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ABSTRACT Hyperspectral imaging is becoming an increasingly popular tool for high-throughput plant
phenotyping, because it provides remarkable insights about the health status of plants. Feature selection is a
key component in a hyperspectral image analysis, largely because a significant portion of spectral features
are redundant and/or irrelevant, depending on the desired application. This paper presents an ensemble
feature selection method to identify the most informative spectral features for practical applications in plant
phenotyping. The hyperspectral data set contained the images of four wheat lines, each with a control and
a salt (NaCl) treatment. To rank spectral features, six feature selection methods were used as the base
for the ensemble: correlation-based feature selection, ReliefF, sequential feature selection, support vector
machine-recursive feature elimination (SVM-RFE), LASSO logistic regression, and random forest. The
best results were achieved by the ensemble of ReliefF, SVM-RFE, and random forest, which drastically
reduced the dimension of the hyperspectral data set from 215 to 15 features, while improving the accuracy in
classifying the salt-treated vegetation pixels from the control pixels by 8.5%. To transform the hyperspectral
data set into a multispectral data set, six wavelengths as the center of broad multispectral bands around the
most prominent features were determined by a clustering algorithm. The result of salt tolerance assessment
of the four wheat lines using the derived multispectral data set was similar to that of the hyperspectral data
set. This demonstrates that the proposed feature selection pipeline can be utilized for determining the most
informative features and can be a valuable tool in the development of tailored multispectral cameras.

INDEX TERMS Band selection, classification, ensemble feature selection, hyperspectral imaging, machine
learning, multispectral imging, plant phenotyping, salt stress, wheat.

I. INTRODUCTION
Hyperspectral imaging (HSI) integrates imaging and high
resolution spectroscopy whereby a continuous spectrum
is scanned for each pixel, typically across the visi-
ble and near infrared range of electromagnetic spectrum.
Because of this unique aspect, HSI has been utilized
as a fascinating and intriguing research tool in various
domains including agriculture [1], [2], environmental surveil-
lance [3], [4], mineralogy [5], [6], biotechnology [7], [8],
medical diagnoses [9]–[11], and pharmaceuticals [12], [13].
HSI has recently drawn substantial attention in plant biol-
ogy because it enables extensive investigation on the inter-
nal activities, physiological dynamics, and cell structure
of plants [14]–[16]. Recently, hyperspectral sensors have
become more compact, more lightweight, and more avail-
able, and this has introduced new opportunities for field

applications because hyperspectral images can be captured
via unmanned aerial vehicles.

Despite impressive progress of hyperspectral sensor devel-
opment and autonomous platforms, there are still several
challenges in the post-processing and analysis portion of the
workflow, hindering the comprehensive application of HSI.
Analysis of hyperspectral images is oftentimes challenging,
mainly due to the complexity and high-dimensionality of the
hyperspectral data. To find the correlation between the spec-
tral response of plants and the desired traits, the complex and
high-dimensional hyperspectral images must be interpreted
appropriately. Among the hundreds of wavelengths scanned
by the hyperspectral imager, a small set of wavelengths may
be related to the desired traits, and the remaining are often-
times either irrelevant or redundant. These redundant and
irrelevant features make interpretation complex, and increase
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risk of overfitting, computational cost, and required storage
space. In addition, when applying classification algorithms
to a dataset with a high dimension of features a larger num-
ber of annotated samples (e.g., pixels) are required for each
class (referred to as ‘the curse of dimensionality’). Another
drawback of high-dimensional feature space is that the perfor-
mance of subsequent modeling (e.g., classification, cluster-
ing, regression, etc.) might be deteriorated due to the presence
of redundant and irrelevant features that merely expand the
dimension of feature space without offering new informa-
tion. Therefore, dimensionality reduction is a beneficial pre-
processing step in implementingmachine learning algorithms
for hyperspectral image analysis.

Two main approaches exist for dimensionality reduction
of a high-dimensional dataset: feature extraction and fea-
ture selection. In the feature extraction approach, all original
features are combined in a transformation process to map
from a high-dimension to a low-dimension feature space.
For example, principal component analysis and linear dis-
criminant analysis (two popular feature extraction methods)
require all features to project to a lower-dimensional feature
space. Alternatively, in feature selection, a subset containing
discriminative features is selected such that it captures the
most valuable information with minimum redundancy. The
original semantics of features do not change using the feature
selection approach, and this is advantageous because the
subset is interpretable by a domain expert [17].

There are two main reasons that feature selection is pre-
ferred over feature extraction for hyperspectral image anal-
ysis. First, feature selection maintains the physical meaning
associatedwith themeasured reflectance per eachwavelength
as they are the functions of the object characteristics such as
plants’ internal/physiological activities, whereas with feature
extraction, the physical information is lost through trans-
forming to a new feature space. Secondly, all features must
still be measured in feature extraction approach because each
feature in the new space is a combination of all the original
features. Alternatively, if a subset of the original wavelengths
can be identified for a specific type of application using the
feature selection approach, then a multispectral camera can
be designed for that particular application to leverage the
advantages incorporated with multispectral imaging. Multi-
spectral cameras are less expensive and complex compared
to hyperspectral cameras, and thus enable wider application
of spectral imaging for trait analysis among plant breeders
and plant scientists.

Feature selection algorithms can be classified in three gen-
eral subsets: filter, wrapper, and embedded methods, each of
which has advantages and drawbacks [17].

