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ABSTRACT Reservoir computing approaches have been around for almost two decades. They were
developed to solve the difficult gradient-descent training of recurrent neural networks. However, in reservoir
computing, the choice of parameters and architecture often leads to an optimization challenge. Most
early applications have used trial and error with expert knowledge to select the right value for parame-
ter(s)/architecture. This approach is usually cumbersome and difficult considering the large search space.
Metaheuristics have been known to perform well in solving such kinds of problems. This review discusses
areas where metaheuristics are used in the echo state network—a pioneer in the reservoir computing field.
In addition, trends and research gaps are also discussed.

INDEX TERMS Artificial intelligence, artificial neural networks, echo state network, machine learning,
metaheuristics, optimization algorithms, reservoir computing, review, survey.

I. INTRODUCTION
Artificial neutral networks (ANNs) or just Neural networks
(NNs) are information processing systems that are built on
a mathematical model. They attempt to mimic the parallel
and non-linear information structures of the human brain by
obtaining knowledge via experience. They copy the human
brain in a minimum of two aspects. (i) The acquiring of
knowledge from its environment via a training scheme.
(ii) The storing of the obtained knowledge in connections
between the neurons called synaptic weights [1]. McCulloch
and Pitts were one the firsts to build a simple artificial neu-
ron called the perceptron that mimicked the human brain
in 1943 [2]. Shown in Fig. 1, it consists of many inputs
(dendrites) and a single output (axon). From the figure, if we
define z(i) =

∑
wixi then the output is: s(i) = f (z(i)). Where

w1, . . . ,wn are the synaptic weights used to store learned
knowledge and f (.) is an activation function that is usually
a sigmoid (often, hyperbolic tangent or logistic function) that
introduces non-linearity to the network, aiding it in perform-
ing the required task. The perceptron marked the inception of
neural network and artificial intelligence.

FIGURE 1. The basic perceptron [3].

The neural network is often applied by first dividing the
obtained data into three sets: the training, the validation, and,
the test sets. Firstly, random values are given to the synaptic
weights. Subsequently, the training set which is usually larger
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than the other two sets is used to train/adapt the weights based
on the known outputs within the training set. This is typically
done by employing the use of an appropriate learning tech-
nique, such as linear regression or ridge regression [3]. The
optional validation set is then used to fine tune the selection
of network parameters such as the network layer size and
number of hidden layers. The test set is then finally used to
test the performance of the final model on fresh/unseen data.

ANNs have been categorized in various ways depending
on one or more of its related characteristics [4]. In general,
the ANN categorization may be based on: (i) The task it
performs e.g., clustering, classification etc; (ii) The degree
of connectivity of the network neurons (partial/full); (iii) The
type of learning algorithm adopted; (iv) The type of learning
rule, which is the engine that drives the learning algorithm;
(v) The level of learning supervision needed (e.g., supervised,
reinforced, unsupervised learning and their hybrids); and (vi)
The direction of the flow of information within the network
(recurrent versus feedforward).

The last category is one of the major classification of
ANNs. The feedforward networks are the simplest form
of neural networks (NNs) in which connections between
network neurons are not allowed to form cycles. Thus, all
information moves from the input(s) to the output(s) in one
direction without feedbacks. Famous in this category is the
multilayer perceptron (MLP). This lack of feedback con-
nection limit their applications to mostly functional map-
ping problems [3]. In contrast, the recurrent neural networks
(RNN) allow connections between neurons to form directed
cycles. Thus, enabling temporal characteristics that make
them suitable for solving sequential tasks.

This paper focuses on the RNN type of networks due
to their versatility and numerous applications. In the next
section we discuss the RNN in a bit more detail.

A. RECURRENT NEURAL NETWORKS (RNNS)
As stated earlier, RNNs possess cycles within their connec-
tions. The presence of these cycles gives the RNN two powers
over the feedforward networks:

• When driven by input signals, its inner states can store
nonlinear transformation of the inputs. Thus, it pos-
sesses a dynamic memory that enables it to perform time
related tasks.

• In the absence of inputs, it can maintain an autonomous
time related activation dynamics in its recurrent connec-
tions. Hence, while feedforward networks are regarded
as functions, RNNs are dynamical systems.

From the view point of dynamical systems, two classes of
RNN exists. In the first category, the models are described
by symmetric interconnections and energy-reducing random
dynamics. Their mathematical background is ingrained in
statistical physics. Examples in this group include: Hopfield
networks [5], Boltzmann machines [6], and deep belief net-
works [7]. These networks often have unsupervised learning
and find applications in associative memories, unsupervised

modeling of distributed data, data compression and static
classification of patterns. On the other hand, the second
category comprises of models that are characterized by con-
nections that are directed with deterministic dynamics. They
often perform nonlinear filters that convert inputted time
series into a transformed time series at its output. Moreover,
they have mathematical roots in nonlinear dynamic systems
and are often trained in a supervised manner. RNNs in this
category have been shown to be powerful tools for time
series processing [8]. This review is concerned with RNNs
in this category. Inspite of its huge potentials and excellent
performance in academia and industry, the RNN has had
limited impact in nonlinear modelling for a long time. This
is mainly because it is tasking to train the RNN by gradient-
descent-based techniques that aim to iteratively minimize
training error. Even though many training algorithms had
been developed, they have the following shortcomings:
• During learning, a progressive change in network
parameter drives the network dynamics into bifurcations
[9]. When this happens, the gradient data deteriorates
and may not be properly defined. Thus, an assured con-
vergence can be rarely achieved.

• An update of one parameter can have high computa-
tional price, and several cycles of update may be needed.
This causes a lengthy training, making the training pos-
sible for mostly small networks having a little number
of neurons.

• There is an inherently difficultly in learning dependen-
cies needing long-range memory. This is because the
required gradient data exponentially withers as time
passes. However, this can now be overcome using long
short-term memory networks [10].

• Moreover, advance training algorithms are computation-
ally expensive. Additionally, they are required to be
parameterized by several control parameters that are dif-
ficult to optimize. Thus, application of such algorithms
need special skill and expertise.

Due to these challenges, in 2001, researchers developed
a new paradigm for RNN design and training. The echo
state network (ESN) [11] by Jaeger and the liquid state
machine (LSM) [12] by Maass et al. These approaches have
antecedents in computational neuroscience [13] and sequels
in machine learning as backpropagation-decorrelation
(BPDC) [14] rule of learning. They are now generally called
reservoir computing (RC).

The RC approach to the RNN escapes from the drawbacks
of the gradient-descent training of RNN with the following:
• The RNN is created randomly and remains fixed
throughout the training cycle. The RNN in this case is
referred to as a ‘‘reservoir’’ and is passively excited by
the input signals. Moreover, it retains within its state,
a nonlinear transformation of the inputs.

