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ABSTRACT One-dimensional (1-D) chaotic maps have been considered as prominent pseudo-random
source for the design of different cryptographic primitives. They have the advantages of simplicity, easy
to implement, and low computation. This paper proposes a new 1-D discrete-chaotic map which holds better
dynamical behavior, lyapunov exponent, bifurcation, and larger chaotic range compared with the chaotic
logistic map. We propose a method to construct cryptographically efficient substitution-boxes (S-boxes)
using an improved chaotic map and β-hill climbing search technique. S-boxes are used in block ciphers
as nonlinear components to bring strong confusion and security. Constructing optimal S-boxes has been a
prominent topic of interest for security experts. To begin, the anticipatedmethod generates initial S-box using
the improved chaotic map. Then, β-hill climbing search is applied to obtain notable configuration of S-box
that optimally satisfies the fitness function. The simulation results are compared with some recent S-boxes
approaches to demonstrate that the proposed approach is more proficient in generating strong nonlinear
component of block encryption systems.

INDEX TERMS β-hill climbing, block ciphers, improved chaotic map, substitution-box.

I. INTRODUCTION
The field of Information Technology has undergone rapid
advancement over the years and has found itself incorporated
into various fields that include trade and commerce, defense,
education, broadcasting, healthcare and medicine, etc.
Information is stored on a digital device and sharing of
information is achieved by transmission over a communi-
cation network. The issue of realizing secure exchange of
information creates proliferating demand for more proficient
cryptographic algorithms to forestall illegal interception,
manipulation and unauthorized usage of secret information.
To tackle the eminent security demands, the modern block
ciphers have been playing crucial role for past many years [1].
It is imperative for any cipher to have impregnable resistance
against cryptographic attacks. In 1949, Claude E. Shannon,
in his masterpiece work ‘‘Communication theory of secrecy
systems’’, suggested two deciding properties for ciphers to
impede cryptanalysis- confusion and diffusion [2]. Diffusion
hides the relationship between the cipher and plaintext. The
structure of the plaintext is distributed in the ciphertext such
that it cannot be discerned from the ciphertext. Confusion
complicates the relationship between the ciphertext and the

key [3]. These properties have become the cornerstone of
design of modern block ciphers. In modern block ciphers,
either based on Substitution-Permutation network or Feistel
network, the component responsible for confusion is the
substitution-box (S-box) [1]. The security of block ciphers
heavily depends on the cryptographic strengths of S-boxes
employed. S-boxes are prime components for these networks
at substitution layers and meant to carry out nonlinear trans-
formation which in turn brings confusion. A weak S-box in
ciphers such as DES makes it breakable under differential
and linear cryptanalysis [4], [5], where as a cryptographically
better S-box offers immunity to mitigate these attacks [6].
Therefore, the crucial nature of S-boxes in the security
of modern block cryptosystems has effectuated substantial
research in the design of cryptographically stronger S-boxes.
A good S-box should optimally satisfy pertinent perfor-
mance criterias such as nonlinearity, strict avalanche, bits
independence, differential uniformity, linear approximation
probability, etc [7].

Mathematically, any m× n substitution-box acts as a non-
linear mapping S: {0, 1}m → {0, 1}n and generated an n-bit
output string to an input string of size m-bit. An S-box S is a

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

55405

https://orcid.org/0000-0002-4915-9325


A. A. Alzaidi et al.: New 1-D Chaotic Map and β-Hill Climbing for Generating S-Boxes

multi-output Boolean function which consists of n Boolean
functions each in m-variable as S: fn(x)fn−1(x). . . . . . f1(x),
where each fi(x)(1 ≤ i ≤ n) is function from {0, 1}m to
{0, 1} [8], [9].

Chaos is aperiodic long-termed behavior found in some
nonlinear dynamical systems that exhibits sensitive depen-
dence on initial conditions. Chaos theory has diverse appli-
cations in fields of engineering, mathematics, cryptology,
physics, biology, chemistry, etc [10]. A chaotic system hav-
ing well dynamical behaviour possess deterministic and
noise-like nature, extreme sensitiveness to initial conditions,
long periodicity, and ergodicity. These features of chaos
have close analogy with properties of cryptography [11].
Therefore, the chaotic maps have been considerably investi-
gated and explored to develop security methods for image,
audio, video encryptions, information hiding, authentica-
tion, hash functions, S-boxes, pseudo-random sequences,
etc, [12]. Compared to high-dimensional chaotic systems
which are complex in nature, multi-parameters, difficult in
hardware/software realization, the 1D chaotic maps have
merits of simplicity, easy to implement in both hardware and
software, processing speed [13]. But, they suffer with limited
chaotic range and behaviour, non-uniform distribution of its
trajectory in phase space, low lyapunov exponent [14]. This
motivates the designers to model one-dimensional chaotic
maps which have better dynamical features and behaviour for
better security performance in the area chaos-based cryptog-
raphy [13]–[16].

