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ABSTRACT The existing overlap singularities in the parameter space significantly affect the learning
dynamics of the multilayer perceptrons. From the obtained theoretical learning trajectories near overlap
singularity, when the learning process has been affected by the overlap singularity, the influence area of the
overlap singularity is just the line space where the two hidden units equal to each other. However, in the
practical applications, different case has been observed and the influence area of such singularity may be
larger. By analyzing the generalization error of multilayer perceptrons, we find that the error surface is much
flatter near overlap singularity and the singularity would havemuch larger influence area. Finally, the validity
of the obtained results are verified by taking an artificial experiment and two real-data experiments.

INDEX TERMS Multilayer perceptrons, dynamics, information geometry, overlap singularity, influence
area.

I. INTRODUCTION
The results in [1] indicate that there exist singular regions in
the parameter spaces for almost all learningmachines, and the
singularities are the subspaces where the Fisher information
matrix degenerates [2], [3]. As a typical type of learning
machines, feedforward neural networks have been widely
used in many fields [4]–[7]. Due to the existence of the
singularities, the learning dynamics of neural networks often
present strange behaviors. For example, the learning process
may become very slow and plateau phenomenon often occurs
(an example is shown in Fig. 1) [8]. Also because of the
singularities, the standard statistical paradigm of the Cramér-
Rao theorem does not hold [9], [10] and the classical model
selection criteria, such as Akaike information criterion (AIC),
Bayes information criterion (BIC) and minimum description
length (MDL), often fail in determining appropriate network
structure [11].

Many researchers have investigated the learning dynam-
ics near singularities of feedforward neural networks, such
as multilayer perceptrons(MLPs) [12]–[15], radial basis

FIGURE 1. Plateau phenomenon occurred in the learning process.

function (RBF) networks [16], [17], Gaussian mixtures [18],
ect, and plenty of results have been obtained. These theo-
retical analysis results all indicate that the singularities seri-
ously affect the learning dynamics of feedforward neural
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networks and make us further recognize the essence of the
singularities.

In recent years, deep learning has become a very hot
topic in the machine learning community [19]. Deep neu-
ral networks are designed based on traditional neural
networks [20]–[22]. Due to the much larger number of hidden
layers and architecture size, training deep neural networks
also faces many challenges [23], [24]. [25] investigates the
deep linear neural networks and finds that the error does
not change under a scaling transformation. This would cause
the training difficulty which is called scaling symmetries
in [26] and [27]. Reference [27], [28] investigate the influence
of singularities in deep neural networks. These results all
indicate that the singularities also seriously affect the learning
dynamics in deep neural networks.

Although many results about the learning dynamics near
the singularities have been obtained, the size of the influence
area of singularities is still unknown. Reference [29] takes
a general mathematical analysis of the learning dynamics
near singularities in layered networks and obtains the com-
mon learning trajectories near overlap singularities which are
represented by a very simple form. The theoretical learning
trajectories indicate that when the learning process is affected
by the overlap singularity, the student parameters always
arrive in such singularity precisely, namely two units finally
overlap exactly. However, for MLPs, we find different case
in practical simulation experiments, the influence area of the
overlap singularity is larger than the theoretical analysis.

In this paper, we aim to investigate the influence area of the
overlap singularity in MLPs by analyzing the generalization
error surface. The remainder of the paper is organized as
follows. In Section 2, we give a more detailed introduction
to the motivation of this paper. The generalization error sur-
face of the MLPs near the overlap singularity is analyzed
in Section 3. Section 4 is devoted to the simulations and
Section 5 states conclusions and discussions.

II. LEARNING PARADIGM
Here, we firstly introduce a typical learning paradigm of
MLPs using the standard gradient descent algorithm to mini-
mize the mean square error loss function. For a typical MLP
with single hidden layer, it accepts an input vector x and gives
a scalar output, i.e.:

f (x, θ ) =
k∑
i=1

wiφ(x, J i), (1)

where k denotes the hidden unit number, J i ∈ Rn, i =
1, · · · , k denotes the weight from the input layer to the ith
hidden unit and wi ∈ R denotes the weight from the ith
hidden unit to the output layer; n denotes the number of input
nodes and φ(x, J i) = φ(JTi x) denotes an activation function.
θ = {J1, · · · , Jk ,w1, · · · ,wk} represents all the parameters
of the model (1).