• The desired output is represented as a linear combination
of signals from the reservoir units. It is often obtained
via linear regression by using the teacher’s output as a
target.
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Thus, as opposed to the gradient-descent based train-
ing, where all weights are trained, in the RC, the weights
that are adapted are only those between the reservoir and
the readouts. The RC methods have seen wide applica-
tion because of its excellent model accuracy, good model
capacity, ease of extension, and its linear connection to the
architecture and dynamics of the mammalian brain. How-
ever, despite its excellent performance and wide applications,
it is still an evolving field and has its own challenges. Pre-
cisely, simply generating a fixed random reservoir is not
good enough. Thus, researchers have suggested that reservoir
design should be tailored to the specific modelling task at
hand.

Hence, main research findings in the RC field is aimed at
comprehending how task performance is affected by reservoir
properties. Moreover, some works are done in identifying
appropriate reservoir construction and its adjustment tech-
niques [8]. Additionally, novel ways of reading out from the
reservoir, in addition to combining them into larger structures
is being explored [15]. Although these new concepts devi-
ate from the original RC idea of a fixed reservoir, the RC
paradigm still stands and distinguishes itself from other RNN
training techniques since the creation/training of the reservoir
is independent and differs from that of the readouts.

B. OTHER REVIEWS
Some of the most prominent appraisals of the RC concepts
include the work of Schrauwen et al. [16], where an overview
of the RC methods are presented and research directions
outlined. In a related review, Lukoševicius and Jaeger [17]
discussed the RC techniques, particularity highlighting the
paradigm shift in the RC concepts from the original propos-
als. Additionally, Lukoševicius and Jaeger [8] which is one
of the most cited review of the RC presented a comprehen-
sive appraisal of the RC, focusing more on the ESN. The
survey discussed reservoir adaptation techniques and training
methods. In a more recent work, Lukoševicius et al. [15]
presented trends of the reservoir concepts after 10 years of
its development.

In this review, we consider the application of metaheuris-
tics in the RC concepts, particularly targeting the ESN which
is a pioneering RC method.
Organization: The outstanding part of this review are

arranged thus: Section II presents a summary of existing
RC concepts. In Section III, the echo state network (ESN)
is discussed. Section IV introduces metaheuristics with few
examples of them. Section V presents works that employ
metaheuristics to optimize the ESN. Furthermore, Section VI
discusses the trends and current research gaps we deducted
from the reviewed papers. Finally, Section VII concludes the
paper.

II. TYPES OF RESERVOIR COMPUTING TECHNIQUES
This section presents a brief summary of the existing reservoir
computing techniques. The subsequent sections then concen-
trates on the echo state network (ESN) which is one of the

pioneering works in reservoir computing, and the target of
this review.

A. THE LIQUID STATE MACHINE (LSM)
LSMs [18] are one of the pioneering techniques of reser-
voir computing, developed separately and concurrently with
the echo state networks (ESN). LSMs were created from
a framework of computational neuroscience. They aim to
interpret the primary computational characteristics of neural
microcircuits [12]. Moreover, they employ a more complex
and practical biological model of spiking integrate-and-fire
neurons together with a dynamic synaptic interconnection
within its reservoir. The reservoir of the LSM is called a
‘‘liquid’’ which likens the excited states to ripples that form
when an object is dropped in a pool of water. Compared
with other models, the LSM is designed to handle real-time
computations on a continuous data stream like spike trains.
Thus, both the input and output of the LSM are data streams
of continuous time. The process works by inserting the input
data stream into a complex recurrent neural network that
is big enough. Subsequently, owning to its dynamic char-
acteristics, the network then transforms the lower resolu-
tion input stream into ‘‘liquids’’ with higher resolution [19].
These liquids are then mapped to produce the target output
through a memory-less readout function. With these features,
the LSM is claimed to perform well on non-linear system
tasks. However, LSMswith complex synaptic models or spik-
ing neurons are difficult to implement, initialize or fine tune.
Additionally, they are more computationally expensive than
the ESN type RNNs.

B. BACKPROPAGATION-DECORRELATION (BPDC)
The BPDC is not a network architecture of reservoir com-
puting, but rather a learning rule. Developed in 2004 by
Steil [14], it comprises the following: (i) A one-step back-
propagation of errors by virtual teacher forcing. (ii) The
utilization of the time related memory within the network that
is modified on the basis of decorrelation of the activations
within the reservoir. (iii) The utilization of a fixed reservoir
neurons to minimize complexity. The learning complexity is
reduced to O(N ), since the learning rule is employed only
for the readout/output weights. With a similar architecture
to the ESN, the BPDC claims to be insensitive to reservoir
parameter(s).Moreover, the BDPC can achieve a fast learning
rate and hence can track highly dynamic signals. However,
the disadvantage of this characteristic is that the trained
network may easily forget the previously seen signals and
become heavily biased to current data.

C. ECHO STATE NETWORK (ESN)
Developed in 2001 by Jaeger [11], the ESN is one of the
leading techniques of RC. It is built on the idea that if a
random RNN consists of certain arithmetic characteristics,
training only the linear readout from the RNN is enough
to produce good results in practical implementations. The
untrained portion of the ESN is referred to as the ‘‘dynamic
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reservoir’’ and the states within the reservoir are said to be
‘‘echoes’’ of the input history.

This work focuses on this type of reservoir computing
concept. This is because, not only is it one of the pioneering
RC concepts, from existing literature point of view it is one
of the most successful RC technique that exists thus far. The
next section gives detail of the architecture and properties of
the ESN network.

III. THE ESN ARCHITECTURE & OPTIMIZATIONS
The architecture of the basic ESN is shown in Fig. 2. It com-
prises three layers: an input layer with K units, a reservoir
layer with N internal states and a readout/output layer with
M units. The directed arrows in the figure denote synaptic
weight connections. With the thick arrow lines representing
required connections while the dashed arrow lines denote
optional weight connections. Moreover, although omitted
from the figure for brevity, the network often has an input
bias unit, usually set to a value of one. This work consid-
ers a discrete ESN for temporal tasks. It has the follow-
ing: u(t) = [u1(t), u2(t), . . . , uK (t)]ᵀ inputs at time (t);
N internal network units with internal states depicted as:
x(t) = [x1(t), x2(t), . . . , xN (t)]ᵀ; and M output units as:
y(t) = [y1(t), y2(t), . . . , yM (t)]ᵀ. Additionally, from the fig-
ure, the reservoir state x(t) is given as:

x(t) = f (W inu(t)+W rx(t − 1)+W backy(t − 1)) (1)

Where f = {f1, f2, . . . , fN } are non-linear activation func-
tions of the internal units, which is usually chosen as sig-
moidal. While, W in

= wini,j is the K × N weight connections
between the inputs and reservoir neurons. Moreover, W r

=

wri,j is the N×N internal weight matrix of connections within
the reservoir. In contrast,W back

= wbacki,j is theM ×N output

FIGURE 2. The basic ESN Architecture [20].

feedback weight matrix that connects the output back to the
reservoir neurons. The ESN’s output equation is given as:

y(t) = f out (W inoutu(t)+W outx(t)+W outouty(t − 1)) (2)

However, if all links to the output neurons are depicted by
W out_gen i.e.,
= W out_gen

= {W inout ,W out ,W outout
} then the output may

be given as:

y(t) = f out
(
W out_gen [u(t); x(t); y(t − 1)]

)
(3)

Where f out = {f out1 , f out2 , . . . , f outM }, are the output acti-
vation functions that are often chosen to be linear. Whereas,
W out_gen

= wout_geni,j is the output weights with dimension
M × (K + N + M ). Furthermore, [u(t); x(t); y(t − 1)] is a
concatenation of the input, internal and the past output.