In literature, a substantial number of proposals have
been investigated based on chaotic systems and evolution-
ary techniques using chaos with sole aim of generating
strong S-boxes. Guo Chen employed the idea of chaotic
multi-swapping and simulated annealing optimization to
search cryptographically strong 8× 8 S-boxes which satisfy
the major performance criterias in [17], where 2D chaotic
baker map is used to explore the search space of possible
S-boxes and chaotic Chebyshev map is utilized to generate
initial S-box for optimization through simulated annealing.
Thereafter, Wang et al. [18], Wang and Peng [19], and
Guesmi et al. [20] used genetic algorithm for optimization
of initial S-box. Yong and Peng [19] used chaotic logistic
map and chaotic tent map to generate initial populations
and control parameters of genetic algorithm, the adjust-
ment phase of same approach is updated to synthesis better
S-boxes. Where as, Guesmi et al. adopted logistic map
for initial S-box generation and 3D chaotic Lorenz system
for crossover and mutation points during genetic algorithm
operation. In [21], Ahmad et al. applied ant colony opti-
mization to yield optimized configuration of an 8× 8 S-box.
Amodulated chaotic tent map through logistic map is iterated
to generate initial S-box which is transformed to a traveling
salesman problem through edge matrix. Their optimized
S-box claimed to possess good cryptographic features
and resistant to attacks as compared to some S-boxes.
Tian and Lu [22] explored artificial bee colony optimization
algorithm and 6D hyper-chaotic map to construct strong

8×8 S-box, wherein hyperchaotic mapwasmeant to generate
initial population of S-boxes needed during optimization
phase. Tian and Lu [23] followed bacteria foraging optimiza-
tion algorithm but with intertwining logistic map with similar
methodology for S-box optimization. In both of Tian et al.
S-box studies, the nonlinearity and differential uniformity
was collectively taken as fitness function. In [24], the trav-
eling salesman problem is explored to obtain a good config-
uration of S-box, where the weights of edges, of sub-graphs
extracted from initial S-box, are assigned by chaotic skew
tent map. Farah et al. [25] suggested a new method involving
chaos and teaching-learning based optimization for S-box
design. Through TLBO, the authors obtained optimized keys
that resulted into optimized S-boxwith excellent performance
particularly the linear approximation probability. In [26],
Ahmed et al. applied the firefly algorithm for optimizing
an initial S-box generated from a discrete-space chaotic
map. Recently, Zhang et al. [27] employed I-Ching operators
(ICOs) innovatively that were evolved from Chinese I-Ching
philosophy for constructing optimized S-boxes.

Referring to some recent S-box proposals based on only
chaos, Liu et al. [28] constructed an S-box using method
based on the 3D four-wing autonomous chaotic system and
the recommended S-box has good performance. Khan and
Asghar came up with a unique method of designing S-boxes
by using S8 symmetry group and Gingerbreadman chaotic
map. The S8 permutations and chaotic map combinations
proved to be useful for encryption of images [29]. A new
S-box design was proposed in [30] which is honourable
as their design method is aided with rich dynamic features
of scaled Zhongtang chaotic system. Lambic suggested an
efficient approach by applying composition operations on
some existing standard S-boxes to construct a strong S-box
in [31]. The investigation showed that the generated S-box
has good cryptographic properties. Another method for bijec-
tive 8 × 8 S-box design using discrete chaotic map was
investigated by Lambić [32]. Attaullah et al. investigated the
improved chaotic system and linear fractional transformation
in [33] and group actions of projective general linear group
on units of finite local ring in [34] for designing some strong
S-boxes. Özkaynak [35] did some analysis with two types of
chaotic systems namely discrete chaotic system and contin-
uous chaotic system to yield corresponding S-boxes which
were found to possess good performance. Recently, Tian and
Zhimao developed an O-shaped path scrambling algorithm
to yield strong S-box in [36], where the preliminary S-box
is constructed through a six-dimensional fractional Lorenz-
Duffing chaotic system.

Motivated to explore concepts for further performance
improvisation, we proposed an improved 1D chaotic map that
has excellent dynamical behaviour as compared to logistic
map in terms of lyapunov exponent, uniform distribution,
bifurcation, entropy and chaotic range. The same chaotic map
is then utilized to facilitate the β-hill climbing technique
to generate notable configuration of an 8 × 8 S-box that
optimizes the given fitness function. The proposed S-box
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generationmethod is found competent to yield strong S-boxes
as it possesses excellent cryptographic strength when com-
pared with recent proposals of chaos-based S-boxes and
optimization-based S-boxes.

Rest of the paper is prepared as follows: The model
and analysis of proposed 1D chaotic map is presented in
Section II. A brief discussion of recent β-hill climbing tech-
nique is given in Section III. The proposed method for gen-
erating optimized S-box using improved chaotic map and
β-hill climbing is provided in Section IV. The results of
proposed S-box method and performance assessment is done
in Section V, a comparative study with recent S-box methods
is also exercised in the same section. Lastly, the conclusions
of work are made in Section VI.