Now we introduce two types of singularities [8], [29].
If two hidden units i and j overlap, i.e. J i = J j, wiφ(x, J i)+
wjφ(x, J j) = (wi + wj)φ(x, J i) remains the same value when

wi + wj takes a fixed value, regardless of particular values of
wi and wj. Therefore, we can identify their sum w = wi+wj,
nevertheless, each of wi and wj remains unidentifiable. When
wi = 0, wiφ(x, J i) = 0, whatever value J i takes. So there are
mainly two types of singular regions in the parameter space of
the unipolar activation function based MLPs as follows [30]:
1) Overlap singularity:

R1 = {θ |J i = J j}, (2)

2) Elimination singularity:

R2 = {θ |wi = 0}. (3)

In the case of regression, we have a number of observed
data (x1, y1), . . . , (xt , yt ), which are generated by:

y = f0(x)+ ε, (4)

where x ∈ Rn, y ∈ R, and f0(x) is an unknown true
generating function (which is called the teacher function).
ε is an additive noise, usually subject to Gaussian distribution
with zero mean. f0(x) can be approximated by a MLP, which
is the student neural model with the form of model (1).

Since the MLPs have universal approximation ability,
we can also assume that the teacher model is described by
a MLP with s hidden units:

y = f0(x)+ ε = f0(x, θ0)+ ε =
s∑
i=1

viφ(x, t i)+ ε, (5)

where t i ∈ Rn and vi ∈ R denote the weight
parameters connected to the ith hidden unit, and θ0 =

(t1, · · · , ts, v1, · · · , vs) is the teacher parameter.
The training input is subject to Gaussian distribution with

mean zero and covariance identity matrix In :

q(x) = (
√
2π )−n exp

(
−
‖x‖2

2

)
, (6)

and the loss function is defined as:

l(y, x, θ ) =
1
2
(y− f (x, θ ))2. (7)

Then by using the gradient descent method to minimize the
above loss, the training process can be completed and the
learning trajectories can be obtained.

From the results in [29], the theoretical learning trajectories
nearR1 are:

h =
2w∗

3
log

(z2 + 3)2

|z|
+ C, (8)

where C is a constant depending on the initial model param-
eter (h(0), z(0)) and

h =
1
2
uTu, (9)

u = J i − J j, (10)

z =
wi − wj
wi + wj

. (11)

The trajectories are shown in Fig. 2.
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FIGURE 2. Analytical dynamic vector fields. (a) The part |z| > 1 is stable.
(b) The part |z| < 1 is stable.

For the overlap singularity, J1 = J2, we have u = 0,
namely h = 0. For the elimination singularity,w1(orw2) = 0,
we have z = −1(or + 1). Thus the line h = 0 represents
the overlap singularity, and the lines z = ±1 represent the
elimination singularity. The overlap singularity is partially
stable where the stable area(thick black area in Fig. 2(a)
and Fig. 2(b), respectively) is determined by H (w∗, J∗) =
1
4
w∗
〈
e(y, x, θ ) ∂

2φ(x,J)
∂J∂JT

〉
|θ=θ∗ [29].

From the trajectory h ∼ z shown in Fig. 2 which is
obtained by theoretical analysis, for the learning processes
which are affected by the overlap singularity, the student
parameters always arrive in the line h = 0, namely the two
hidden units finally overlap exactly. However, the practical
situation is different, the influence area might be larger than
the theoretical analysis. Next we analyse the generalization
error L(θ ) at first.