Filter methods rank features based on a statistical crite-
ria, such as distance, correlation, and information, without
involving classification/regression models (i.e., no learning
is involved). Filter methods are either univariate ormultivari-
ate. In univariate methods, each single feature is ranked inde-
pendently, whereas multivariate methods incorporate feature
dependency [17], inferring the ability of multivariate methods

in handling feature redundancy [18]. Filter methods are fast
and computationally efficient, and are therefore scalable to
large datasets. The major drawback of filter methods is that
the selected feature subset may not be the best feature subset
for classification purposes since they were selected regardless
to their effects on the performance of classifiers [19]. Some of
the widely used filter methods are correlation-based feature
selection [20], ReliefF [20], and information gain [21].

Wrapper methods include a feature subsets search algo-
rithm wrapped around a classification algorithm [22]. The
search algorithm explores the space of all possible feature
subsets and generates various feature subsets. The perfor-
mance of the classifier is evaluated using the generated fea-
ture subsets, and subsequently an optimal feature subset is
identified based on the classification performance. Wrapper
methods tend to offer improved results compared to filter
methods because the best feature subset is selected by incor-
porating the performance of a predefined classifier algorithm
as the selection criteria. Moreover, wrappers have the ability
to handle feature dependencies. These advantages of wrapper
methods are achieved at the cost of losing computational effi-
ciency and being biased towards the classifier algorithm [23].
Examples of wrappers methods include sequential feature
selection [24], genetic algorithms [25], [26], and support vec-
tor machine-recursive feature elimination (SVM-RFE) [27].

In embedded methods, selecting an optimal feature subset
is embedded in the construction of a classifier. Embedded
methods offer a high accuracy due to the search process
being guided by the learning process. However, in contrast to
wrapper methods, embedded methods tend to have less com-
putational cost because feature selection is conducted during
the classifier construction (i.e., no need to iteratively run the
classifier for all feature subsets). Similar to wrappers, feature
selection in embedded methods inevitably depends on the
classifier that was utilized, meaning that the selected feature
subset may not necessarily be effective for other classifiers
[28]. Random forest [29] and LASSO [30] are among the
most representative algorithms of embedded methods.

Each of the feature selection approaches has advantages
and disadvantages, and tend to be tailored for specific appli-
cations. Despite the availability of several feature selection
approaches and a substantial number of feature selection
algorithms, defining an efficient benchmark to select predom-
inant spectral features has remained a challenge in hyperspec-
tral image analysis [31].

This study was motivated by the need to reduce the com-
plexity and high-dimensionality of hyperspectral images in
high-throughput plant phenotyping where HSI has recently
drawn a substantial attention and introduced new opportu-
nities. The first objective of this research was to develop an
ensemble feature selection pipeline to aggregate the benefits
of multiple feature selection approaches, therefore increasing
the stability and accuracy of selecting predominant spectral
features from hyperspectral images. The second objective
was to rank the spectral features based on their ability to
discriminate salt-stressed wheat plants from healthy plants at
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TABLE 1. Hyperspectral image dataset of four wheat lines to assess salt stress [32].

the earliest stages of stress. The purpose of ranking spectral
features was to form six broad spectral bands around the most
prominent features to aid in development of a multispectral
camera. The third objective was to use these multispectral
bands to assess the salt tolerance of four wheat lines in the
context of phenotyping and evaluate results based on findings
in previous studies.

The remainder of the paper is organized as follows.
Section II describes the hyperspectral dataset containing the
images of four wheat lines with various levels of salt toler-
ance. Section III introduces the ensemble feature selection
method proposed in this study for spectral feature selection.
Section IV reports the ranking of spectral features and dis-
cusses the experimental results of salt stress phenotyping
in wheat using the selected multispectral bands. Section V
draws the conclusion and presents the idea of developing a
digital spectral library for plant diseases and stresses in future
work.

II. HYPERSPECTRAL DATASET
A hyperspectral dataset from a phenotyping study [14], freely
accessible to the public at [32], was used in this study. They
investigated the salt stress tolerance in four wheat lines using
HSI. The hyperspectral dataset for each wheat line contained
the spectral reflectance of leaves for a null control and a
salt treatment (as sodium chloride; Table 1). The spatial
resolution was about 1 mm and the wavelengths range was
from 400 nm to 900 nm with a spectral resolution of about
2.1 nm. In this study, the dataset of the most susceptible line
(Chinese Spring) was selected among the four wheat lines
to find sensitive spectral features for salt stress phenotyping
of wheat. Once the spectral features were identified, all four
hyperspectral datasets of wheat lines were utilized to evaluate
the feasibility of the selected bands in ranking the wheat lines
based on their tolerance to salt stress. The matrix of the data
was initially normalized to make each spectral feature have
zero-mean and unit-variance.

III. PROPOSED ENSEMBLE FEATURE
SELECTION METHOD
A. FEATURE SELECTION METHODS
The hyperspectral dataset of CS was split into training (70%
of dataset) and test (30% of dataset) datasets (Fig. 1-step I).
Training dataset was used by feature selection techniques,
referred to as rankers in this study, and the test dataset was

employed to evaluate all potential ensembles of rankers.
The following six rankers were the individual base rankers
and used to construct an ensemble feature selection pipeline
(Fig. 1-step II).

1) CORRELATION-BASED FEATURE SELECTION (CFS)
CFS is a univariate filter method that measures the Pearson’s
correlation coefficient between features and the output vari-
able [33]. The spectral features are ranked based on their cor-
relation to the class. In this study, the number of components
in the feature subset was considered to be one to identify
the rank of each individual feature. Therefore, CFS ignored
features redundancy and correlation between features since
the features were treated independently.

2) RELIEFF
ReliefF is also a univariate filter method that assigns weight
to features through an iterative process [34], [35]. In each
iteration, an instance is randomly selected and the weight
of features is updated based on the distance between the
randomly selected instance and the k closest instances from
each class. The weight of a given feature increases at each
iteration if it makes the selected instance be more similar to
its neighbors in the same class and be more distinct from its
neighbors from the other class. In this study, the iteration was
performed for all samples and the number of neighbors, k,
was set to 10.

