dtα

)T
Pix+xTPi

(
dαx
dtα

)
<σiJ (x (t) , ω (t))<0. (28)

Make further treatment of (27) to obtain the more practical
condition.(

dαx
dtα

)T
Pix + xTPi

(
dαx
dtα

)
− σiJ (x (t) , ω (t))

=

(
dαx
dtα

)T
Pix + xTPi

(
dαx
dtα

)
− σixTPix − σiωTQiω

= (Acliix + Bωiiω)T Pix + xTPi (Acliix + Bωiiω)

− σixTPix − σiωTPiω

= xT
(
ATcliiPi + PiAclii − σiPi

)
x

+ωTBTωiiPix + x
TPiBωiiω − σiωTQiω

=

[
x
ω

]T [PiAclii + ATcliiPi − σiPi PiBωii
BTωiiPi −σQi

] [
x
ω

]
< 0.

(29)

According to Definition 2, that is to say[
PiAclii + ATcliiPi − σiPi PiBωii

BTωiiPi −σiQi

]
< 0. (30)

Therefore, (27) is equivalent to (16).

J (x (t) , ω (t))

= x (t)T Pix (t)+ ω (t)T Qiω (t)

= x (t)T R1/2PP̃iR1/2x(t)+ ω(t)TQiω(t)

≥ λmin

(
P̃i
)
x(t)TRx(t) (31)

J (x (0) , ω (0)) eσit

= (x (0)T Px (0)+ ω (0)T Qiω (0))eσit

= x (0)T R1/2P̃R1/2x(0)+ ω (0)Qiω(0)eσit

≤ (λmax
(
P̃i
)
x(0)TRx(0)+ λmax(Qi)ω(0)Tω(0))eσit

= (λmax(P̃i)c1 + λmax(Qi)d)eσit . (32)

According to (27), (31) and (32), one obtains

λmin(P̃i)x(t)TRx(t)

≤ J (x(t), ω(t)) < J (x(t), ω(t))eσt t

≤ (λmax(P̃i)c1 + λmax(Qi)d)eσt t
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FIGURE 2. State trajectories of fractional-order HTGS (9) with the proposed finite-time H∞ control. (a) x1 − t . (b) x2 − t . (c) x3 − t . (d) x4 − t .

⇒ λmin(P̃i)x(P̃i)x(t)TRx(t)

≤ (λmax(P̃i)ci + λmax(Qi)d)eσit

⇒ x(t)TRx(t)

≤

(
λmax(P̃i)ci + λmax(Qi)d

)
eσit

λmin
. (33)

Here, let

c2 =

(
λmax

(
P̃i
)
c1i + λmax (Qi) d

)
eσit

λmin(P̃i)
(34)

So (33) can be written as

x (t)T Rx (t) ≤ c2, ∀t ∈ [0,T ] . (35)

The proof is completed.
The controller Ki can be easily got by solving the inequal-

ities (15)-(17) via Matlab’s LMI toolbox.

V. NUMERICAL SIMULATION
For the fractional-order HTGS (9), the coefficient matrix is
obtained as follows:

A1 =


0 314 0 0

1.02 −0.22 0.11 0
0 0 −2.5 16.5
0 0 0 −10

,

A2 =


0 314 0 0

0.09 −0.22 0.11 0
0 0 −2.5 16.5
0 0 0 −10

,
Bω1 = Bω2 = I4×4.

The parameters are selected as:

1A11 = Ma11Fa11Ea11 =

 0.2
0.1
0.1

Fa11 [ 0.6 0.4 0.4
]
,
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FIGURE 3. State trajectories of fractional-order HTGS (9) under different control methods. (a) x1 − t . (b) x2 − t . (c) x3 − t . (d) x4 − t .

1A12 = Ma12Fa12Ea12 =

 0.2
0.1
0.1

Fa12 [0.6] ,
1A22 = Ma22Fa22Ea22 = [0.3]Fa22 [0.2] ,

1A21 = Ma21Fa21Ea21 = [0.3]Fa11
[
0.2 0.4 0.4

]
,

B1 =
[
1 1 1

]T
,

1B1 = Mb1Fb1Eb1 =

 0.2
0.1
0.1

Fb10.6,
C1 =

 1 0 0
0 1 0
0 0 1

 , D1 =

 0
0
0

 ,
B2 = [1] , Bω2 =

 1 0 0
0 1 0
0 0 1

 ,
1B2 = Mb2Fb2Eb2 = [0.3]Fb20.1,

C2 = [1] , D2 = [0] , c1 = 1, c2 = 2,

T = 1, d = 1, R = I, γ = 1.

When the coefficient matrix is A1,
For S1: α = 1,

A11 =

 0 314 0
1.02 −0.22 0.11
0 0 −2.5

 , A12 =

 0
0
16.5

 .
For S2: α = 0.98,

A22 = [−10] , A21 =
[
0 0 0

]
.

The state feedback control gain Ki is got.

K1 =
[
−47.0988 −47.6155 16.5130

]
,

K2 = [−189.4218] ,

Acl =


-52.6307 260.6991 18.5746 0.1200
-48.8483 -50.7034 17.6549 0.0600
-49.8648 -50.4812 15.0438 16.5600
0.0600 0.1200 0.1200 -205.0444

 .
When the coefficient matrix is A2,
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For S1: α = 1,

A11 =

 0 314 0
0.09 −0.22 0.11
0 0 −2.5

 , A12 =

 0
0
16.5

 .
For S2: α = 0.98,

A22 = [−10] , A21 =
[
0 0 0

]
.

The state feedback control gain Ki is obtained

K1 = [−19.12− 17.32.37] , K2 = [−74.69] ,

Acl =


−21.2911 294.6836 0.49110.1200
−20.1111 − 18.5395 0.5402 0.0600
−20.2041 − 18.3173 − 2.0709 16.5600
0.0600 0.1200 0.1200 − 86.8660

 .
Corresponding simulation results are given in Figure 2.

It is obvious that the system state are stable about the equi-
librium point rapidly, which shows the effectiveness of the
proposed scheme. To compare the performance of the pro-
posed finite-time H∞ control method, the pure fuzzy con-
trol method and PID control are applied to fractional-order
HTGS (9). Figure 3 shows the simulation results with dif-
ferent control method. Compared with the fuzzy control and
PID control, the overshoot is lower and the control time is
shorter. There is a significant improvement in the transition
process, which demonstrates the robustness and superiority
of the proposed approach.

VI. CONCLUSION
This paper studied the finite-time H∞ control of a fractional-
order HTGS. Based on the generalized T-S fuzzy model,
the fractional-order fuzzy model of a HTGS was presented.
By combining finite-time control and H∞ control theory,
a finite-time H∞ state feedback control was proposed for the
HTGS. The control is based on the fractional-order stability
theorem. Compared with the pure fuzzy control and PID
control, the proposed finite-time H∞ control showed the
advantages of smaller overshoot, less stable time and fewer
oscillations. It demonstrated the validity and advantage of the
proposed method.
In the future, we will consider and extend the application of

the approach in the stability control for linear and nonlinear
switched systems [47]–[49].
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