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ABSTRACT During recent years, distributed manufacturing optimization problems have been researched
and applied in many fields, such as steelmaking system and textile production process. To solve the multi-
objective distributed flexible job shop scheduling problem, a hybrid Pareto-based tabu search algorithm
(HPTSA) is investigated to minimize four objectives simultaneously, i.e., the makespan, the maximal
workload, the total workload, and the earliness/tardiness (E/T) criteria. In the proposed algorithm, several
approaches considering both the problem characteristics and the objective features are used to initialize the
group of solutions. Then, five types of neighborhood structures that consider both problem structures are
developed to enhance the exploitation and exploration capabilities. In addition, a well-designed backward
method is proposed to optimize the E/T criteria. Based on the realistic production data in the steelmaking
system, several instances with different problem scales are randomly generated. Four efficient multi-
objective optimization algorithms are selected to make detailed comparisons with the proposed HPTSA
algorithm. After detailed tests on the realistic instances, the experimental comparison results show that the
proposed algorithm shows competitive performance compared with the selected efficient algorithms.

INDEX TERMS Flexible job shop scheduling problem, tabu search, multi-objective optimization, Pareto
archive set, distributed scheduling.

I. INTRODUCTION
Task scheduling is critical for many applications, which
aims at assigning suitable resources or devices for the given
tasks or jobs to minimize several certain objectives [1]–[4].
The flexible job shop scheduling problem (FJSP) is one
branch of the classical job shop scheduling problem (JSP),
which also can be considered as one type of task schedul-
ing. In FJSP, one of the critical issues is to assign tasks to
appropriate or optimal machines for processing with mini-
mization of certain criteria. In addition, in FJSP, all of the jobs
have machine selection flexibilities, which increase the prob-
lem complexity but improve the processing balance among
all of the machines. Therefore, due to its immense value

of practical applications, FJSP has gained more and more
research focuses. It has been commonly agreed that JSP is
one of the NP-hard problem [5]. Moreover, during recent
years, distributed manufacturing has gained more and more
research focuses. However, there is less literature considering
the distributed FJSP problems.

During recent year, with more and more researches, multi-
objective optimization algorithms have been developed and
applied to solve many industrial problems. In multi-objective
optimization problems, two or more conflicting objectives
should be minimized or maximized simultaneously. When
considering multiple objectives, a unique solution that is the
best for all objectives may not exist. A solution with better
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fitness values in some objectives might have worse fitness
values in other objectives. Alternatively, the target of the opti-
mization algorithm is to get enough non-dominated solutions
for the problem.

In this paper, we present a hybrid Pareto-based tabu
search algorithm (HPTSA) for solving the distributed multi-
objective FJSP with the minimization of the makespan,
the maximal workload, the total workload, and the earli-
ness/tardiness (E/T) criteria. First, several initialization meth-
ods are proposed to consider both the problem characteristics
and the objective features. Then, considering the problem
features, five types of neighborhood structures are investi-
gated. Next, a well-designed backward method is proposed
to optimize the E/T criteria. The rest of this paper is struc-
tured as follows: Section 2 briefly reviewed the related
meta-heuristics and problems. Section 3 gives the problem
description. Section 4 explains the algorithm framework.
Section 5 reports the algorithm comparisons and analysis.
Finally, Section 6 summarizes and describes the future works.

II. LITERATURE REVIEW
A. META-HEURISTICS
Recently, many types of meta-heuristics have been proposed
to solve different problems. We can classify these meta-
heuristics into two categories, local search meta-heuristics,
and global search meta-heuristics. The local search meta-
heuristics includemany algorithmswhich focus on increasing
the exploiting ability of the algorithm. Tabu search (TS) is one
of the local search meta-heuristics which has been used to
solve many engineering optimization problems. Some local
search methods were also used for the flow shop schedul-
ing problem [6], the lot-streaming flow shop scheduling
problem [7], and the FJSPs [8]. However, the local search
heuristic has many shortcomings, and many meta-heuristics
consider both the local search and global search abilities.
Table 1 gives a detailed description of the meta-heuristics for
engineering problems.

B. THE MULTI-OBJECTIVE ALGORITHMS
Most of the published multi-objective optimization
algorithms can be divided into two categories, i.e., the Pareto-
based multi-objective optimization algorithm [32]–[39],
and the decomposition-based multi-objective optimization
algorithm [40]–[46].