3) SEQUENTIAL FEATURE SELECTION - FORWARD
SELECTION (SFS-FORWARD)
SFS-forward is a wrapper method to find an optimal feature
subset using a greedy search algorithm. It starts with an empty
subset and adds one feature through sequential iteration to the
subset based on the performance of a predefined classifier.
Quadratic discriminant analysis (QDA) was used in this study
as the classifier. The order in which all features added to the
subset denoted the ranking of features.

4) SUPPORT VECTOR MACHINE-RECURSIVE
FEATURE ELIMINATION (SVM-RFE)
SVM-RFE is another wrapper method in which support vec-
tormachine is used as the classifier [36]. Liner SVMclassifier
is trained using the training dataset containing all features
in the first iteration. Then SVM-RFE eliminates one single
feature with the lowest weight among all weights required to
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FIGURE 1. Flowchart of the proposed pipeline for ensemble feature selection. Step I) Splitting the data into training set (70%) and test set (30%) using
cross validation – holdout method. Step II) Ranking the spectral features using six base rankers: correlation-based feature selection, ReliefF, sequential
feature selection - forward selection, support vector machine-recursive feature elimination, and random forest. Step III) Ensemble of all six rankers.
In this step, the optimal feature subset size and F1-mean for the ensemble of all six rankers are calculated. Step IV) Eliminating rankers through a
recursive process presented in algorithm 1 to identify the best ensemble of the rankers.

define the best hyperplane in separating the classes. These
weights are assigned by the SVM classifier to features. This
procedure was recursively executed until only one feature
remained in the feature dataset to rank all features based on
their elimination order through the recursive process.

5) LASSO LOGISTIC REGRESSION
The idea of adding L1 regularization into the objective func-
tion of linear least-squares regression, so-called LASSO, was
first proposed by [37] to shrink coefficients and control the
model complexity. The regularization term defines an upper
bound on the sum of the absolute values of the model coef-
ficients to prevent overfitting and make the coefficient of
irrelevant features equal to zero. Therefore, the coefficient
vector of features becomes sparse. For classification purpose,

the LASSO estimator can be added to Logistic Regression
model, and coefficients (β) can be obtained as follows:

β̂ = argmin
β

(‖Y − βX‖22 + λ ‖β‖1) (1)

where λ is the tuning parameter which controls the bal-
ance between bias and variance. The larger it is the larger
the number of coefficients are penalized to be equal to
zero, and hence the variance decreases while bias increases.
A number of 100 different values (between 0 and 1) for
λ were tested to obtain the optimized values for coeffi-
cients (β̂). Since the spectral features were first centered and
scaled, the absolute value of non-zero coefficients implies the
importance of features, while irrelevant features have coeffi-
cients of zero. LASSO is an embedded method for feature
selection.
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6) RANDOM FOREST
Random forest is another embedded method building an
ensemble of de-correlated decision trees [38], each trained
on a training set created by bootstrap aggregation in which
samples are randomly drawn from initial training set with
replacement. To split each node in each decision tree, a ran-
domly selected subset of features is evaluated. Based on
the defined split-criterion, which was entropy in this study,
a feature with the best strength of classification is selected
among the randomly selected feature for each node to divide
the training samples into smaller and more pure subsets. The
importance of features is calculated based on how much the
splitting feature can decrease the weighted impurity at that
node, and it is then averaged over all the trees in the forest.
Number of trees was 1000 in this study.

B. ENSEMBLE FEATURE SELECTION METHOD
Each ranker has its own drawback such that the final selected
feature subset may not be the optimal feature subsets in
the feature space. To aggregate the benefits of each feature
selection approach and increase the robustness and accuracy
of the final selected feature subset, ensemble feature selection
approach was used (originally proposed by [19]). Ensemble
feature selection method reduce the risk of capturing local
optima where a single ranker may be trapped. Various meth-
ods have been used to combine the feature ranking obtained
by each base ranker [39], [40]. In this study, the complete
linear aggregation method was used to average the ranking
f assigned to feature i by ranker j as presented in (2), and
the ranking values of features was then sorted to list features
based on their importance.

Rank i =
1
n

∑n

j=1
fij i = 1, 2, . . . , 215, and n = 6 (2)

In this equation, the rankers had the same weight, which is
equal to one over the number of rankers. To ensure the optimal
feature subset is achieved, all base rankers used for aggre-
gation should be accurate and diverse [41]. However, based
on the dataset and the nature of the problem, a given ranker
may not be accurate or may contribute to redundancy in the
ensemble process. Therefore, a more intelligent approachwas
designed to evaluate which combination of these six rankers
would result in the selection of the best feature subset based
on the classification of vegetation pixels into control and salt
classes.

In this study, the decision on exclusion of a ranker was
made through a recursive elimination process. In this greedy
search, a ranker was removed at each step if its elimination
resulted in the best classification performance among all
choices for elimination in that step. For instance, at step 1,
there were six iterations, at each of which one ranker was
eliminated. At the end of step 1, the ranker whose elimination
resulted in the best classification performance among the six
options was eliminated for the next step. This process con-
tinued until only one ranker remained. Algorithm 1 presents
a summary of the recursive elimination of rankers.

Besides the ensemble of all six rankers (Fig. 1-step III), there
were five other ensembles of rankers each of which was
obtained at each step (Fig. 1-step IV). The combination of
rankers that offered the best classification performance was
selected among these six sets. This approach assures that the
presence of a ranker would not deteriorate the classification
result.

Two criteria related to the classification performance were
defined to compare all potential ensembles of rankers at each
step.