Thus, the ESN may be depicted as a set of matrices:
ESN = {W in,W inout ,W r ,W out ,W outout ,W back

}. However,
as shown in Fig. 2, the weights W inout , W outout , and W back

are optional. Moreover, only weights connected to the output
neurons (W out_gen) require training. In contrast, all other
weights are often randomly initialized and remain unchanged
during training.

A. ESN TRAINING
The training of the basic ESN involves finding the
optimal value of the weight matrix: W out_gen

=

{W inout ,W out ,W outout
}. This is often accomplished by least

square linear regression technique which aims to minimize
the error between the network’s output and the target output
signal.

First, the ESN weights: {W in,W r ,W back
} are randomly

initialized. However, for the reservoir weight,W r , it is impor-
tant that it is generated such that the echo state property (ESP)
is ensured. The ESP postulates that the influence of a previous
state x(t) and a past input u(t) on a future state x(t + n)
should diminish slowly with time and not continue or even
increase. According to Yildiz et al. [21], the ESP is often
met if W r is scaled such that its spectral radius, which is
the largest absolute eigenvalue of W r is less than 1. Other
parameters that need to be initialized include the reservoir
size N , the input/output scaling, the input/output shift, pres-
ence or otherwise of optional weights among others. Sub-
sequently, the network is fed with the training sequence:
[u(1), y(1); u(2), y(2); . . . ; u(T ), y(T )] as input. An important
term, although not directly related to the ESN that needs
to be set is the washout time T0. This is a short time set
to avoid the influence of initialized random weights on the
trained network. Thus, the network states obtained before T0
are not considered in the training algorithm and are flushed
out. Hence the training set considers points in the range
T0 < t ≤ T .
Moreover, the zero states of the ESN is also initialized

i.e., x(0), y(0) = 0. This is used to obtain x(1). Furthermore,
the reservoir states for the training set x(t) is collected by
using (1).
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Before proceeding to the next steps, let us make some
definitions. Assuming that the output activation function f out

from (3) is invertible, then the equation can be changed to a
linear equation as:

f out−1(y(t)) = W out_gen [u(t); x(t); y(t − 1)] (4)

For the training samples, we can change (4) to its matrix
version as:

Y = Q.(W out_gen)ᵀ (5)

Where, Y = f out−1 [y(T0), y(T0 + 1), . . . , y(T )]ᵀ, Q =
[q(To), q(T0 + 1), . . . , q(T )], q(t) = [u(t), x(t), y(t − 1)].
Subsequently, the values of the matrix Q with dimension

(T −T0+1)× (K+N +M ) and the matrix Y with dimension
(T − T0 + 1) ×M are collected. Finally, the output weights
is then obtained via:

W out_gen
= (Q−1.Y )ᵀ (6)

Where the inverse may be obtained by the Moore-Penrose
pseudoinverse or modified so that the Tikhonov regulariza-
tion can be applied [8].

Despite the easy training of the ESN, one of the challenges
of the network is that of the optimal choice of parameters
and topologies. In the next section, we define some of the
common topology and parameter that need to be set in the
initialization of the ESN.

B. ESN OPTIMIZATION PARAMETERS
This section lists some of the most common ESN parameters
that are optimized in existing literatures. They include:

1) Reservoir size: The reservoir size N represents the
number of neuron units within the reservoir. It is a
very crucial parameter, since it decides the maximum
number of possible connections within the reservoir
(N 2). Several research works have proven that the
reservoir size denotes the memory capacity potential
of the ESN [22]. Jaeger [22] has suggested that N be
in the range ( T10 ≤ N ≤ T

2 ) with T as the length
of training data. However, he has also noted that the
choice of the optimal value for N should depend on
the periodicity of the training data and learning task
complexity. Thus, the choice of a good value for N is
still a difficult task. A reservoir that is too small may
causemodel inaccuracy, while a too large reservoir may
lead to slow training and data overfitting. In overfitting,
the network model will work excellently well on its
training data but very poorly on ‘‘unseen’’ data.

2) Spectral radius (ρ(W r ) or SR): This is another criti-
cal ESN parameter that needs to be initialized. It is
described as the maximum absolute eigenvalue of the
reservoir weights (W r ). It scales the width of the dis-
tribution of non-zero entries in the W r matrix. Addi-
tionally, it defines the length of memory the reservoir
can retain. The larger the spectral radius, the longer the
previous inputs can influence the present output. It is

often set up by first randomly generating a sparse W r ;
its spectral radius is then computed as ρ(W r ); W r is
then divided by ρ(W r ) to give a matrix with a spectral
radius of unity; this created matrix is subsequently
scaled with the absolute spectral radius obtained via a
fine-tuning process. According to Jaeger [23], setting
the ρ(W r ) < 1, in most cases guarantees echo state
property (ESP). However, he highlighted that for non-
zero inputs, the ESP may still be met for ρ(W r ) > 1.
As a rule of thumb, the spectral is set higher for tasks
that require extended memory of inputs.

3) Input/Output scaling: The input weight (W in) scaling
is also a relatively important ESN parameter that needs
to be chosen carefully. It influences the level of the lin-
earity of the responses of reservoir units. For aW in that
is uniformly distributed, the input scaling b is referred
to as a range [−b; b] from which values of W in are
drawn. If values of W in are normally distributed, then
the standard deviation may be used as a scaling factor.
To reduce the number of tunable ESN parameters, all
columns of W in are scaled together. However, the first
column of W in which represents the bias input may be
scaled differently.Moreover, it is suggested that scaling
optimization of the remaining active inputs be done
separately if they contribute to the task in distinct man-
ners. Large absolute values of W in signify a network
that is heavily driven by the input. Whereas, larger
values could push the internal units near the saturation
of the sigmoid activation function, thus causing a more
nonlinear behavior of the model. Moreover, extremely
large values of W in drive the internal units to closer
to -1/+1, binary dynamic behavior. In contrast, small
absolute values of W in denote network states that are
only marginally excited about the reservoir unit zero
states. Thus, the reservoir neurons function around the
linear middle portion of the sigmoid, resulting in a
near linear dynamic network. Since the input scaling
controls the linearity of reservoir units, its value is set
based on the linearity of the task at hand, However,
it is often difficult to determine the linearity of tasks,
thus the value is often set via trial and error. In ESNs
that have the feedback connection weights (W back ),
the feedback weight scaling has similar effects on the
reservoir as the W in.