III. THEORETICAL ANALYSIS OF ERROR SURFACE
NEAR OVERLAP SINGULARITY
In this section, we analyse the generalization error near the
overlap singularity forMLPs and show that the generalization
error surface is much flatter near the overlap singularity.
Just as pointed out in [16], it is enough to investigate the

model with two hidden units for capturing the essence of
the learning dynamics near the singularities. Without loss of
generality, we analyse the case that both the teacher model
and the student model have two hidden units, namely the
teacher model and student model have the following form,
respectively:

f (x, θ0) = v1φ(x, t1)+ v2φ(x, t2), (12)

and

f (x, θ ) = w1φ(x, J1)+ w2φ(x, J2). (13)

For a given sample set, the corresponding error surface
can be obtained by calculating the loss function l(y, x, θ).
Given that the error surface of the loss function cannot avoid
the disturbance of the samples, in order to overcome this
problem, we can investigate the generalization error L(θ ) of
MLPs instead:

L(θ ) = 〈l(y, x, θ )〉 , (14)

where 〈·〉 denotes the average over (yt , xt ) with respect to the
teacher distribution,

p0(y, x) = q(x)
1
√
2π

exp
(
−
1
2
(y− f0(x))2

)
. (15)

Since the overlap singularity is basically related with the
weights J i, i = 1, 2, we can mainly focus on the weights J i,
not wi. Thus in order to quantitatively analyse and visualize
the generalization error, without loss of generality, we inves-
tigate the case that the student output weights are fixed to
the teacher output weights and the dimension of the input
is chosen to be 1 in this paper, namely we set w1 = v1
and w2 = v2, then the teacher and student model are of the
following forms:

f (x, θ0) = v1φ(x, t1)+ v2φ(x, t2)+ ε, (16)

and

f (x, θ ) = v1φ(x, J1)+ v2φ(x, J2), (17)

respectively.
As the output weights have been set to the optimal values,

the two parameters v1 and v2 do not participate in the learning
process and only J1 and J2 need to be modified. Thus the
system parameters have become θ = [J1, J2]T .

Next, we can quantitatively analyse the generalization error
surface of MLPs. When the student parameters arrives in the
overlap singularity R∗ = {θ∗|J1 = J2 = J∗}, then for an
arbitrary student parameter θ̂ = [Ĵ1, Ĵ2], which is near the
overlap singularity θ∗ = [J∗, J∗], it can be seen as adding
an bias term to θ∗, namely θ̂ = θ∗ + 1θ∗, where 1θ∗ =
θ̂ − θ = [Ĵ1 − J∗, Ĵ2 − J∗]T .

Then by taking the Taylor expansion of L(θ̂ ) at θ∗, we have:

L(θ̂ ) = L(θ∗)+ (1θ∗)T
∂L(θ∗)
∂θ∗

+
1
2
(1θ∗)T

∂2L(θ∗)

∂θ∗∂θ∗
T 1θ

∗
+ O(‖1θ∗‖3). (18)
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As shown in [30], for the overlap singularity θ∗, we have
∂L(θ∗)
∂θ∗
= 0, then Eq. (18) can be rewritten as:

L(θ̂ )− L(θ∗) =
1
2
(1θ∗)T

∂2L(θ∗)

∂θ∗∂θ∗
T 1θ

∗
+ O(‖1θ∗‖3)

=
1
2
1θ∗

TH (θ∗)1θ∗ + O(‖θ∗‖3), (19)

where H (θ ) =
∂2 L(θ )

∂θ∂θT
is the Hessian matrix of the MLPs.

For Eq. (19), we have:

1θ∗
TH (θ∗)1θ∗ = 1θ∗T


∂2L(θ∗)

∂J∗2
∂2L(θ∗)

∂J∗2
∂2L(θ∗)

∂J∗2
∂2L(θ∗)

∂J∗2

1θ∗
= 1θ∗

T
[
1 1
1 1

]
1θ∗

∂2L(θ∗)

∂J∗2
, (20)

Moreover,

1θ∗
T
[
1 1
1 1

]
1θ∗

=

[
Ĵ1 − J∗, Ĵ2 − J∗

] [1 1
1 1

] [
Ĵ1 − J∗, Ĵ2 − J∗

]T
= [(Ĵ1 − J∗)+ (Ĵ2 − J∗), (Ĵ1 − J∗)+ (Ĵ2 − J∗)]