The first criterion was the size of feature subset to attain
the minimum classification error of a quadratic discriminant
analysis (QDA) classifier. This process was performed on
the training dataset, containing 70% of the whole dataset,
with 10-fold cross validation. To identify the best feature
subset, the process of training and testing with QDA was
conducted in an iterative process in which the ensemble fea-
ture list, obtained at iteration k by (2), was imported to QDA
using a stepwise approach until all features were exhausted.
Therefore, at the ith iteration, QDA was trained and tested
10 times using only the first ith features. For instance, at the
first iteration, only the first feature at the top of the ensemble
list was used, and all 215 features were employed at the
215th iteration.

The mean of cross validation error (CV error) and stan-
dard deviation of error over 10 folds were recorded for each
iteration. The standard deviation of error indicates the error
rate uncertainty; thus, one-standard error rule was used as
a conservative metric to determine feature subset size [42].
Using this approach, the most parsimonious feature subset
within one standard error (1SE) of the minimum error was
selected as the best feature subset. In other words, the mean
of error for this parsimonious subset should not be more than
1SE above the minimum error.

The second criteria was the classification accuracy of a
QDA algorithm evaluated on the test dataset (the remaining
30% of the dataset), which has not been used during any of
the feature selection and parameter tuning process of rankers.
For this purpose, the QDA algorithmwas trained on the whole
training dataset using only the features obtained by the 1SE
rule. The performance of the trained QDA was evaluated on
the test dataset. The metric used for classification accuracy
was F1-mean which was defined as a mean between F1 mea-
sures of both control (F1C0) and salt (F1C1) classes.

The procedure of eliminating a ranker per iteration was
considered as a multiple criteria decision-making problem
in which the performance of feasible ensemble of rankers,
obtained at iteration k , was evaluated based on the defined
criteria: feature subset size and F1-mean. To allocate weight
to the alternatives, we utilized the technique for order pref-
erence by similarity to an ideal solution (TOPSIS) pro-
posed by [43] as a simple and useful method for multiple
criteria decision making problems. TOPSIS dispensed the
weight among feasible ensembles at each iteration k based
on the Euclidian distance of each ensemble to the negative
ideal solution divided by the summation of distance to the
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Algorithm 1 Recursive Ranker Elimination to Identify the Best Ensemble of the Rankers
1. Let Xtrain = {(xij, yi)|i = 1, 2, . . . , ntrian, j = 1, 2, . . . , 215} be the training dataset
2. Let Xtest = {(xij, yi)|i = 1, 2, . . . , ntest , j = 1, 2, . . . , 215} be the test dataset
3. Let F = {[fij]|i = 1, . . . , 215, j = 1, 2, . . . , n, a matrix containing ranking of features for all n ranker
4. For step = 1 to (n− 1) do
5. For k = 1 to (number of columns in F) do
6. F̂k = {[fij]|i = 1, . . . , 215, j = {1, 2, . . . , 6}k , eliminate the kth column of F
7. E : ensemble F̂kusing Eq 2
8. R: sort features based on their ensemble ranking E
9. For i = 1 to 215 do
10. r = R[1:i], the first i features at the top of the list
11. Train and test QDA on Xtrain with 10 folds cross validation using features ∈ r
12. ei: mean of error for 10 folds
13. std i: standard deviation of ei
14. End For
15. Err = min(ei)
16. SE =

stdargmin(ei)√
10

17. m: Find the size of the most parsimonious feature subset whose error is less than (Err + SE)
18. Train QDA on Xtrain using only the first m feature in R
19. Test the trained QDA classifier on Xtest
20. Calculate F1 measure for both C0 and C1 classes
21. F1-mean: mean of F1C1 and F1C0
22. Ck = [mF1], two criteria used by TOPSIS to allocate weights
23. End For
24. Wk : weights assigned by TOPSIS to each ensemble
25. ind = argmax(Wk ), denotes the index of the rankers to be eliminated
26. Mstep = Cind , the performance criteria of the best ensemble obtained at this iteration
27. F [:, ind] = [], eliminate the ranking list whose elimination resulted in maximum TOPSIS weight
28. End For
29. ReturnMstep, presented in Table 3

positive and negative ideal solutions. The positive ideal solu-
tion was a solution capturing the maximum benefit criteria
(i.e., F1-mean) and the minimum cost criteria (i.e., minimum
required number of features or feature subset size), and vice
versa for the negative ideal solution. The best ensemble is
the one that has the maximum weight, indicating it has the
maximum normalized distance to the negative ideal solutions.
TOPSIS facilitates decision-making on eliminating rankers
and ultimately determining the best ensemble of rankers.
Fig. 1 shows the flowchart of the proposed pipeline for
ensemble feature selection.

C. CLUSTERING OF TOP-RANKED FEATURES TO DEVELOP
BROADER MULTISPECTRAL BANDS
After determining the optimal ensemble and the subsequent
ranking of features, algorithm 2 was developed to cluster
the most informative features. The clustering algorithm was
designed to form six broad spectral bands around the most
prominent features to mimic the spectral bands of a typ-
ical multispectral camera (six bands were chosen because
multispectral cameras rarely possess more than six spectral
channels). The six most informative bands are composed of
multiple nearby spectral features at the top of the ensemble

feature list. The clustering algorithm was initialized with a
set of six cluster centers with zero values, then it clustered
the features through an iterative loop starting from the first
feature at the top of the ensemble ranking list. At each itera-
tion, one feature was assigned to a cluster if it is within 10 nm
of the center of cluster, otherwise was allocated to the next
empty cluster with zero center. At the end of each iteration,
the cluster centers were updated. This process of clustering
continued until the next feature could not be assigned to any
of the six clusters. The input of algorithm 2 was the ranking
of features obtained by algorithm 1, and the output was the
center of broad bands to select an appropriate set of optical
band-pass filters for developing a multispectral sensor.