4) Input/Output shift: This parameter often needs to be set
in the initial ‘‘baking’’ of the ESN. It is an optional
constant value added to the input vector u(n). Although
this parameter has gained prominence in early ESN
publications, according to Lukoševičius [23], scaling
of the input/feedback output without shifting generally
suffices. Thus, the shifting may be avoided without
any harm. However, in cases where both scaling and
shifting is applied, it should be noted that the shift-
ing factor has similar effect on reservoir linearity as
scaling. Moreover, another important use of the shift-
ing is in handling the case of symmetric-input fallacy.
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This problem occurs because the sigmoidal units in the
reservoir are symmetric devices and as such, if they
receive input sequence u(n) and produce output of y(n),
then an input of −u(n) would give −y(n). Thus, it is
nearly impractical to produce output of y(n) = u(n2)
type for inputs that take both positive and negative
values. Hence, to handle this problem, the inputs are
shifted so that all the input sequences are now positive.

5) Type of readout function: This represents the tech-
nique used to obtaining the output weights

(
W out_gen

)
.

Although Lukoševičius and Jaeger [8] highlighted that
any of the established methods for obtaining readout
in machine learning may be adopted. However, for
the ESN considered in this work, the choice is often
between numerical stability and cost of computations.
Thus, authors have chosen either the direct Moore-
Penrose pseudoinverse in (6) (linear regression) or the
ridge regression [20], [24], [25]. The direct Moore-
Penrose inverse has higher numerical stability but is
more computationally expensive compared to the ridge
regression [8].

6) Regularization parameter of ridge regression (reg.):
Regularization is often aimed at reducing the noise
sensitivity of the network and also to prevent
overfitting [26]. When ridge regression is employed,
the regularization parameter controls the amount of
regularization needed, and is clearly a design decision.

7) Reservoir activation function (Ra): For the ESN,
the reservoir activation is non-linear function such as
sigmoidal functions. In most works, the function of
choice has been the tanh(.) or positive logistic sign(.).
Also, some authors like Wang et al. [27] have recom-
mended the application of different activation function
within the same reservoir to improve the richness of the
network.

8) Leaking rate (a): This parameter is associated with
leaky integrator ESNs (LI-ESNs) [28]. These are ESNs
whose reservoir neurons perform leaky integration of
their activations from past steps of time. In these ESNs,
an important parameter to be set is the leakage rate a
which determines the momentum of the dynamics [29].

9) Noise scaling: This step is also called noise immu-
nization and is applied to models trained with noise-
less data. This is because networks trained with clean
dataset for one step time forecasting diverge quickly in
generative mode. A remedy to this issue is often the
introduction of a scaled noise to the reservoir state x(n)
during training [11]. As a result, the generator can learn
how to obtain the target output from a region of the
present state x(n) since it has seen a noisy version of it
in the training phase. Setting the appropriate value for
this noise scaling is a complicated task and is usually
a compromise between accuracy of the prediction and
model stability. Another solution to clean data is the
use of regularization from ridge regression which is
computationally less expensive or the pruning ofW out .

C. ESN OPTIMIZATION TOPOLOGIES
In this work, we define topology as any decision making
that affects physical shape/architecture of the ESN. These
include:

1) Presence/absence of optional weights. As shown
in Fig. 2, the optional weights in the ESN architecture
include: the input to output weight connection (W inout ),
the feedback weight connections from output back to
reservoir (W back ), and the cycle between the output
units (W outout ). Whether these optional weights are
included or not depends on the application and an often
compromise between accuracy and computation costs.

2) Reservoir connectivity: This denotes the number
of non-zero values/connections within the reservoir
weights (W r ). Although a low priority parameter [23],
its value is known to influence the complexity of the
reservoir. ESN research works recommend a sparsely
connected reservoir, i.e., a reservoir in which most
values of the weight matrix (W r ) are set to zero [15].
Reservoirs with sparse connectivity have been reported
to perform a little better than heavily connected ones.
Too much connections within the reservoir may reduce
the ESNs ability to be trained properly. This is because
many connections may cause strong coupling effect of
the reservoir neuron states, and thus decrease the diver-
sity of the reservoir states. Typical values connectivity
of the is between 0.01 and 0.2 [30].

3) Presence/Absence of input bias: The presence/
otherwise of the input bias and its connectivity to
other layers if it is present is often optimized. Its
presence often helps in handling symmetric input-
fallacy (Explained in the Input/Output shift parameter
in Section III-B).

4) Connectivity of output weights: Another item often
optimized is the connection of output weights (W out ).

It is clear from the aforementioned parameters and topolo-
gies, that choosing the best values for a particular task
by ‘‘hand’’ is impractical. Moreover, since a brute force
approach is also out of the question due to the large search
space, researchers have resorted to metaheuristic meth-
ods [31] to find near optimal values for these parame-
ters/topologies within a reasonable computational time. In the
next section we shall briefly introduce metaheuristic methods
and discuss typical types of them.

IV. METAHEURISTIC OPTIMIZATION TECHNIQUES
Metaheuristics are a primary sub class of stochastic optimiza-
tion methods. They are iterative techniques and algorithms
that use some level of randomness to discover optimal or near-
optimal solutions to computationally hard problems. These
techniques come in handy in problems that are generally
difficult to solve. Especially where there is no principled
method of traversing the solution search space and obtaining
the optimal solution, but there exists is a way to evaluate the
‘‘goodness’’ of obtained solutions [32].
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Metaheuristics may be broadly classified into three: the
single-solution based, population-based, and hybrid meth-
ods. In all these varieties, the search space is explored and
exploited intelligently so that good solutions can be found.
In the single-solution based techniques, such as the simu-
lated annealing (SA) [33], there is only one solution that
gets tweaked/perturbed so as to obtain an optimal solution.
In contrast, in the population-based methods like genetic
algorithm (GA) [34], there is a pool of solutions whose ele-
ments interact and also get tweaked in each iteration in order
to find better solutions. Finally, hybrid methods would com-
bine two metaheuristics together, taking from the strength of
each [31].

Metaheuristics have been employed to tune/train the
parameters/topology of neural network for a very long
time [35]. However, this review is concerned with meta-
heuristics that are used to optimize the ESN.