II. IMPROVED 1D CHAOTIC MAP AND ITS
DYNAMICAL BEHAVIOUR
Logistic map is one of the widely used and famous one-
dimensional discrete-chaotic maps given byMay [37], whose
state evolves according to the equation (1).

xn+1 = µxn (1− xn) (1)

Where, 0 < µ ≤ 4 is control parameter and xn is the
state variable of logistic map whose trajectory is decided
by the initial condition x0. The chaotic outputs xn of map
(1) are bounded within [0, 1] for all n ≥ 0. To illustrate
the dynamical behaviour, the lyapunov exponent diagram
and bifurcation diagram are shown in Fig. 1(a) and 1(b).
It is evident from the diagrams that the logistic map shows
chaotic phenomenon when µ lies to the interval of [3.57, 4].
It shows no chaotic performance when µ < 3.57 as its
lyapunov exponent is zero. The phase diagram of logistic map
is provided in Fig. 1(c) to show that its attractor has parabola-
like shape and don’t spread over entire range. Despite of its
wide usage, the logistic map has certain limitations such as:
• It has limited chaotic range as seen in Fig. 1(a) and 1(b).
• It has low largest lyapunov exponent as 0.693495 only.
• It has non-uniform distribution in interval [0, 1] as seen
in Fig. 1(b).

• It has some non-chaotic windows for 3.83 < µ < 3.86
i.e. even when µ lies in [3.57, 4].

• Chaotic attractor in phase space follows a parabola-like
trajectory.

In order to overcome the above limitations of logistic map,
a new 1D discrete-chaotic map is proposed which is defined
by the equation (2).

F(xn, a, b) = axn(1− xn)+ b(1+ xn) tan(xn)
xn+1=F(xn, a, b)× alpha− floor (F(xn, a, b)×alpha)

}
(2)

Where, a and b are its control parameter, xn is state variable
which is bounded in [0, 1]. In fact, the control parameters
don’t have any limited range. Here, alpha is constant which
is incorporated to augment the chaotic phenomenon of the
map in (2), it can be any non-negative integer greater than 1.
Incorporation of one more control parameter is desirable for
cryptographic applications as it extends the key space.

For simulation analysis of dynamical behaviour of pro-
posed chaotic map, the values are initialed without loss
of generality as x0 = 0.123456789, a ∈ (0, 10],
b ∈ (0, 10], alpha = 12345.

In literature, a simple 1D discrete-chaotic known as Renyi
map is available which has excellent dynamical behaviors and
whose states evolve according to equation (3) [38].

xn+1 = (cxn) mod (1) (3)

Where, c is its control parameter and xn is state vari-
able which is bounded in [0, 1]. The Renyi map exhibits
chaotic phenomenon when c > 1. Its lyapunov exponent is
log(c) which shows that the chaotic phenomenon gets more
upright as control parameter c increases. The lyapunov expo-
nent spectrum, bifurcation and phase diagrams for c = 10
are depicted in Fig. 2. We can see that the Renyi map in
(3) has excellent dynamics. The largest lyapunov exponent is
2.3026 for c ∈ (0, 10] in Fig. 2, it bifurcates indiscriminately
over whole region for c > 1, and its corresponding attractor
is uniformly distributed over [0, 1]. Unlike Logistic map,
the Renyi map found to have uniform probability distribu-
tion [38]. The 1D chaotic Renyi map is presented here to

FIGURE 1. Dynamical behaviour of chaotic Logistic map (a) lyapunov exponent, (b) bifurcation plot, and (c) phase diagram representing its attractor.
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FIGURE 2. Dynamical behaviour of chaotic Renyi map (a) lyapunov exponent, (b) bifurcation plot, and (c) phase diagram.

FIGURE 3. Lyapunov exponent diagram of improved chaotic map versus parameter (a) a, (b) b, and (c) alpha.

make comparative analysis of dynamics of chaotic map in (2)
so as to justify the performance of our map.

A. LYAPUNOV EXPONENT
Lyapunov exponent is statistical measure to characterize the
chaotic performance of a dynamic behaviour. A 1D dynami-
cal map is said to have high sensitivity to initial conditions
and parameters provided that it has presence of positive
lyapunov exponent. Lyapunov exponent (LE) of dynamical
map refers to pace of separation of infinitesimal close tra-
jectories. Presence of positive exponent indicates the exis-
tence of chaotic behaviour in the map. Larger the value of
LE, the better chaotic performance of map is [39] and [40].
We calculated the lyapunov exponent for different parameters
of proposed map (2). Interestingly, it has been shown that for
a, b ∈ [1, 10], and alpha ∈ (0, 12345], the new map shows
positive exponents for wider range of all three parameters.
Keeping b = 10 and alpha = 12345, the lyapunov diagram
for different values of a is shown in Fig. 3(a).When a = 4 and
alpha = 12345, the diagram of lyapunov exponents verses
b ∈ (0, 10] is shown in Fig. 3(b). It is noted that the parameter
b ≥ 1 is recommended to ensure chaotic behaviour by
map (2). The lyapunov exponents verses alpha∈ (0, 12345] is
shown in Fig. 3(c) for a = 4 and b = 10. The three lyapunov
diagrams show excellent chaotic phenomenon exhibited by

proposed map. The LE diagrams affirm that proposed map
has chaotic phenomenon for wider range of parameters. The
respective largest LEs are 5.8399, 5.5133 and 5.5286 in
Fig. 3, which are considerably higher than maximum LE
of 0.6931495 of logistic map for µ ∈ (0, 4] and 2.3026 of
Renyi map for c ∈ (0, 10]. Moreover, it is also found
that the LE becomes more and more larger with increase in
parameter b like Renyi map. When a = 4, alpha = 12345
and b = 108, the largest LE obtained is 42.0616. This is
considerably higher than largest LE of 26.5754 of Renyi map
for c = 108.