D. PHENOTYPING THE SALT TOLERANCE OF WHEAT
LINES USING SELECTED MULTISPECTRAL BANDS
The ultimate goal of clustering spectral features was to
identify the most discriminative broad spectral bands for
the salt stress phenotyping of wheat. To test the potential
of the selected broad bands for salt stress phenotyping in
wheat lines, the hyperspectral dataset for each of the four
wheat lines was transformed to multispectral dataset. Each
multispectral band was obtained by averaging the adjacent
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Algorithm 2 Clustering of the Top Features to Develop Broad Multispectral Bands
1. Let F = {fi|i = 1, 2, . . . , 215} be the features ranking obtained by algorithm 1
2. Let C = {Cj = 0|j = 1, 2, . . . ,mc be the cluster centers initialized with zero values
3. Let mc denote the number of desired clusters, here mc = 6
4. Let nc denote the number of filled clusters, initially nc = 0
5. for i = 1 : 215 do
6. Dj = |fi − Cj|, compute the distance of fi ∈ F to cluster centers
7. Md = min(Dj), find the minimum of distance
8. if Md < 10 nm then
9. assign fi to Cj, j = argmin(Dj)
10. else
11. nc = nc + 1
12. if nc <= mc then
13. assign fi to the first empty cluster
14. Else
15. break
16. end if
17. end if
18. update the cluster center C =

{
Cj = 1

n

n∑
k=1

fk |fk ∈ Cj, n = |Cj|
}

19. end for
20. Return C, containing six centers of clustered features

Algorithm 3 Ranking of Six Broad Multispectral Bands
1. Let χL = {(xij, yi)|i = 1, 2, . . . ,N , j = 1, 2, . . . ,m,m = 6} be the multispectral dataset for the Lth wheat line
2. n_bands = 6, initial number of bands before the elimination process
3. for step = 1: (m− 1) do
4. for L = 1 : 4 do, for all four wheat lines
5. for b = 1:n_bands do
6. χ̂L = XL
7. χ̂L = {(xij, yi)|i = 1, 2, . . . ,N , j = {1, 2, . . . , n_bands} b}, eliminate the bth column from dataset
8. Train and test QDA on χ̂L with 10-fold CV
9. Record mean of error and standard deviation of error for 10-folds CV
10. eLb = mean(error)+ std(error), error obtained for Lth wheat line by removing bth band
11. end for
12. end for

13. MEb = 1
4

4∑
L=1

eLb, b = 1, 2, . . . , n_bands; mean eLb across four wheat lines

14. ind = argmin(MEb)
15. XL [:, ind] = [], update the dataset of all four wheat lines by removing the band at column ind
16. n_bands = n_bands – 1
17. end for
18. Return ranking of bands based on the order in which they were removed

hyperspectral bands within ±5 nm of the cluster centers
calculated by algorithm 2. To identify how many of these
six bands might be sufficient for salt tolerance assessment,
themultispectral bandswere ranked in a recursive elimination
process described in algorithm 3 (similar approach to algo-
rithm 1). In algorithm 3, a band is removed at each iteration
if its elimination led to the least classification error averaged
across all wheat lines (Algorithm 3). The classification error
referred to the summation of the mean and standard deviation
of error rate obtained for 10-fold CV. During the last iteration,

Algorithm 3 saved the most discriminative band that had the
lowest classification error at that iteration across all four lines.
In essence, algorithm 3 ranked the six bands based on the
mean of classification error across four wheat lines obtained
by removing a band at each iteration.

After determining and ranking the most informative mul-
tispectral bands, then the tolerance of wheat lines to salt
stress were assessed using techniques proposed by [14].
These techniques included the minimum difference of pair
assignments (MDPA) and Bayesian inference, the latter of
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which returned the posterior probability (i.e., P(salt|x)) of
belonging to salt class given an observation x, which was
defined as the similarity of pixel to the salt endmember.
To compare differences between the values obtained by using
multispectral and hyperspectral datasets for each of these
techniques, the normalized root mean square error (NRMSE)
was calculated as follows:

NRMSE =

√
(
∑n

i=1
(
ŷi − yi

)2)/n
(ymax − ymin)

(3)

where y denotes the value calculated for one of the techniques
(posterior probability or MDPA) using hyperspectral dataset,
ŷ refers to the value obtained for the same technique by using
multispectral dataset, and n is equal to the number of wheat
lines.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. BAND PAIR CORRELATION
Adjacent spectral bands tend to be correlated in hyper-
spectral imaging. Fig. 2 shows the correlation between all
pairs of bands, which is a symmetric matrix represented
as a colormap image. Among highly correlated spectral
bands (∼505 to ∼645 nm), a few bands (567, 569, 589,
590, and 593 nm) had less correlation with their adjacent
bands. These un-correlated bands are responsible for the two
stripes in Fig. 2 denoted by the arrows. In general, bands
between ∼505 to ∼645 nm were highly correlated to each
other and also correlated to bands between∼690 to∼715nm,
indicating that some of these spectral features are redundant
and do not contribute valuable information.

FIGURE 2. Correlation between all pairs of spectral features
(i.e. 215 spectral bands from 400 nm to 900 nm) presented as a colormap
image.