[
Ĵ1 − J∗

Ĵ2 − J∗

]
= (Ĵ1 − J∗)2 + 2(Ĵ1 − J∗)(Ĵ2 − J∗)+ (Ĵ2 − J∗)2

≤ 2((Ĵ1 − J∗)2 + (Ĵ2 − J∗)2)

= 2‖1θ∗‖2. (21)

Then we have:

L(θ̂ )− L(θ∗) ≤
∂2L(θ∗)

∂J∗2
‖1θ∗‖2 + O(‖θ∗‖3). (22)

Remark 1: From Eq. (14), it is obvious that L(θ ) ≥ 0.
Given that the points in the overlap singularity are all
local minima [29], [31], then for an arbitrary point near
the overlap singularity, we can obtain L(θ̂ ) > L(θ∗), i.e.
L(θ̂ )− L(θ∗) > 0.

By taking some calculations, we can obtain the following
results:
Theorem 1: The difference of the generalization error

between the point θ̂ around the overlap singularity and the
overlap singularity θ∗ satisfies the following in-equation:

L(θ̂ )− L(θ∗) <
2.31
π

(|v1| + |v2|)2‖1θ∗‖2 + O(‖θ∗‖3).

(23)

Proof: The calculation process is shown in Appendix. �
From Theorem 1, we can see that the generalization

error near the overlap singularity changes by the order of
O(‖1θ∗‖2) where the coefficient is small than 2.31

π
(|v1| +

|v2|)2. The nearer the student parameters to the overlap sin-
gularities, the smaller the distance between the two hidden
units. Especially when ‖1θ∗‖2 < 1, the difference between
L(θ̂ ) and L(θ∗) is much less than the distance between

θ̂ and θ∗, which implies that the generalization error near the
overlap singularity is much flatter. Thus, when the student
parameters arrive in the space near the overlap singularity,
the variation of the generalization error is much less which
leads to the parameters change slightly. Even though the two
hidden units are not precisely equal to each other, the learn-
ing process is still affected by the overlap singularity. Thus
the influence area of the overlap singularity in MLPs is
larger than the theoretical results which is only the subspace
R∗ = {θ∗|J1 = J2}.
To verify the above analysis, we carry out two experiments

involving different cases in the simulation part.

IV. SIMULATION PART
In this section, we take three experiments to verify the above
analytical results. In Experiment 1, we focus on the artificial
case that the teacher model is described by MLPs. Then in
Experiments 2 and 3, we consider the factual case that two
real datasets is approximated by the MLPs. The simulation
results can illustrate the correctness of Theorem 1.

A. GENERALIZATION ERROR SURFACE OF THE MLPs
In this experiment, we consider the case that the teacher
model and student model are of the forms in Eq. (16) and
Eq. (17), respectively. Since only J1 and J2 are the variable
parameters, the generalization error surface can be shown
visually after the corresponding generalization errors are
obtained. In the generalization error surface, the influence of
the overlap singularity can be observed directly and clearly.

In order to obtain the generalization error surface,
we should get the analytical form of generalization error at
first. However, it is hard to deal with this problem because
of the non-integrability of the traditional log-sigmoid func-

tion f (x) =
1

1+ e−λx
. In order to overcome this problem,

we adopt the error funcion f (x) =
1
√
2π

∫ x

−∞

exp(−
t2

2
)dt

as the activation function and use the following averaged
learning equation to investigate the learning dynamics of
MLPs [31], [32]:

J̇i = −η
∂L(θ )
∂Ji

, (24)

where i = 1, 2, and η denotes the learning rate.
By using the obtained results in Eq. (18)-(21) and

Eq. (24) [15], we have:

J̇i = ηvi(
2∑
j=1

vjP2(tj, Ji)−
2∑
j=1

vjP2(Jj, Ji)), for i = 1, 2

(25)

and the analytical form of generalization error

L(θ ) =
1
2

2∑
i=1

2∑
j=1

vivjP1(ti, tj)−
2∑
i=1

2∑
j=1

vivjP1(ti, Jj)

+
1
2

2∑
i=1

2∑
j=1

vivjP1(Ji, Jj), (26)
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where:

P1(t, J ) =
1
2π

arcsin
Jt

√
1+ J2

√
1+ t2

+
1
4
, (27)

and

P2(t, J ) =
1
2π

1
√
1+ J2 + t2

t
√
1+ J2

. (28)

Then for given teacher parameters and initial values of student
parameters, the learning process of the student parameters can
be obtained by solving Eq. (25).