B. BIFURCATION
Bifurcation plot represents the manner in which output val-
ues are approached asymptotically, whether they are fixed
points, periodic orbits, or chaotic attractors, of a dynamical
system when bifurcation control parameter is changed [41].
The bifurcation behaviour of new chaotic map is obtained
for different parameters conditions and shown in Fig. 4.
In comparison to chaotic Logistic map, the output values xn of
proposed chaotic map are not limited to any specific region,
rather they aremore uniformly distributed over entire range of
[0, 1] and for wider values of all three control parameters. The
proposed chaotic map has excellent bifurcation behaviour
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FIGURE 4. Bifurcation plot of improved chaotic map versus parameter (a) a, (b) b, and (c) alpha.

and ergodicity for all three control parameters similar to
Renyi map.

C. PHASE DIAGRAM
The phase diagram of proposed chaotic map is shown
in Fig. 5. It can be seen that its attractor randomly covers the
entire range like a fractal and doesn’t has a specific shape.
This indicates that the phase space of proposed chaotic map
is more complex and random unlike original logistic map’s
phase space in Fig. 1(c) and similar to the attractor of Renyi
map shown in Fig. 3(c).

FIGURE 5. Phase diagram representing attractor of improved chaotic map.

D. APPROXIMATION ENTROPY
Approximation entropy (ApEn) is one of the most famous
entropy statistics to determine the system complexity which
was suggested by Steve Pincus [42], [43]. ApEn is a complex-
ity measure to quantify the amount of irregularity and unpre-
dictability within a given time-series. The approximation
entropy for sequence of floating-point values from chaotic
logistic map (for µ = 4), chaotic Renyi map (for c = 10)
and proposed chaotic map (for a = 4, b = 10, alpha =
12345) for different lengths of sequences are shown in Fig. 6.
It is clear from Fig. 6 that the ApEn of sequences from

FIGURE 6. Approximation entropy (ApEn) for three discrete-chaotic maps.

proposed chaotic map (average is 1.328179) is considerably
higher than entropy of sequences from logistic map (average
is 0.606598), and slightly better than the value for chaotic
Renyi map. It shows that proposed chaotic map has better
complexity and unpredictability than chaotic logistic map and
it is similar to Renyi map.

E. HISTOGRAM
The distribution of trajectory points of proposed chaotic
map (2) is analyzed and compared with that of Renyi map (3)
in this subsection. The complete range [0, 1] of chaotic
variable is divided into equal-sized 10000 bins. The map is
iterated to collect N number of trajectory points starting from
initial condition x0 and keeping other parameters fixed as
a = 4, b = 10, c = 10, alpha = 12345. The normalized
histogram of sampled trajectory points for proposed map are
plotted and shown in Fig. 7(a), the same plot is also obtained
for Renyi map and shown in Fig. 7(b). We can see that the
two histograms are quite similar, flat and uniform. It has been
also observed that same shaped histograms are obtained for
both maps when tested for different initial conditions i.e. the
histograms are invariant of starting point of trajectory x0.
Moreover, the probability of each 10000 bin is also computed
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FIGURE 7. Trajectory points distribution as: (a)-(b) normalized histograms, and (c)-(d) probability distributions for chaotic
Renyi and proposed map.

and shown in Fig. 7(c) and 7(d) for two maps, respectively.
We can see from probability plots in Fig. 7(c) and 7(d) that
most of trajectory points have probability equal to 0.0001.
Hence, it is clear that the proposed chaotic map has invariance
property and almost uniform-probability distribution similar
to chaotic Renyi map.

F. RANDOMNESS
In chaos-based cryptographic applications, it is somewhat
significant to assess the quality of randomness of chaotic
map in generating the random numbers. The standard NIST
SP800-22 test suite consisting of 15 statistical tests is per-
formed. Each individual test inNIST suite computes a p-value
which is compared with chosen significance level α = 0.01.
A test which has a p-value > α indicates that the sequence
under specified test is random with a confidence of 99%,
otherwise it is non-random [44]. If all p-values of NIST
randomness suite are found greater than α, then sequence is
said to possess satisfactory randomness. Three sequences are
generated using proposed chaotic map which are converted
to three binary sequences, each of size 1000000. The NIST
randomness results of three sequences are evaluated and
minimum of p-values for three sequences corresponding to

15 different test indicators are provided in Table 1 [45].
According to p-values in Table 1, we can infer that the
sequence has passed all tests of NIST suite as each p-value
is fairly higher than 0.01, which confirms the satisfaction
of NIST SP800-22 randomness requirement from proposed
chaotic map. Hence, the proposed chaotic map exhibits
adequate randomness and suitable for use in cryptographic
applications.