B. RANKING OF SPECTRAL FEATURES BY SIX RANKERS
The high correlation between features emphasized the impor-
tance of feature selection to eliminate the redundant fea-
tures while retaining the relevant information. Each ranker

utilized in this study ranked the spectral features based on
their importance (Fig. 3). Four of the six rankers (i.e., ran-
dom forest, LASSO, ReliefF, and SVM-RFE) identified
589 nm as the most informative spectral feature among all
215 bands. Intriguingly, 589 nm is among the Fraunhofer
lines (i.e. spectral absorption lines of elements) and associ-
ated with sodium (Na). It is a promising result considering
sodium chloride (NaCl) was the applied salt treatment to the
wheat plants. This result suggests that these four rankers were
able to capture the fundamental physical meaning concealed
in the spectral response of wheat plants treatedwithNaCl. It is
remarkable that the hyperspectral images were captured only
one day after the salt treatment was applied. SFS-forward
ranked 589 nm as the third most important feature and ranked
751 nm and 532 nm as the first two important spectral fea-
tures. CFS ranked 589 nm as the 210th most informative
feature and 583 nm as the first most informative feature
despite the fairly close correlation between these two bands
(i.e., 0.77). Except SFS-forward, all rankers had their first two
dominant features between 581 nm and 589 nm, indicating
the importance of this region of the electromagnetic spectrum
for determining salt stress in wheat.

The other inference from Fig. 3 is that the spectral features
in blue (around 450 nm) and red (650 nm) regions, known
as the chlorophyll absorption bands, had the least importance
(i.e., largest ranking value) among all the spectral features.

Feature subset size and F1-mean were computed for each
ranker to compare the rankers with each other and further
compare them with the results obtained by the ensemble of
rankers (Table 2). The QDA classifier required a different
number of features from the feature set ranked by each ranker
to attain a CV error with 1SE of the minimum error. The
lowest CV error on the training dataset and the maximum
F1-mean on the test dataset were both achieved when QDA
used the feature set ranked by SFS-forward. However, this
performance was attained at the cost of larger feature size
(28 features) and higher standard deviation of CV error.
Alternatively, the lowest feature subset size and standard
deviation of error was achieved using random forest. The
F1-mean for random forest dropped only 1.63% compared to
that of SFS-forward, while the feature subset size for random
forest (12 features) was significantly less than SFS-forward
(28 features). Among all rankers, CFS resulted in the lowest
classification accuracy as indicated by the lowest F1C0 and
F1C1 values.

C. ENSEMBLE OF FEATURE SELECTION TECHNIQUES
The ranking assigned to the features by the six rankers were
aggregated together (Fig. 4 (a)) using (Fig. 1) (Fig. 1-Step
III). As expected from the ranking results of the base rankers,
spectral features near the 589 nm band were dominant at the
top of the ranking list of features.

From the ensemble ranking list, a subset of features was
selected by QDA based on the minimum CV error and 1SE
rule (Fig. 4 (b)). Fig. 4 (b) illustrates the mean and stan-
dard deviation of the 10-fold CV error for all 215 feature
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FIGURE 3. Ranking of the 215 spectral features for each of the six rankers. Top-ranked spectral features are represented with lighter color and
low-ranked features are represented with darker color. Dark blue refers to the least important features with large ranking values and light yellow
refers to the most important features with low ranking values. Gray color (zero value in colorbar) was used to separate the results of rankers.

TABLE 2. Classification performance of QDA on the training and test datasets for individual rankers (for training dataset: mean and standard deviation of
cross validation error and feature subset size obtained by the one standard error rule; for test dataset: F1 measure of control (C0) and salt (C1) classes
obtained by training QDA on the training dataset using only features in feature subset and testing on unseen dataset).

subsets, in which the leftmost subset contains only the top
ranked feature and the rightmost subset contains all features
(the model complexity increases across the horizontal axis).
CV error decreased with an increasing size of feature subset
until feature subset contained 23 features whereby CV error
began to increase, which underscore the need for feature
selection. Because of the uncertainty around CV error of each
feature subset (shown in Fig. 4 (b)), it was appropriate to
determine the most parsimonious feature subset within one
standard error of the minimum CV error for determining the
optimum number of features. QDA classifier needed the first
18 features at top of the feature list ranked by the ensemble of
all rankers to achieve an error rate within 1SE of theminimum
CV error. To achieve a similar CV error obtained by using all
the 215 features (CV error = 0.30), QDA required the top
seven features from the feature list.

D. RECURSIVE ELIMINATION OF RANKERS
A base ranker was disregarded from the ensemble pro-
cess if its elimination resulted in an improved classification

performance among all options at a given step. The F1-mean
and number of features in the subset were used by TOPSIS
to determine which rankers should be eliminated from the
ensemble process at each step (results are presented in
Table 3). The highest F1-mean was achieved at step 1 using
19 features obtained by the ensemble of all rankers except
CFS. However, elimination of LASSO and SFS-forward at
the next two iterations resulted in four less features while only
reducing F1-mean by less than 0.5% compared to step 1 that
offered the largest F1-mean. Although the results obtained at
step 2 and 3were similar, the ensemble of three rankers at step
3 is preferred due to less complexity and less computation
compared to the ensemble of four rankers at step 2. Therefore,
the final ensemble feature subset was obtained by aggregating
the ranking of ReliefF, SVM-RFE, and random forest, each of
which belongs to a different feature selection category: filter,
wrapper, and embedded, respectively.

The size of feature subset obtained by the ensemble of
these three rankers (Table 3; Fig. 5) dropped to 15 features,
three features less than the ensemble of all six rankers.
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FIGURE 4. (a) Ranking of features obtained by the ensemble of all six rankers: correlation-based feature selection, ReliefF, sequential feature selection -
forward selection, support vector machine-recursive feature elimination, and random forest. (b) Cross validation error (CV error) of QDA on the unseen
fold of the 10-fold cross validation for each feature subset size. The feature subset size required to obtain the minimum CV error is shown by the vertical
dashed line, the lowest error plus one standard error is presented by the horizontal dashed line, and the feature subset size of the most parsimonious
model whose error was within 1SE of the minimum error is illustrated by the vertical solid line. (c) CV error for the first few feature subset size to show
with more detail how the most parsimonious feature subset size is selected.