In this experiment, we choose the teacher parameters t1 =
0.48, t2 = −0.85, v1 = 0.60 and v2 = 0.20. By letting
the initial states of the two student parameters be identical,
we can obtain the best approximation J∗ = 0.1647. Then
we choose the initial student parameters as J (0)1 = −0.90
and J (0)2 = 0.65, the final states are J1 = 0.1314 and
J2 = 0.2684. The experiment results are shown in Fig. 3,
where Fig. 3(a)-(d) represent the surface of L(θ̂ ) − L(θ∗)
near the overlap singularity, the trajectory of generalization
error, the trajectory of J1 and J2, and the generalization error
surface near the overlap singularity, respectively. ’◦’ and ’×’
represent the initial state and final state, respectively.

As shown in Fig. 3(a), L(θ̂ ) − L(θ∗) is much smaller than
2.31
π

(|v1| + |v2|)2‖1θ∗‖2, which verifies the correctness of
Theorem 1. From Fig. 3(b), it can be seen that the general-
ization error decreases fast at the early stage of the learning
process, then almost remains unchanged till the end of the
training. Meanwhile, J1 and J2 become close to each other
(shown in Fig. 3(c)). It is clear in Fig. 3(d) that the learning
trajectory tends to the overlap singularity. Although the two
hidden units do not overlap exactly, the learning dynamics are
still influenced by the overlap singularity. After the training

process,
∂L(θ )
∂θ

= 1.0e − 05 × [0.2317,−0.7515]T , i.e.
the gradient becomes very small and the generalization error
surface is very flat, thus the student parameters remain slight
change even the training process becomes longer, i.e. the
influence area of the overlap singularity is much larger.

B. CUFF-LESS BLOOD PRESSURE ESTIMATION
After having taken an artificial experiment to verify the
obtained results, next we do two real experiments to ver-
ify the validity of the theoretical analysis. In experiment 2,
the MLPs are used to approximate the blood pressure estima-
tion database [33]. In this online waveform database, after
collecting the photoplethysmograph (PPG) and electrocar-
diogram (ECG) signal, the arterial blood pressure (ABP)
signal can be estimated by using approximation algorithms.
Then in this experiment, the input is x̂ = [x1, x2]T and the
output is y for MLPs, where x1 is PPG, x2 is ECG and y is
ABP. For machine learning, preprocessing is usually required
for obtaining the better performance and we choose the Gaus-
sian normalization in this paper [34]. x̂(k) is normalized as:

x(k) =
x̂(k)− µ

δ
, for k = 1, 2, · · · ,M (29)

FIGURE 3. Learning trajectories in Experiment 1. (a) The trajectory of J .
(b) The generalization error surface. (c) The trajectory of J . (d) The
generalization error surface.

where µ is the sample mean value of the x:

µ =
1
M

M∑
i=1

x̂(i), (30)
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δ is the sample standard deviation:

δ =

√√√√ 1
M

M∑
i=1

(x̂(i)− µ)2, (31)

and M is the number of sample in the data set.
Different from Experiment 1, as the input distribution is

unknown, the ALE is inapplicable. Instead, we use the batch
mode learning in the training process. Given that the dimen-
sion of input is not 1, in order to directly show how close
between two units i and j is, in Experiments 2 and 3 we
adopt the squared Euclidean distance h(i, j) which is defined
in Eq. (9). The closer the two hidden units are to each other,
the closer the squared Euclidean distance between them is
to 0. The hidden unit number of the student model is chosen
as k = 8, namely the student MLP is given by:

f (x, θ ) =
8∑
i=1

wiφ(x, J i). (32)