V. WORKS ON ESN OPTIMIZATION
In this section, we discuss works that optimize the ESN
by employing metaheuristic algorithms (MAs). These works
could be divided into four classes. As shown in Fig. 3, the first
class are those that optimize the global parameters of the
ESN such as the spectral radius (SR), and the scaling of
weights. The Second class are works that optimize the topol-
ogy/architecture of the network, such as weight connections.
The third group are those that attempt to employMAs to train
the output weights of the ESN often in unsupervised tasks.
The fourth group of papers would do a hybrid of the other
groups. The works are categorized based on the MA they
employ to optimize the ESN.

FIGURE 3. A schematic of application of metaheuristics in ESN
optimization.

A. STATE REPRESENTATION, MOVES AND
OBJECTIVE FUNCTIONS
In this section, we briefly present how most of the refer-
ence works represent solutions, make moves and the mostly
employed objective function(s).

1) PARAMETERS OPTIMIZATION
In this case, the state representation is a single dimensional
vector, with length equal to the number of parameters to be
optimized. E.g., [P1,P2,P3, . . . ,Pd ], where P is the param-
eter to be optimized and d is the number of parameters to be
optimized.

a: INITIAL SOLUTION
The first set(s) of solutions are often randomly initialized to
take values between the minimum and maximum value each
parameter can have. Here, we would denote these values as
Pi,min and Pi,max .

b: MOVES/PERTURBATIONS
This denotes how the algorithms traverse the design space.
In some works [36], [37] some parameter values are broken
into discrete parts between Pi,min and Pi,max . For example, if
the spectral radius (SR) of the reservoir has: Pi,min = 0.1
and Pi,max = 0.9, then the values the SR can take may be
broken into {0.1, 0.5, 0.9} and then each of the value may be
chosen based on a uniformly distributed probability. In other
works, the value the parameter can have is continuous from
Pi,min and Pi,max , often represented as: (Pi,max − Pi,min) ×
rand + Pi,min. Where the function rand produces uniformly
distributed random numbers between 0 and 1. The actual
moves to be made per iteration would then depend on the
individual metaheuristics.

2) TOPOLOGY OPTIMIZATION
In this case, weight connections are often represented as a
two-dimensional binary matrix. For example, in matrix B,
entry Bi,j denotes connection between neuron i and j, a ‘‘1’’ in
the location will signify the presence of a connection between
i and j, while a ‘‘0’’ will represent the absence of a link. In the
case where the presence/absence of weights/bias are opti-
mized, the representation is often a one-dimensional matrix,
with ‘‘0’’ indicating presence and ‘‘1’’ denoting absence.

OBJECTIVE FUNCTION(s)
Since the training of the ESN is generally fast because only
W out_gen weights are trained, the objective function mostly
employed are those denoting prediction accuracy of the ESN
such as: mean squared error (MSE), root mean squared
error (RMSE), normalized RMSE (NRMSE), mean absolute
error (MAE), mean absolute percentage error (MAPE) etc.
However, in this review, we suggest the adoption of the
‘‘goodness’’ measure of the reservoir as an objective function,
because we believe that this will speed-up the ‘‘baking’’
process of the ESN. In the next section, we discuss works
that employ MAs to optimize the ESN.

B. EVOLUTION STRATEGY (ES)
The group of Evolution strategy (ES) based algorithms are
population-based metaheuristics, first invented in 1973 by
Rechenberg [38]. It basically involves a simplified method of
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selection and often employs only mutation as the perturbation
operator. A comprehensive review of ES and its variants can
be found in Hansen [39].

ES has been employed to optimize the ESN. For e.g., van
der Zant et al. [40] used the ES to select the values of three
parameters of the ESN: SR, N & connectivity of reservoir
units (C). They tested the method on the motion prediction of
the twin-burger autonomous under water robot. Results they
obtain show that their technique outperformed other methods
as well as an evolutional algorithm (EA). Similarly, the same
authors extended their work in Ishu et al. [41]. Here they
added the optimization of all the network weights: Win, Wr,
Wback. Moreover, they employed an evolutional algorithm
(EA) to optimize the weight values on the same twin-burger
autonomous robot. Comparing the new technique with their
earlier method shows the superiority of the new technique.
Similarly, Devert et al. [42] proposed an ES strategy based
ESN for unsupervised learning tasks. They claim to be the
first to employ the echo state network in an unsupervised
task. Moreover, the training of the ESN was turned into an
optimization problem, and the ES strategy was employed to
optimize the network and obtain the output weights. Test-
ing the technique on two benchmark problems showed that
the method was able to perform better than neuroevolution
of augmenting topologies (NEAT) [43] in most cases. In a
related work, Jiang et al. [44] proposed a covariance matrix
adaptation ES (CMA-ES) [45] method for training the ESN’s
output weights for unsupervised tasks. Testing the technique
on a supervised task and unsupervised tasks of the double
pole balancing control problem shows the good results over
compared methods. Moreover, Hartand et al. [46] proposed
an ESN based autonomous robot controller with counting
capabilities. The CMA-ES was employed to optimize the
ESN. The approach was compared to NEAT [43] on the
Tolmanmaze problem and it was found to be competitivewith
less tuning parameters.

C. PARTICLE SWARM OPTIMIZATION (PSO)
PSO is another population-basedMA inspired from the flock-
ing and swarming attributes of animals. Developed in 1995 by
Eberhart and Kennedy [47], it is known to have no selection
procedure but rather a fixed population of solutions called
particles that are perturbed as more discoveries are made of
the search space. Each particle’s new position is affected by
its new velocity. A general overview of the PSO algorithm
and its variants can be found in Alam et al. [48].
The particle swarm optimization (PSO) and its variants

have been one of the most widely employed metaheuristics
to optimize the ESN. In Zhou et al. [49], PSO was employed
to optimize four parameters of the leaky integrator ESN (LI-
ESN). The parameters are: spectral radius, value ranges of
Win and Wback and the time constant (τ ) of the system. The
PSO optimized LI-ESN was tested on the motion prediction
of a monkey’s wrist. Simulation results showed the power
of the technique. Similarly, Song et al. [50], [51] demon-
strated that the classical ESN cannot guarantee asymptotic

stability for closed-loop ESNs i.e., ESNs with Wback. They
highlighted further that existing solutions of ridge regres-
sion and noise immunization are not easy to set up. Thus,
they proposed a PSO-based training approach for the closed-
loop ESN. They applied the technique on the ‘‘figure-eight’’
generation task. Subsequently, simulation results showed that
the proposed method achieved better prediction and stability
compared to the classical ESN. Furthermore, in a similar
work, Song et al. [52] employed PSO to train the output
weight of the LI-ESN but this time they tested on the multiple
superimposed oscillator (MSO) problem. The approach was
compared to theDESN [53] and Evolino [54] and it was found
to be better. In a similar work, Zhou et al. [55] employed
PSO to optimize the ESN’s parameters for modelling the
pneumatic artificial muscle (PAM). The results they obtained
showed that their method outperformed the back-propagation
neural network (BPNN) in terms of precision and speed. Sim-
ilarly, Sergio and Ludermir [36] proposed a PSO-based tech-
nique for optimizing the ESN. They compared their method
with an exhaustive search on five time series prediction tasks
and found their technique to be competitive.