TABLE 3. Feature subset size and F1-mean after each step of the recursive elimination of rankers (Algorithm 3).

Furthermore, the difference between classification accuracy
of the ensemble of three rankers (F1-mean = 77.07) and
the maximum accuracy of individual rankers achieved by
SFS-forward (F1-mean = 77.71) was less than 1%, while
the model complexity of SFS-forward (28 features) was

approximately twice as that of the three rankers ensemble
(15 features). This demonstrates the benefit of using ensem-
ble feature selection.

Fig. 5 depicts the feature ranking achieved by the ensemble
of ReliefF, SVM-RFE, and random forest, and Fig. 5 (b)
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FIGURE 5. (a) Ranking of features obtained by the ensemble of selected rankers: ReliefF, SVM-RFE, and random forest. (b) The 15 features selected
among the 215 spectral features scanned from 400 nm to 900 nm. (c) Cross validation error (CV error) of QDA on the unseen fold of the 10-fold cross
validation for each feature subset size. The feature subset size required to obtain the minimum CV error is shown by the vertical dashed line, the
lowest error plus one standard error is presented by the horizontal dashed line, and the feature subset size of the most parsimonious model whose
error was within 1SE of the minimum error is illustrated by the vertical solid line. (d) CV error for the first few feature subset size to show with more
detail how the most parsimonious feature subset size is selected.

demonstrates the ranking and distribution of the 15 selected
features over the scanned electromagnetic wavelengths. The
band nearest to the region of sodium absorption (589 nm)
and the adjacent bands were among the most informative and
were consequently the top-ranked features.

Similar to the ensemble of all six rankers, the ensemble
of the top three rankers resulted in a decreasing CV error
of QDA to a point (21 features), followed by an increasing
CV error as feature subset size increased. However, the CV
error obtained by the ensemble of three rankers had a sharper
decrease within the first few feature subsets compared to
the ensemble of six rankers. The two top-ranked features

(589 nm and 583 nm) from the ensemble of three rankers
were able to achieve a similar CV error obtained by using
all 215 features (CV error = 0.30), whereas the top seven
features from the ensemble of six rankers were required to
achieve a comparable CV error.

E. CLUSTERING OF TOP-RANKED FEATURES
The ensemble feature list derived from the top three tech-
niques was utilized in algorithm 2 to find the first six clusters
of spectral features whose mean values were at least 10 nm
apart. The first 18 features were needed to form the six
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TABLE 4. Clustering of features ranked by the ensemble of three rankers: ReliefF, SVM-RFE, and random forest. Algorithm 1 was used for clustering (only
integer part of wavelengths are presented; superscripts denote feature rank).

clusters (Table 4). Cluster 1 had the largest size (nine mem-
bers), whereas cluster 3 and 5 had the smallest size (one
member).

F. IMPORTANCE OF MULTISPECTRAL BANDS
The spectral bands within ±5 nm of the six cluster centers
(Table 4) from the hyperspectral dataset were averaged to
imitate a multispectral dataset for each of the four wheat lines
(Table 1). Algorithm 3 ranked these six bands via a recursive
elimination process as

RRR = {528, 805, 589, 573, 751, 546}

FIGURE 6. Mean of error across four wheat lines (dash line) and CV error
of four wheat lines for hyperspectral (n = 215) and multispectral datasets
using 10-fold cross validation. Bands were selected from the R set in
order (i.e., 5 Bands contains the first five bands in R and 1 Band
contains only the first band in R).

where 528 nm is the center of the most informative band
that persisted after the last iteration and 546 nm is the center
of the least important band eliminated during the first iter-
ation. Among all wheat lines, Kharchia had the largest CV
error across the hyperspectral and all multispectral datasets
(Fig. 6). This result can be explained by the fact that Kharchia

is the most salt-tolerant line among the four lines [14], indi-
cating the spectral response of plants under the salt treatment
were less likely to be affected by the imposed stress. Conse-
quently, the classification algorithm failed to accurately dis-
criminate between pixels that represented plants under each
of the control and salt treatments for Kharchia. Alternatively,
the lowest CV error was found for CS, which was the most
susceptible line among the others. The lowest CV error for
CS was achieved by using the six multispectral broad bands
and it increased as the number of bands decreased.

G. SALT STRESS PHENOTYPING OF WHEAT LINES
USING MULTISPECTRAL BANDS
The performance of multispectral bands in ranking wheat
lines based on their salt tolerance was determined using
methods used by [14] (i.e., MDPA and posterior probabil-
ity), and results were compared with those derived from the
hyperspectral dataset (Fig. 7). Using hyperspectral dataset
and MDPA and Bayesian approaches, the ranking of salt
tolerance for the evaluated wheat lines (from most tolerant to
most susceptible) is: 1) Kharchia, 2) co(CS), 3) sp(CS), and
4) CS, which is consistent with the results of conventional
phenotyping and historical evidence [14], [44], [45]. The
results presented here show that the same ranking of wheat
lines is obtained using six multispectral bands developed in
this study (Fig. 7). Bands were selected from theR set, which
contains the bands in the order of their importance.