We use N = 200 samples to train the MLPs, and use the
sum squared training error to replace the generalization error.
Then the model is trained for 10000 times with the learning
rate η = 0.03, and the initial and final states of the student
parameters are as follows:

J (0) =
[
J (0)1 , J

(0)
2 , J

(0)
3 , · · · , J

(0)
8

]
=

[
0.7369 −0.0981 −0.0031 −0.9533
0.8760 −0.9857 0.9645 0.2263

0.6443 −0.1546 −0.9210 0.9314
−0.1941 0.2266 −0.6531 −0.9248

]
, (33)

w(0)
=

[
w(0)
1 , w

(0)
2 , w

(0)
3 , · · · ,w

(0)
8

]
= [0.3828 0.9461, − 0.6826, 0.2903

− 0.7796, 0.2582, 0.7194, − 0.3073], (34)

J = [J1, J2, J3, · · · , J8]

=

[
1.2186 1.3180 −1.2851 −1.1058
0.9104 −0.4648 0.4644 0.3508

0.4478 −0.3738 −2.0233 2.8486
−0.7589 0.0577 −1.5594 −0.8602

]
, (35)

w = [w1, w2, w3, · · · ,w8]

= [0.7465, 1.5188, − 0.8877, − 0.1907

− 0.5114, 0.5144, 0.9126, − 1.8684]. (36)

The simulation results are shown in Fig. 4, where Fig. 4(a)-
(c) represent the trajectories of training error, h(3, 4) and
wi, i = 1, · · · , 8, respectively. ’◦’ and ’×’ represent the
initial state and final state, respectively. h(3, 4) is the squared
Euclidean distance between hidden nodes 3 and 4, i.e.

h(3, 4) =
1
2
(J3 − J4)T (J3 − J4).

From Fig. 4, we can see that the learning dynamics are
similar to the results in Experiment 1. At the early stage
of the training process, the training error reduces fast and
remains almost unchanged till the end (see Fig. 4(a)). Cor-
responding to this, h(3, 4) tends to zero rapidly (see Fig. 4)

FIGURE 4. Learning trajectories in Experiment 2. (a) The trajectory of
training error. (b) The trajectory of h(3,4). (c) The trajectory of w .

and finally retains a small value (0.0225). From Eq. (35),
after training the units J3 = [−1.2851, 0.4644]T and
J4 = [−1.1058, 0.3508]T , J3 and J4 have some difference,
however the learning process is still affected by the overlap
singularity. This is in accordance to the obtained results that
the overlap singularity has larger influence area.

C. COMBINED CYCLE POWER PLANT (CCPP) DATASET
Combined Cycle Power Plant (CCPP) dataset is also
a regression benchmark from the UCI Machine Learning
Repository [35]–[37]. Hourly average ambient variables
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FIGURE 5. Learning trajectories in Experiment 3. (a) The trajectory of
training error. (b) The trajectory of h(1,3). (c) The trajectory of w .

Temperature (T), Ambient Pressure (AP), Relative Humidity
(RH) and Exhaust Vacuum (V) are used to predict the net
hourly electrical energy output (EP) of the plant. Thus for the
MLPs, the input is x = [x1, x2, x3, x4]T , where x1 is T, x2 is
AP, x3 is RH and x4 is V, the output is EP. The preprocessing
is also done as the Experiment 2.

The hidden unit number of the student model is chosen as
k = 10, namely the student MLP is given by:

f (x, θ ) =
10∑
i=1

wiφ(x, J i). (37)

Batch mode learning is used to accomplish the training
process and we use N = 200 samples to train the MLPs.
Then the model is trained for 15000 times with the learning
rate η = 0.001.
Fig. 5 presents the simulation results, where Fig. 5(a)-(c)

represent the trajectories of training error, h(1, 3) and wi,
i = 1, · · · , 10, respectively. ’◦’ and ’×’ represent the ini-
tial state and final state, respectively. h(1, 3) is the squared
Euclidean distance between hidden nodes 1 and 2, i.e.

h(1, 3) =
1
2
(J1 − J3)T (J1 − J3).