Furthermore, Rabin et al. [56] proposed a PSO optimized
ESN for electricity load forecasting. They proposed a multi-
reservoir ESN and employed the sensitivity oriented linear
learning [57] to obtain the output weights. Subsequently,
the parameters of the new ESN are optimized by PSO. Two
additional parameters related to the learning scheme were
added to the parameters optimized by PSO. Testing the meth-
ods on the load time series prediction task produced results
that outperformed the GA optimized SVM and other tech-
niques. In a related work, Yang et al. [58] proposed a new
ESN architecture. The new ESN consists of fixed cyclic neu-
rons with fixed feedback connections. Furthermore, the novel
ESN is applied for the spectrum prediction of cognitive radio.
The improved PSO (θ -PSO) [59] was employed to optimize
the ESN parameters. Test results on time series data and spec-
trum prediction task showed that the new ESN is comparable
to the classical ESN and Elman [60].

Wang and Yan [61] developed a binary PSO (BPSO)
based approach to optimize the output weight connections
of a trained ESN. They highlighted that since the reservoir
is sparsely connected, it is contradictory to connect all the
reservoir neurons to the output. The data is divided into three.
Training data is first used to train the ESN. The validation
data is then employed to optimize the Wout by PSO. Its
performance is then tested on a third unseen data called the
test data. The technique outperformed the classic ESN and
of least angle regression (LAR) method on three classes of
time series. In contrast, Basterrech et al. [62] proposed a PSO
optimized ESN. In the method, a subgroup of the reservoir
weights are picked and their values are optimized by PSO.
Themethod has less computation effort since the computation
of spectral radius is not needed. The technique outperformed
the classical ESN. Moreover, Chouikhi et al. [63] proposed
a PSO approach to extend the work of Basterrech et al. [62].
In the method, the ESN is first trained in the normal way.
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Then a subset of non-zero reservoir weights, input weights,
and feedback weights are selected and their values are opti-
mization. The PSO optimized weights are then reinserted
into the trained ESN. They highlighted that in some cases,
optimizing only the value of a subset of the reservoir weights
may suffice as in [62]. The technique has less computational
effort since only a portion of each weight matrix is selected
for optimization and the calculation of spectral radius is not
needed. The method performed better than the classic ESN
and Basterrech et al. [62] on the Mackey-Glass time series.
In a related work, Chouikhi et al. [64] proposed a single
objective and multiobjective PSO optimized ESN. In the sin-
gle objective technique, only the mean squared error (MSE)
between the target and actual output predictions isminimized.
In contrast, in the multiobjective method, both the MSE and
reservoir complexity are optimized. The reservoir complexity
is represented by the reservoir size and the reservoir con-
nectivity. The output of the single objective PSO is a single
solution while that of the multiobjective PSO is a set of Pareto
solutions. Both techniques perform better than many existing
methods in predicting future values of the NARMA and
Lorenz time series. Recently, Chouikhi et al. [65] presented a
two level optimization approach to the single and multilevel
ESN [66]. The target application was feature extraction from
a large dataset. In the first level, a multiobjective PSO is used
to optimize the ESN parameters targeting error minimiza-
tion and reduction of network complexity. This optimization
produces a Pareto front. These Pareto front solutions are
then subjected to a second weight optimization using single
objective PSO that aims only at error minimization. The
features extracted from the optimized ESN are then inserted
into an SVM classifier. Results obtained from the optimized
ESN feature extractor was shown to perform competitively in
complex classification tasks.

Similarly, Xu et al. [67] proposed a hierarchical neural
network (HNN) for multivariate time series prediction task.
The HNN consists of a simple cycle reservoir (SCR) ESN
[68] at the first stage and the ELM at the second stage. PSO
algorithm is then employed to optimize the leaky rate, and
scaling of the input weights and reservoir weights of the SCR-
ESN. Testing the HNN on two real world time series showed
good results.

In a similar work, Wu et al. [69] proposed a parallel PSO
(P-PSO) to train the ESN’s output weights. They highlighted
that the centralized training of the ESN is unsuitable for
most big data applications where the data is distributed over
different devices. The new technique was implemented on the
spark framework over four datasets. In most cases, it was dis-
covered that the P-PSO based method outperformed its com-
petitors. In contrast, Sheng et al. [70] proposed a granulated
ESN for the prediction of interval construction. They view
the ESN training as an optimization problem and used PSO
to obtain the output weights. Implementation of the technique
over the map-reduce (MR) frame work on data time series
and industrial data showed the efficacy of the method. In
Chouikhi et al. [71] the work in [63] was extended. In the new

work, a subset of the input, reservoir and feedbackweights are
selected and optimized by PSO in a pretraining phase before
the actual network training process. The extension involved
more tests over additional datasets and more comparisons
with other works. The technique further showed interesting
results.

Wei and Haitian [72] proposed a PSO optimized ESN
for the electric load prediction. The PSO is used to opti-
mize four parameters of the ESN. Testing the method on
power and climate data prediction tasks showed better perfor-
mance over the SVM, BPNN and classical ESN. Moreover,
Salah et al. [73] proposed a PSO optimized ESN for the
remaining useful life (RUL) prediction of a turbofan engine.
The PSO is employed to optimize the input/output shift,
input/output scaling, the number of reservoir units and the
spectral radius. The obtained result outperformed the clas-
sical ESN. Furthermore, Abdelbari and Shafi [74] modified
the ESN for the conceptual modeling of complex dynamical
system. They employed GA, PSO, and DE to optimize the
parameters of the ESN. The techniques were tested on the
modeling of four complex systems and the GA optimized
network performed better.

D. GENETIC ALGORITHM
GA is another famous population-based MA that is inspired
from natural selection. The first GA was invented by
Holland [75]. Although there are several versions of
GA, they will be distinguished by the type of selection,
crossover, or mutation functions they employ. Details of GA
and many of its variants can be found in [76].