For both MDPA and posterior probability, lower values
indicate a higher tolerance to salt stress. Use of only the top
two multispectral bands in R set (i.e., 528 nm and 805 nm)
resulted in the same ranking of wheat lines as was achieved
using more multispectral bands or the complete hyperspectral
dataset. However, using fewer bands may lead to more uncer-
tainty because as the number of bands decreases, the val-
ues deviate more from the base values obtained by using
the hyperspectral bands (Fig. 7). To quantify the difference
between the values achieved by using various multispectral
band combinations with base values obtained by all bands,
NRMSE was computed for both techniques (IV-H). NRMSE
could also be used to compare the performance of MDPA
and Bayesian inference in ranking wheat lines as the number
of multispectral bands decreased, since NRMSE calculated
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FIGURE 7. Performance comparison between the selected multispectral bands and the full hyperspectral dataset (reported by [14]) for ranking wheat
lines based on their salt stress tolerance using (a) Minimum difference of pair assignments (MDPA) and (b) the Posterior probability P(salt|x). For both
MDPA and posterior probability, lower values indicate a higher tolerance to salt stress.

TABLE 5. Normalized root mean square error (NRMSE) of minimum difference of pair assignments (MDPA) and Bayesian inference approach calculated
for the selected six multispectral bands.

for both techniques has the same scale due to normalization
based on the range of base values for each technique.

By decreasing the number of multispectral bands, NRMSE
fluctuated for the Bayesian inference approach, whereas it
consistently increased for theMDPA approach. By using only
the first three bands inR (528, 805, and 589 nm), NRMSE for
MDPA was less than 4%, indicating a multispectral camera
with three broad bands centered at these bands would be
sufficient for salt stress phenotyping.

H. DISCUSSION
The present study proposed a pipeline to ensemble multi-
ple rankers to rank spectral features of a high-dimensional
hyperspectral dataset. The proposed pipeline offered a novel
ensemble of base rankers to aggregate the benefits associ-
ated with the base rankers while disregarding those whose
presence reduced the performance of classification. The algo-
rithm was able to determine the inclusion/exclusion of a
ranker for the final ensemble based on two criteria: feature
subset size and F1-mean.

The ensemble feature selection drastically reduced
the dimension of the hyperspectral dataset (from
215 to 15 spectral features). While 200 features were elim-
inated, the F1-mean improved by 8.5% from 68.49% to

77.09% using only 15 features of the feature ranking list
obtained by the ReliefF, SVM-RFE, and random forest
rankers. This reveals that a small subset of spectral features
are able to capture a large portion of the most valuable
information, while the remaining features tend to be redun-
dant and/or contribute to noise. Moreover, ranking 589 nm,
a known Na absorption band, as the top-ranked feature
indicated that the proposed ensemble method was able to dis-
cover a physical meaning concealed in the high-dimensional
spectral data of NaCl-treated wheat plants under salt
stress.

In addition to the ensemble feature selection pipeline,
the other contribution of this study was finding the centers of
broad multispectral bands and ordering them based on their
importance in discriminating salt stress leaves from healthy
ones. This discovery can be a foundation for developing a
custom-designed multispectral camera that aims to leverage
the advantages of a multispectral versus hyperspectral sens-
ing (e.g., simplicity, reducing cost, avoiding complications
associated with line scanning hyperspectral cameras, etc.).
Furthermore, by using the multispectral bands identified in
this study, the salt stress tolerance of four wheat lines was
assessed in a more interpretable and efficient manner. The
ranking of wheat lines using the multispectral dataset was
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consistent with the analysis of the hyperspectral dataset eval-
uated by [14].

In this study, we initiated the idea of establishing a library
for spectral features correlated to the plant diseases and
stresses, each of which adversely affecting the plant phys-
iology. Consequently, the spectral response of plant would
change based on the type of disease and stress. This under-
scores the importance of hyperspectral imaging as a promis-
ing research tool to find meaningful wavelengths for each
type of applications at the first place. Once important features
are identified, then multispectral sensors can be designed
accordingly for that specific application. In general, the ben-
efits of identifying appropriate multispectral bands to reduce
the dimension of a hyperspectral dataset can be summarized
as (i) reducing the complexity of interpretation as complex-
ity is a function of input data dimensions, (ii) reducing
the risk of overfitting by selecting a less complex model,
(iii) reducing the running time, computational cost, and stor-
age required for processing and storing large hyperspectral
datasets, (iv) reducing the required number of samples/pixels,
and (v) reducing the cost of data collection (e.g. a multi-
spectral sensor versus a hyperspectral sensor). Furthermore,
a simpler model with less redundant/irrelevant features is
more robust.

V. CONCLUSION
The proposed ensemble feature selection pipeline ranked the
spectral features of a hyperspectral dataset from the most
to the least important based on the accuracy of a classifier
in distinguishing between healthy and stressed vegetation
pixels. The top 15 features in the feature ranking list achieved
the best classification results, and the top two features were
able to achieve a similar CV error as that of all 215 spectral
features. The findings of this study suggest that feature selec-
tion should be embedded as one of the main pre-processing
steps in hyperspectral image analysis. Feature selection mit-
igates the challenges in post-processing (e.g., complex inter-
pretation and expensive computational cost) while improving
classification accuracy. We were able to determine six multi-
spectral bands that can substantially contribute in the devel-
opment of a custom-designed multispectral camera for wheat
salt stress phenotyping. A multispectral camera designed for
a specific application can benefit scientists, farmers, agri-
cultural practitioners, and field consultants across a wide
range of use cases. Some benefits include avoiding: (i) the
high cost of hyperspectral sensors, (ii) difficulties with data
collection, especially as it relates to properly using a line-
scanning camera, and (iii) the required expertise for analyzing
high-dimensional hyperspectral images. The proposed fea-
ture selection pipeline can be utilized for feature selection
and, subsequently, dimensionality reduction of other types
of high-dimensional datasets (e.g., microarray datasets).
In future work, we will employ this feature selection pipeline
to select informative spectral features in phenotyping for
other abiotic/biotic stress tolerance in plants, and work to

extend the library of spectral features associated with various
plant diseases and stresses.
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