G. β-HILL CLIMBING SEARCH
Recently, a new local-search based meta-heuristic technique
termed as β-hill climbing is proposed for global optimization
by Al-Betar in [46]. It is an extension of hill climbing local
search, which has the feature of exploration as well with
exploitation of conventional hill climbing to overcome its
problem of getting stuck in local optima [47]. The explo-
ration in search methods is recommended to explore the
regions that are not yet examined, if needed. The β-hill
climbing incorporates stochastic operators to improve the
overall efficiency over the base version and other variants
as demonstrated in [46] and [48]. The new search technique
begins with generation of initial random solution X ∈ [LBi,
UBi] (where LBi and UBi denote the lower and upper bounds
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TABLE 1. Nist SP800-22 randomness results for proposed chaotic map.

for the decision variable X (i)) which is evaluated using com-
putation of fitness values. In search loop for optimization of
solution, β-hill climbing utilizes two operators namely neigh-
boring operator i.e. N -operator and exploration operator i.e.
β-operator. N -operator navigates to the neighboring solution
X1 from the current solution X , where N ∈ [0, 1]. This oper-
ator is considered as source for exploitation in search process
as it generates neighboring solution from current solution.
Through β-operator, the variables of new solution (after
N -operator) X2(i), where i ∈ [1, 2, . . . , Size], are changed
randomly based on the probability β according to following
rule:

X2(i) =

{
Xr rnd ≤ β
X (i) else

This β-operator is the actual source of exploration and the
exploration effect is controlled by the probability parameter
β ∈ [0, 1]. Lastly, the S-operator is a greedy selection oper-
ator aimed to choose the solution X or X2 depending whose
fitness is better [49]. The pseudo-code of β-hill climbing is
presented as:

III. PROPOSED SUBSTITUTION-BOX METHOD
The proposed substitution-box method based on new 1D
chaotic map and β-hill climbing search is presented in

Algorithm 1 β-Hill Climbing Pseudo-Code
X (i) = LB(i) + (UB(i) – LB(i))×U (0, 1)
Evaluate fitness of X
itr = 0
while (itr ≤ Max_itr)

X1 = X
X1(i) = X1(i)+ U (0, 1) × N // N-operator
for i = 1 to Size

if (rndi ≤ β) // β-operator
X2(i) = LB(i) + (UB(i) – LB(i)) ×U (0, 1)

end if
end for
Evaluate fitness of X2
if (fitness(X2) is better thanfitness(X ))

X = X2 // S-operator
end if
itr = itr + 1

end while

this section. Firstly, the new chaotic map is iterated starting
from given x0 for T times and the obtained chaotic values are
discarded, except the last, to die out the transient effect. Then,
initial solution X is generated withU (0, 1), whereU (0, 1) are
random chaotic values in [0, 1] from new chaotic map. Then,
an initial 8× 8 S-box candidate S is generated from X using
Generate() routine. This routine prepare an S-box using input
vector, wherein sort() function performs sorting of input array
in increasing order. The appropriateness of current solution
X2 or S∗ is determined by computing the S-box performance
parameters such as nonlinearity, differential uniformity and
BIC-nonlinearity. These parameters are opted as they are
the mainly responsible metrics to resist the differential and
linear cryptanalysis [5], [6]. The fitness of two competing
solutions is decided as per the condition given in Eqn.(3).
The parameters such as nonlinearity, differential uniformity
and bits independence are discussed in next section.

Where, nl(S∗) denotes the average nonlinearity of S∗,
du(S∗) denotes the differential uniformity of S∗, and
bicnn(S∗) denotes the minimum of bic-nonlinearity of S∗.

IV. PERFORMANCE RESULTS AND ANALYSIS
The proposed 8 × 8 S-box obtained for initial values set
as x0 = 0.123456789, a = 4, b = 10, alpha = 12345,
Size = 28, T = 500, β = 0.5, N = 0.00123,
Xmin

= 0.01, Xmax
= 0.99, Max_itr = 500000 is shown

in Table 2. The secret key consists of x0, a, b, alpha, T ,
and β. All floating-point operations are performed as per
IEEE-754 floating point standard of double floating point
arithmetic. The performance of proposed S-box method

F(S∗, S) = Fitness(S∗, S) =

{
true if (nl(S∗) ≥ nl(S)&du(S∗) ≤ du(S) & bicnn(S∗) ≥ bicnn(S))
false otherwise

(4)
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Algorithm 2 Proposed Substitution-Box Generation Method
Parameter initialization
Set x0, a, b, alpha, Size, T , β, N , Xmin, Xmax, Max_itr

Initial solution generation
xold = x0
for i = 1 to T
xnew = newChaoticMap(xold , a, b)
xold = xnew

end for
for i = 1 to Size
U (0, 1) = newChaoticMap(xold , a, b)
X (i) = Xmin + (Xmax – Xmin)× U (0, 1)
xold = U (0, 1)

end for
S = Generate(X )

Optimized solution (s-box) search
counter = 0
while(counter ≤ Max_itr)
X1 = X
k ∈[1, Size]
X1(k) = X1(k)+ U (0, 1)×N
X2 = X1
for i = 1 to Size
rndi = newChaoticMap(xold , a, b)
xold = rndi

if (rndi ≤ β)
U (0, 1) = newChaoticMap(xold , a, b)
X2(i) = Xmin

+ (Xmax – Xmin)× U (0, 1)
xold = U (0, 1)

end if
end for
S∗ = Generate(X2)
F(S∗, S) = Fitness(S∗, S)
if (F(S∗, S) == true)
X = X2
S = S∗

end if
increment counter

end while

is analyzed through standard criteria such as bijectivity,
nonlinearity, strict avalanche criteria, bits independent crite-
rion, differential uniformity, linear approximation probabil-
ity, autocorrelation, transparency order, algebraic immunity,
algebraic degree and discussed in this section. It is also
compared with some recent optimization and chaos based
8 × 8 S-boxes to claim that the proposed S-box has better
security strength than many of the existing S-boxes.