GA has been employed in several works to optimize the
ESN’s parameters/topology. This section discusses some of
these works. Xu et al. [77] proposed an ESN based direct
adaptive controller for non-linear dynamical systems. The
training of the ESN is turned into an optimization problem
and GA was employed to solve it. Comparing the technique
with the PID controller showed the efficiency of the new
technique. In contrast, Ferreira and Ludermir [37] claims to
be the first work that optimized the ESN byGA. They employ
GA to optimize the parameters and topology of the ESN
including the type of reservoir activation function to be used
i.e., either tanh or signum. Comparing the performance of the
technique on an hourly wind speed series shows better results
compared to an exhaustive search and a previouswork in [78].
Furthermore, Ferreira and Ludermir [24] proposed another
GA for the ESN optimization. It is an extension of their
work in [37]. Here the parameters to be optimized include
the type of readout training to be adopted i.e., either pseudo
inverse or ridge regression, regularization parameter of the
ridge regression, leak rate and the connection(s) of the bias
unit. Testing the method on wind speed time series prediction
task, they found the method to outperform the AG search
which optimizes only the trio of: spectral radius, reservoir
size, and reservoir connectivity. In an extension of the work,
Ferreira et al. [20] improved the comparison benchmarks
for the technique called the RCDESIGN. The method was
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further tested on two time series data. Again, the technique
outperformed the AG search. One of the fascination of the
works in [24] and [20] is the fact that since the spectral radius
is not optimized, it does not have to be computed, thus saving
a lot of computation time. Moreover, they highlighted that the
concept of adjusting the spectral radius within a unit circle in
the complex planes is derived from linear system theory and
may not be applicable in non-linear systems.

In other works, Bianchi et al. [79] proposed an ESN for
forecasting telephone calls load. GA was employed to select
the network’s parameters as well as the picking of the most
suitable additional signal to be added as an external input
to the ESN. Three training techniques were used: the least
square regression (linear regression), linear support vector
regression (SVR) and non-linear SVR. The best methods
were the linear regression and the SVR with a Gaussian
kernel. In a related work, Bianchi et al. [80] employed a GA
optimized ESN for electric load forecasting. The method was
able to outperform the general ARIMA [81] method. In addi-
tion, Deihimi and Showkati [82] proposed an ESN approach
for short term electric load forecasting. They employ GA to
optimize the reservoir size and spectral radius of the ESN.
Similarly, Løkse et al. [83] presented a novel framework for
ESN training. Their technique improves the ESN’s gener-
alization abilities via a regularization constraint brought in
by a smoothening effect of a dimensionality minimization
process. GA was employed to optimize the parameters of the
ESN. In Zhong et al. [84] a double reservoir ESN (DRESN)
for the prediction of multi-regime time series is proposed. GA
was employed to select the quantity of reservoir units and
the spectral radii of both reservoirs. Testing the technique on
turbofan multi-regime time series prediction produced inter-
esting results. Moreover, Ma et al. [85] highlighted that the
classical ESN may have challenges in predicting time series
with multiscale structures. Thus, they proposed a hierarchical
ESN, which consists of several layers of ESN. They named
the method as Deep-ESN. Subsequently, GA is employed to
optimize the number of reservoir units, spectral radii and leak
rate of the reservoirs.

E. DIFFERENTIAL EVOLUTION
DE is another population-based MA. It is a type of evo-
lutionary computation intended for multi-dimensional real
valued search. The original DE was invented by Storn and
Price [86] and is most commonly known for its adaptive
mutation function that depends on the variance of solutions
in the population. More details on DE and its types can be
obtained from Das et al. [87].
DE [86] and its variants have seen many application in

engineering optimization. They have also been employed to
optimize the ESN. Zhang et al. [88] presented a DE optimized
ESN for time series prediction. Four parameters of the ESN
are selected for optimization, which are: size of the reservoir,
its spectral radius, its connectivity and the scaling of input
weights. Testing the technique on Lorenz system showed
the method performing better than the classical ESN. In a

similar work, Rigamonti et al. [89] proposed a DE optimized
ESN for forecasting the remaining useful life of (RUL) of
industrial systems. Eight parameters of the ESNwere selected
for optimization including the output weight shifting and
scaling. The method was applied to predict the RUL of tur-
bofan engine and fascinating results were obtained. In a more
recent work [90], the same authors presented an ensemble
of ESNs for the RUL prediction of industrial equipment.
Again, they employed DE to optimize the ESNs. Similarly,
Yang et al. [91] proposed a DE based technique for opti-
mizing the ESN. First, the reservoir weights are constructed
through the singular value decomposition (SVD) [92]. Sub-
sequently, the singular values of the reservoir are then opti-
mized by the DE algorithm. The method outperformed many
existing techniques on time series prediction tasks. In a recent
work, Wang et al. [93] devised a DE optimized ESN for
electrical energy consumption prediction. DE is employed
to optimize the reservoir size, its connectivity and spectral
radius. Testing the technique on real life data showed fasci-
nating results.

F. OTHER METAHEURISTICS
Some other works that have employed MAs for ESN opti-
mization include Cui et al. [94] where a biogeography-based
optimization (BBO) [95] is employed to optimize the ESN.
The ESN was incorporated with other soft computing meth-
ods to solve the problem of obtaining the vinyl chloride
monomer (VCM) conversion rate for real time online mea-
surement in polyvinyl chloride (PVC) production. In con-
trast, Amaya and Alvares [96] presented an artificial bee
colony (ABC) [97] to optimize the ESN for predicting the
RUL of turbofan engines. Their technique outperformed that
in Peng et al. [98]. Duan et al. [99] proposed an orthogo-
nal pigeon-inspired optimization (OPIO) [100] algorithm to
optimize the ESN for image restoration tasks. OPIO was
used to optimize the size of the reservoir, its connectivity,
spectral radius and the input weight scaling. Moreover, they
compared the techniquewith other image restorationmethods
and ESNs optimized by other evolutionary methods. The pro-
posed method was found to be competitive. In a related work,
Han et al. [101] employed the quantum-behaved fruit fly opti-
mization algorithm (QFOA) to optimize four parameters of
the ESN. The target application is network traffic prediction.
Their method was able to outperform the harmony search
(HS) [102], PSO, black hole (BH) [103] optimized ESN.
Recently, Bala et al. [104] employed the modified cuckoo
search (MCS) algorithm [105] to optimize the parameters of
the ESN. They targeted the reservoir size, its connectivity
and spectral radius. The technique was able to outperform the
classic ESN in predicting future values of the Mackey-Glass
time series.

In a related work, Morando et al. [106] developed a big
bang-big crunch (BB-BC) [107] optimized ESN for fault
diagnosis of fuel cells. Similarly, Deihimi and Rahmani [108]
presented an ESN based technique estimating distortions in
the voltage harmonic waveforms at sensitive loads that are
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non-monitored. The grey wolf optimizer (GWO) [109] was
employed to optimize three parameters of the ESN. The
method was found to outperform other NN techniques. Sim-
ilarly, Pan et al. [110] proposed a bat algorithm (BA) [111]
optimized ESN for forecasting internet traffics. The BA was
employed to optimize the values of the input weights. Testing
the technique on four datasets produced interesting results.