The initial state and final state of hidden unit 1 and 3 are
shown as follows:

[J (0)1 , J
(0)
3 ] =


1.2442 0.7505
−0.7139 0.1948
1.9443 1.0089
−0.1407 0.2051

 , (38)

[w(0)
1 , w

(0)
3 ] = [−1.2276, 1.7313], (39)

and

[J1, J3] =


0.5509 0.4581
−0.2229 0.0554
0.9107 0.9899
0.3372 0.2898

 , (40)

[w1, w3] = [−1.5202, 0.6636], (41)

respectively.
As shown in Fig. 5, the experiment results are similar

to those previously obtained in Experiment 2. From the
initial values and final values of J1 and J3 (shown in
Eq. (38) and Eq. (40)) and the trajectory of h(1, 3) (shown
in Fig. 5(b)), although there is some difference between
J1 and J3, the learning process is also affected by the overlap
singularity.

From the results in Experiments 1 - 3, the correct-
ness of Theorem 1 has been verified. Thus the overlap
singularity indeed has much larger influence for MLPs.
Researchers should pay more attention to investigate the way
to avoid or reduce the influence of the overlap singularity.

V. CONCLUSION
For the widely-usedMLPs, there exist overlap singularities in
the parameter space, and the overlap singularities seriously
affected the learning dynamics of MLPs. In the previous
theoretical analysis, under the batchmode learning, themodel
parameters always arrive and trap in the overlap singularity
when affected by such singularity. However, by analyzing the
generalization error surface near the overlap singularity, for
an arbitrary point θ̂ which is near the overlap singularity and
the point θ∗ which is on the overlap singularity, we prove
that the difference of generalization error between θ̂ and θ∗ is
attenuated by second-order of ‖θ̂ − θ∗‖. Thus the generaliza-
tion error surface is much flatter near the overlap singularity,
which leads to that, when the learning process is near the
overlap singularity, even though the two hidden units have
some difference between each other, the learning dynamics
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are still affected by the overlap singularity. Because of the
flatness of the generalization error surface near the overlap
singularity, the model parameters change slightly even after
much longer training. By taking an artificial experiment and
two real dataset experiments, the obtained results are verify
the validity in the simulation part. Due to its much larger
influence, the overlap singularity should be paid more atten-
tion to investigate how to avoid or reduce its serious influence
in the future.

APPENDIX
PROOF OF THEOREM 1
For simplicity, we introduce the following notations:

P3(t, J ) =
〈
φ(x, t)

∂2φ(x, J )
∂J2

〉
, (A-1)

P4(t, J ) =
〈
∂φ(x, t)
∂t

∂φ(x, J )
∂J

〉
. (A-2)

From Eq. (14), we can obtain:

∂2L(θ∗)

∂θ∗
2

= (v1 + v2)2
〈
∂φ(x, J∗)
∂J∗

∂φ(x, J∗)
∂J∗

〉
+ (v1 + v2)2

〈
φ(x, J∗)

∂2φ(x, J∗)

∂J∗2

〉
− (v1 + v2)

〈
(v1φ(x, t1)+ v2φ(x, t2))

∂2φ(x, J∗)

∂J∗2

〉
= (v1 + v2)2P4(J∗, J∗)+ (v1 + v2)2P3(J∗, J∗)

− (v1 + v2)
(
v1P3(t1, J∗)+ v2P3(t2, J∗)

)
≤ (v1 + v2)2|P4(J∗, J∗)+ P3(J∗, J∗)|

+ |v1 + v2|
∣∣v1P3(t1, J∗)+ v2P3(t2, J∗)∣∣ . (A-3)

By using the results of Eq. (60)-(62) in [31], the explicit
expressions of P3(t, J ) and P4(t, J ) are given as
follows:

For t 6= J ,

P3(t, J ) = −
1
2π

Jt
1+ J2

1
√
1+ J2 + t2

×
2(1+ J2 + t2)+ 1+ J2

(1+ J2)(1+ J2 + t2)