A. BIJECTIVITY
An 8 × 8 S-box is said to be bijective if its all 8 Boolean
functions are 0/1 balanced, resulting that all 256 output
values of S-box are distinct and bounded in [0, 28 -1].
A Boolean function fi (i = 1, 2, . . . , 8) is 0/1 balanced if it

Algorithm 3 S = Generate(X )
Y = Sort(X )
for k1 = 1 to Size
q = Y (k1)
for k2 = 1 to Size
if (q == X (k2))
S(k1) = k2- 1
break

end if
end for
end for

satisfies [18], [24]

hwt

(
8∑
i=1

aifi

)
= 28 − 1 (5)

Where, ai ∈{0, 1}, (a1, a2, . . . , a8) 6= (0, 0, . . . , 0), and
hwt(.) is the hamming weight. Every Boolean function fi
basically needs to be 0/1 balanced so as not to leak any
information to attacker [50]. It has been verified that the
proposed S-box satisfies the property of bijectivity as all eight
Boolean functions are balanced.

B. NONLINEARITY
The main purpose of an S box in block ciphers is to offer the
nonlinear change from the secret information to the encoded
information. The nonlinearity offered by the cipher is the
most essential part of the entire security system [50]. The
nonlinearity is connected to strong confusion and immunity
of block ciphers to mitigate linear cryptanalysis. In practice,
the nonlinearity for an 8-bit Boolean function f is computed
using Walsh spectrum as [32], [50].

nonlinearity(f ) = 27 −
1
2

(
max

z∈{0,1}8

∣∣Sf (z)∣∣) (6)

Where Sf (z) is the Walsh spectrum of Boolean function f ,
computed as:

Sf (z) =
∑

x∈{0,1}8

(−1)f (x)⊕x.z

Where, x. z is the bitwise dot product and z ∈ {0, 1}8.
The eight nonlinearity scores for proposed S-box are 110,
112, 110, 110, 110, 110, 110, 110 having excellent minimum,
maximum and average statistics as 110, 112, and 110.25,
respectively. We can see that all nonlinearities are quite high
and larger than or equal to 110. This means that the proposed
S-box has excellent capability to offer high nonlinear trans-
formation to resist related attacks.

C. STRICT AVALANCHE CRITERIA
Webster and Tavares brought in the strict avalanche criteria
as requisite for good S-boxes [51]. For S-boxes, to satisfy
SAC, the flipping of any single bit of input vector should
leads to half change in output vector. Since, an avalanche
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TABLE 2. Proposed 8 × 8 substitution-box.

of 50% is significant to diminish any correlation among I/O
combination and fails to leak information. Any value closer
to 0.5 is always viewed as honorable. In order to verify the
SAC property, we determined the matrix by procedure given
in [38] and provided in Table 3. It can be seen that all entries
of this matrix are close to the 0.5. The average value ofmatrix,
represents the SAC, comes out as 0.5 which is same as ideal
value and shows that the proposed S-box satisfies the strict
avalanche criterion excellently.

TABLE 3. SAC matrix.

D. BITS INDEPENDENCE CRITERIA
Bits independence is another equally crucial design criterion
for strong S-boxes. Adams and Tavares suggested a method
to test BIC in [38]. Assume f1, f2, . . . ., f8 be the component
Boolean functions of an 8× 8 S-box. It was pointed out that
if the S-box met BIC, the Boolean function fj ⊕ fk (where,
j 6= k and 1 ≤ j, k ≤ 8) should be highly nonlinear and
satisfies the avalanche criterion well [51], [52]. Therefore,
BIC can be verified by calculating nonlinearity and SAC of
all 56 functions fj ⊕ fk for any 8 × 8 bijective S-box. The
possible scores of nonlinearities and SAC of functions fj⊕ fk

TABLE 4. Bits independence criterion with respect to nonlinearity.

for proposed S-box are computed and shown in Table 4 and 5.
The average scores of BIC with respect to nonlinearities and
SAC are found as 105.21 and 0.5, respectively. The obtained
scores justify the excellent performance of proposed S-box
for bits independent criterion.

E. DIFFERENTIAL UNIFORMITY
The measure of differential uniformity is accounted to find
S-box capability to resist potential differential cryptanalysis.
It is a chosen plaintext attack framed by Biham and Shamir
to assault DES-like block ciphers [5], [53]. Differential uni-
formity (DU) represents maximum likelihood of generating
an output differential 1y = yi ⊕ yj when input differential is
1x = xi ⊕ xj. In this method, the XOR distribution between
inputs and outputs of S-box is determined. Mathematically,
it is quantified as

DUS = max
1x 6=0,1y

(# {x ∈ X |S(x)⊕ S(x ⊕1x) = 1y}) (7)
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TABLE 5. Bits independence criterion with respect to SAC.