G. HYBRIDS
In hybrid metaheuristics, often two metaheuristics are com-
bined to complement each other [31]. This is deliberately
done so that the hybrid algorithm gains from the strength
of each individual algorithm [112]. Thus, some works have
attempted to use hybrid algorithms for the ESN optimization.
In [25], a PSO and SA hybrid is proposed for the optimization
of the ESN. Testing the method on five benchmarks produced
good results. Similarly, Xu et al. [113] presented a hybrid
of PSO and tabu search (TS) to optimize the ESN for wind
power forecasting. Testing on a wind farm data produce
showed the competitiveness of the method.

H. SUMMARY TABLE
Table 1 summarizes the works we have reviewed in this
paper. The table highlights the type of algorithm employed,
the area of the ESN it attempts to optimize, the cost function
it employs, the application it was tested upon and with which
other methods the technique was compared to. In the table
term ‘‘params’’ denote parameters, and the term ‘‘Topo.’’ rep-
resents topology. Additionally, the term ‘‘Connect.’’ denotes
connectivity, meaning that the connectivities are optimized.
Notice that we have added the connectivity (C) in the
‘‘params’’ category not because it is a parameter, but because
it is commonly optimized and we want to aim for brevity.
Moreover, the term ‘‘ON/OFF’’ denotes presence or absence.
Most of the parameters/topology optimized in the table have
been explained in Section III.

VI. TRENDS & RESEARCH GAPS
This section presents some of the conclusions drawn from the
survey and possible research directions.

A. TRENDS
The trends identified from the reviewed papers include the
following:

• From the several papers reviewed in Section V we can
confirm the conclusions reached in [8] that most of the
reservoir computing optimization and improvements are
in the dynamic reservoir itself. Moreover, it also reaf-
firmed the notion that the construction of a random fixed
reservoir is not ‘‘good’’ enough. Therefore, the paradigm
shift is that the reservoir computing techniques aremeth-
ods that have different approach for the reservoir con-
struction from that of the readouts.

• Furthermore, metaheuristics have been greatly used
to optimize the ESN’s parameters. The mostly

optimized parameters are: reservoir size, reservoir den-
sity/connectivity and its spectral radius.

• Additionally, as highlighted in [8] that the condition that
the spectral radius be less than one for echo state prop-
erty is not absolute, particularly for non-linear learning
tasks. Thus, few works avoided finding the spectral
radius which is computational expensive and they did
just find by employing metaheuristics to optimize the
reservoir.

• Another interesting finding is the fact that some works is
were able to employ metaheuristics to obtain the output
weights (training) even in supervised leaning tasks and
they found interesting results.

• The PSO is the mostly used metaheuristics to optimize
the ESN. Perhaps, this may be a coincidence if we
give credit to the ‘‘no free lunch’’ notion [143], which
explains that, if every non re-sampling optimization
algorithm is used to solve all optimization problems,
on average, the performance across all the problems will
be the same. Or it is possible that the PSO is indeed
versatile enough as the choice optimization algorithm
for reservoir computing techniques.

B. RESEARCH GAPS
In this section we present research gaps available on the
application of metaheuristic in ESN optimization.

1) ENCODING PROBLEMS
Solution encoding/representation in many of the reviewed
research works have been simplified to avoid complications
in the algorithm development and achieve a faster conver-
gence due to a smaller search space. This simplification
is often achieved by optimizing only few parameters and
topologies of the ESN. However, Ferreira et al. [20] and
its related works have taken the bold step of merging the
parameters and topology optimization into a single encod-
ing that is not simplified. This encoding is very versatile
as it aims to almost fully optimize the ESN. Neverthe-
less, is poses additional problems due to the large search
space it attempts to explore and exploit. Moreover, per-
turbation/movement of solutions within the algorithm and
combination of two solution as in crossover of GA often
leads to infeasible solutions. These invalid solutions must
be validated or fixed so that they become feasible solutions.
These problem(s) opens an interesting research area of devel-
oping of better/new encoding schemes that will avoid these
issues.

2) MULTILEVEL ESN
The development of the multilevel ESN by Malik et al. [66]
has brought about more parameters and topologies to be opti-
mized. One interesting area of optimization is the intercon-
nection between the levels of reservoir. Another fascinating
area of research in the multilevel ESN is the optimization
procedure to be adopted. The question is whether indi-
vidual levels of ESN should be optimized first before the
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TABLE 1. Summary of selected literature for ESN optimization.
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TABLE 1. (Continued.) Summary of selected literature for ESN optimization.
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TABLE 1. (Continued.) Summary of selected literature for ESN optimization.

interconnections between the layers are optimized? Or should
they be optimized concurrently?

3) FITNESS MEASURE
Since the ESN training is quite fast, most of the cost function
employed in the algorithms are those that reduce the error
between the predicted and actual outputs. However, another
fascinating gap that need to be filled is the development of
new cost functions that incorporates both the error minimiza-
tion and the properties of the reservoir such as eigen value
spread in the cost function.

Moreover, few works such as [65] have attempted to for-
mulate the optimization problem as multiobjective, targeting
the error function minimization as well as minimal reservoir
complexity (reservoir size and connectivity). One interesting
question is whether there are other properties of reservoir
complexity apart from the reservoir size and its connectivity
that need to be considered?

4) NEW METAHEURISTICS
Even at the time of preparing this manuscript, many new
MAs are being developed with new interesting characteris-
tics. These new MAs have been proven (using mathematical
functions) to have better accuracy and convergence rate than

their existing counterparts. Moreover, they are known to have
fewer tuning parameters which simplifies their implementa-
tions. A large part of the research gap in the ESN optimization
is the employment of these new MAs such as the earthworm
optimization algorithm (EWA) [144] and pity beetle algo-
rithm (PBA) [145] to optimize the ESN.

5) HYBRID METAHEURISTICS (HAs)
Another fascinating area of further research is the hybridiza-
tion of existing MAs that have been employed to solve the
ESN optimization with new MAs. Since HAs attempt to take
from the good qualities of two MAs, we strongly believe that
these HAs will further improve the ESN optimization.

VII. CONCLUSIONS
Reservoir computing is still a young field, although a lot
have been done over the 20 years of its introduction, there
is still a lot of space for development. While it came to ease
the training process of recurrent neural networks, however
it came with its own baggage. The choice of parameter and
topology for the networks is often an optimization issue.
Since metaheuristics are known to be good at solving these
kind of problems, they are employed. We have surveyed
many papers that employ metaheuristics to optimize the echo
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state network (ESN) which is among the firsts in reservoir
computing. Moreover, we have highlighted some deductions
from these papers and have pointed research gaps.
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