= −
Jt
2π

3(1+ J2)+ 2t2

(1+ J2)2(1+ J2 + t2)
3
2

, (A-4)

P3(J , J ) = −
1
2π

1
1+ J2

1
√
1+ 2J2

×

(
1−

2(2+ 3J2)J2

(1+ J2)(1+ 2J2)
−

1+ J2

1+ 2J2

)
= −

J2

2π
3+ 5J2

(1+ J2)2(1+ 2J2)
3
2

, (A-5)

P4(J , J ) =
1
2π

1

(1+ 2J2)
3
2

. (A-6)

Then, we have:

P4(J∗, J∗)+ P3(J∗, J∗)

=
1
2π

(
1

(1+ 2J∗2)
3
2

−
J∗2(3+ 5J∗2)

(1+ J∗2)2(1+ 2J∗2)
3
2

)

=
1
2π

(1+ J∗2)2 − J∗2(3+ 5J∗2)

(1+ J∗2)2(1+ 2J∗2)
3
2

=
1
2π

17
16 − (2J∗2 + 1

4 )
2

(1+ J∗2)2(1+ 2J∗2)
3
2

. (A-7)

For 0 ≤ J∗2 <
√
17−1
8 , we have P4(J∗, J∗)+P3(J∗, J∗) >

0. As P4(J∗, J∗) > 0, and P3(J∗, J∗) < 0, then we can
obtain:

|P4(J∗, J∗)+ P3(J∗, J∗)| < P4(J∗, J∗)

=
1
2π

1

(1+ 2J∗2)
3
2

<
1
2π
. (A-8)

For J∗2 ≥

√
17− 1
8

, we haveP4(J∗, J∗)+P3(J∗, J∗) ≤ 0.
As P4(J∗, J∗) > 0, and P3(J∗, J∗) < 0, then we can obtain:

|P4(J∗, J∗)+ P3(J∗, J∗)| < |P3(J∗, J∗)|

=
1
2π

J∗2(3+5J∗2)

(1+J∗2)2(1+2J∗2)
3
2

<
1
2π

(1+J∗2) · 3(1+2J∗2)

(1+ J∗2)2(1+ 2J∗2)
3
2

=
1
2π

3

(1+ J∗2)(1+ 2J∗2)
1
2

<
1.62
2π

. (A-9)

Next we focus on P3(ti, J∗), we have:

|P3(ti, J∗)| =
1
2π
|J∗| · |ti| · 3(1+ J2)+ 2t2

(1+ J2)2(1+ J2 + t2)
3
2

≤
1
2π
|J∗| · |ti| · 3(1+ J2 + t2)

(1+ J2)2(1+ J2 + t2)
3
2

=
3
2π

|J∗||ti|

(1+ J2)2(1+ J2 + t2)
1
2

<
3
2π
. (A-10)

Then we can get:

|v1P3(t1, J∗)+ v2P3(t2, J∗)|

≤ |v1||P3(t1, J∗)| + |v2||P3(t2, J∗)|

<
3
2π

(|v1| + |v2|). (A-11)

Overall, we have:

For 0 ≤ J∗2 <

√
17− 1
8

,

∂2L(θ∗)

∂J∗2
<

(v1 + v2)2

2π
+

3
2π
|v1 + v2|(|v1| + |v2|)

<
|v1| + |v2|

2π
(|v1| + |v2| + 3(|v1| + |v2|))

=
2
π
(|v1| + |v2|)2. (A-12)
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For J∗2 ≥

√
17− 1
8

,

∂2L(θ∗)

∂J∗2
<

1.62
2π

(v1 + v2)2 +
3
2π

(|v1 + v2|(|v1| + |v2|)

<
4.62
2π

(|v1| + |v2|)2

=
2.31
π

(|v1| + |v2|)2. (A-13)

Thus from Eq. (A-12) and Eq. (A-13),
∂2 L(θ∗)

∂J∗2
<

2.31
π

(|v1| + |v2|)2. This proves Theorem 1. �
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