Its value should be as low as possible to resist the Biham
and Shamir cryptanalysis. The possible I/O XOR differen-
tial distribution for proposed S-box is evaluated and listed
in Table 6. The Table shows that the DU of our S-box is 10 and
whose count in the whole differential distribution is only 3.

TABLE 6. I/O XOR differential distribution matrix.

F. LINEAR APPROXIMATION PROBABILITY
A known-plaintext attack was regulated by Matsui to break
popular DES block cipher in 1993 which is famously referred
as linear cryptanalysis [6]. This analysis approximates rela-
tionship between inputs, outputs and key. The magnitude of
linear approximation probability (LP) should be aimed to
keep as low as possible to resist this attack [6]. According to
Matsui, LP is highest value of event that parity of incoming
bit selected bymaskωx is same as parity of output bits chosen
by mask ωy. It is expressed mathematically as:

LP = max
ωa,ωb 6=0

∣∣∣∣# {a ∈ A| a.ωa = S(a).ωb}
28

−
1
2

∣∣∣∣ (8)

Where, A is set of all possible inputs a whose cardinal-
ity is 28 for an 8 × 8 S-box. Any S-box having lower LP
score tends to have better resistance to linear cryptanalysis.

The maximum value of LP for proposed S-box comes out
only 0.1250, which is fairly low to claim that it can resist the
Matsui’s linear cryptanalysis for S-boxes.

G. AUTO-CORRELATION FUNCTION
The auto-correlation function (ACF) of a Boolean function f
is computed as [54]:

rf (d) =
∑

∀x,d∈{0,1}n
(−1)f (x)(−1)f (x⊕d) (9)

Where, r(0) = 2n for every Boolean function, and for other
possible inputs r(d) ∈ [2−n, 2n]. The maximum score of ACF
known as absolute indicator of Boolean function f is used
to ascertain the cryptographic quality to have good diffusion
property [55]. It is denoted as:∣∣ACFf ∣∣ = max

(∣∣rf (d)∣∣) for d 6= 0

This cryptographic metric ACF of Boolean function f is
extended to S-box S: {0, 1}n → {0, 1}n by considering all
2n −1 non-zero linear combinations F of its n component
functions. using the following equation [56].

|ACFS | = max
(∣∣rFi (w)∣∣) w=1, . . . , 2n i=1, . . . , 2n − 1

(10)

The ACF of S-box should be as small as possible for cryp-
tographic strength. The maximum ACF for proposed S-box
comes out as 96. It is also computed for all S-boxes listed
in Table 7 and scores are provided in same comparison Table.

H. TRANSPARENCY ORDER
Prouff introduced the metric of transparency order which
is used to quantify the resistance of S-box to differential
power analysis (DPA) attacks [57]. It has been pointed out
that some cryptographically strong Boolean functions or S-
boxes found to have low robustness to DPA attacks like AES
inverse mappings [58]. According to Prouff, the transparency
order τS of an S-box S can be computed as per the following
formulation [57], [58], (11) as shown at the top of the next
page

Where, HW(β) denotes the hamming weight of β, and
Wα,S (u, v) is calculated as

Wα,S (u, v) =
∑

(−1)v.{S(x)⊕S(x⊕α)}⊕u.x

If an S-box has smaller transparency order, then it tends to
showmore resistance towards DPA attacks. The transparency
orders (TOs) of proposed S-box founds as 7.824. The TO
of other S-boxes under comparison are also determined and
listed in Table 7

I. ALGEBRAIC IMMUNITY
Algebraic immunity (AI) denotes the resistance of an S-box
against algebraic attacks and inversely the effectiveness of
the XSL attack. The procedure of computing the algebraic
immunity AI(f ) of Boolean function f is explained in [59].
The algebraic immunity of an n × n S-box S is defined in
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τS = max
β∈Fn2

|n− 2HW (β)| −
1

22n − 2n
∑
α∈Fn

∗

2

∣∣∣∣∣∣∣∣∣
m∑

v∈Fn2
HW (v)=1

(−1)v.βWα,S (0, v)

∣∣∣∣∣∣∣∣∣

 (11)

terms of the algebraic immunity AI of n component Boolean
functions as [53]:

AI (S) = min
c∈Fn2

(AI (c1f1 ⊕ c2f2 ⊕ .......⊕ cnfn)) (12)

Where, c = (c1, c2, . . . , cn) be non-zero elements in S-box,
and c1f1+c2f2+ . . .+cnfn is a linear combination of compo-
nent Boolean functions. A high score of algebraic immunity
is desirable to complicate algebraic attacks on S-boxes. The
algebraic immunity of all S-boxes provided in Table 7 is
found same which is equal to 4.

J. ALGEBRAIC DEGREE
The notion of algebraic degree of Boolean functions is
extended to S-boxes to determine their strength of resistance

to higher-order differential cryptanalysis [1], [60]. Algebraic
degree of an n-variable Boolean function f is defined as
degree of polynomial representing the algebraic normal form
(ANF) of Boolean function f . That is, it is the number of
variables in largest monomial in its ANF. An n × n S-box
consists of n Boolean functions in n-variables. Algebraic
degree of S-box S is the minimum degree of all component
Boolean functions fi [50]. Mathematically,

deg(S) = min (deg(f1), deg(f2), . . . , deg(fn)) (13)

The algebraic degree of n-1 correspond to upper bound for an
n × n S-box. In [61], a preferable score of deg (S) ≥ 4 was
suggested to withstand higher-order differential attack. It has
been found that all S-boxes listed in comparison Table 7 have
an algebraic degree equal to upper bound i.e. 7.

TABLE 7. Performance Comparison of Chaotic and Optimization Based 8 × 8 substitution-boxes.
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K. COMPARISON
Based on the discussed security criterias, the performance of
proposed S-box, in Table 1, is compared with recent state-of
the art optimization based S-boxes, chaos-based S-boxes and
number-theoretic inverse-power mapping based AES, Gary,
APA S-boxes in Table 7. On comparing with these S-boxes,
we find that:

• The average of nonlinearity score for proposed S-box is
110.25 which is largest compared to S-boxes Table 7.
The other statistics like minimum (110) and maxi-
mum (112) of nonlinearities are also higher than most
of the S-boxes except AES, Gray, APA S-boxes which
has optimal nonlinearity of 112. Means, the proposed
S-box method is capable to generate S-boxes with high
nonlinearity for better nonlinear transformation of input
plaintext bits to cipher bits.

• As discussed that the ideal value of SAC is 0.5. It is
evident from the comparison Table 7 that our SAC
of 0.5 is exactly equal to ideal value of 0.5 and com-
parable to SAC of other S-boxes including AES, Gray,
APA S-boxes. Hence, like other chaos-based S-boxes,
the proposed S-box also yields close to ideal result to
satisfy the SAC criteria well.

• The minimum of BIC result for nonlinearity is
104 which considerably higher than other chaos-and-
optimization based S-boxes in Table 7. The average is
105.214. The BIC result for SAC is 0.5052. As desired,
our BIC-nonlinearity is much higher than other S-boxes
and BIC-SAC is closest to the ideal SAC value. The
BIC-nonlinearity performance of our S-box is the most
optimal and better among all S-boxes except AES, Gray,
APA S-boxes.

• The differential uniformity of our S-box comes out
as 10 which is comparable to S-boxes in [18]–[22],
[24]–[27], [32], and [34]–[36]. But, it is signifi-
cantly better than that of S-boxes proposed constructed
in [33], [34], and [62]. Where as, the Lambic S-box
in [31], AES, Gray, and APA S-boxes have uniformities
of 8, 4, 4, and 4, respectively.

• According to linear cryptanalysis of Matsui, the linear
approximation probability should be kept as low as
possible which has a value of 0.125 for our S-box.
We can see that proposed S-box offers better resistant
to Matsui attack as compared to most of the S-boxes
in Table 7 except in [25], [31], and [63]–[65].

• A lower value of maximum absolute autocorrelation
function of S-boxes is desirable for cryptographic
strength. The maximum absolute ACF for our S-box
is 96 which is fairly better than ACF of S-boxes
in [19], [24], [27], and [32]–[34], comparable
to [18], [20]–[22], [25], [26], [35], [36], [39], [62].
Compared to these recent S-boxes, the proposed S-box
is able to provide better autocorrelation property and
diffusion. The ACF score for our S-box is higher than
that of Lambic S-box [31], AES, Gray, APA S-boxes.

• It is known that AES, Gray, and APA S-boxes holds
some optimal S-box performance scores for nonlinear-
ity, BIC, maximum ACF, LP, and therefore considered
as cryptographically most strong S-boxes. But, they
are found to have high transparency order. These three
S-boxes have TO of 7.86 and are higher compared
to all S-boxes of Table 7. Hence, they offer lowest
resistance towards DPA attacks. The proposed S-box has
transparency order of 7.824 which is lower i.e. better
than S-boxes in [18], [19], [31], [33], [34], [36], [39],
and [63]–[65], and higher than other S-boxes.

V. CONCLUSION
This paper reports a novel method to search optimal config-
uration of substitution-box using improved discrete-chaotic
map and β-hill climbing technique. To inhibit the limitations
of chaotic logistic map for designing security applications
like S-boxes, we proposed a new improved 1D chaotic map.
The new chaotic map found to possess better dynamic, lya-
punov exponent, bifurcation and larger chaotic range com-
pared to logistic map. The features of new chaotic map
make it more suitable for generating efficient S-boxes with
guided search using β-hill climbing which have the balance
of exploration and exploitation characteristics. The S-box
generated with proposed method is tested and analyzed to
assess security strength under some well-accepted and stan-
dard parameters specific to S-boxes. The obtained perfor-
mance parameters show that the generated S-box has good
cryptographic strength and found better as compared to recent
S-boxes available in literature. Hence, the proposed method
is competent to yield efficient S-boxes needed for the design
of strong block cryptosystems.
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