The Pareto-based method has been used by researchers.
However, the crowding distance and distribution and diver-
sity of the population are the two major issues of the
Pareto-based methods, which make the Pareto-based algo-
rithm efficient for solving two or three objectives but
weak in solving optimization problems with more than
three objectives. For example, Battiti and Passerini [34],
Li et al. [35], [37], and Yi et al. [36] verify the efficiency of
the Pareto-based optimization methods for solving optimiza-
tion problems with two objectives. Gao et al. [38] applied
the Pareto-based harmony search algorithm to optimize

TABLE 1. Literature about the meta-heuristics.

two objectives in FJSPs, namely the maximum completion
time (makespan) and the mean of earliness and tardiness.
Li and Huo [39] considered three objectives to reduce deliv-
ery delay, minimization idleness of machines and interruption
in production.

MOEA/D is one of the most important methods among
the decomposition based multi-objective optimization algo-
rithms. Since it has been designed, many researchers
have improved the canonical MOEA/D algorithm. The
MOEA/D has advantages in solving continuous optimization
problems [40]–[46], but fewer literatures have applied it to
solve discrete optimization problems, such as the scheduling
problem in this study.

Table 2 gives a detailed description of the multi-objective
algorithms.
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TABLE 2. Literature about the multi-objective algorithms.

C. TASK SCHEDULING AND OPTIMIZATION PROBLEMS
Recently, task scheduling in cloud systems has been studied.
Li et al. [47] studied the task scheduling in the resource-
constrained steelmaking scheduling problems. Liu et al.
[48] investigated the task assignment problem in a multi-
agent design system. Zhang and Liu [49] further studied the
task assignment in cloud systems. Wang et al. [50] consid-
ered the heterogeneous scheduling problems with energy-
efficiency features. Wnag et al. [4], [51] also developed an
artificial swarm intelligence method and parallel heuristics.
The above literature discussed task assignment without con-
sidering the flexible capabilities of the cloud system. For
optimization problems in different types of systems, many
literatures have investigated different types of optimiza-
tion problems, such as green communications optimization
problems [52], [53], support vector machine problem [54],
fuzzy clustering and deflection problem [55], recurrent Neu-
ral Network optimization problem [56], crowd simulation
based on computational intelligence method [57], group rec-
ommendation problem [58], Supervised Feature Learning
problem [59], face recognition [60], localization prediction
problem [61], multi-features fusion optimization [62], linear
or nonlinear optimization problems [63]–[68], and multi-
agent systems optimization problems [69]–[72].

Considering the flexible task assignment in cloud sys-
tems, many literatures have modeled it as a hybrid

flow shop scheduling (HFS) problem. Ruiz and
Vázquez-Rodríguez [73] reviewed the literature about HFS
published before 2010. Very recently, the HFS problems have
been considered using meta-heuristics, such as migrating
birds optimization [74], [75], self-tuning iterated greedy
(SIG) algorithm [76], hybrid algorithm combining ant system
and GA [77], variants of iterated greedy [78], hybrid artificial
bee colony algorithm [79], variable neighborhood search
algorithm [80], and iterated search methods [81].

D. FLEXIBLE JOB SHOP SCHEDULING PROBLEM
Recently, the FJSP problems have been researched with
many meta-heuristics, such as discrete virus optimization
algorithm [82], game theory based multi-objective
algorithm [83], a memetic algorithm considering worker
flexibility [84], shuffled frog-leaping algorithm (SFLA) [6],
a hybrid fruit fly algorithm to reduce manufacturing car-
bon footprint [85], the multi-objective harmony search
algorithm [38], the modified genetic algorithm [39], and the
energy-efficient multi-objective optimization algorithm [86].
From the above literature, we find that there is less literature
that considers the multi-objective FJSPs. Therefore, in this
study, we consider a novel Pareto-based tabu search algorithm
considering four objectives.

For considering the distributed manufacturing problems,
Rifai et al. [87] developed a novel multi-objective adaptive
large neighborhood search (MOALNS) algorithm to simul-
taneously satisfy three objectives of minimizing makespan,
total cost and average tardiness values in consideration of
the reentrant characteristic of DPFSP. Lin and Ying [88]
solved the no-wait flowshop scheduling problem (DNFSP) by
developing a mixed integer programming (MIP) mathemati-
cal model and an iterated cocktail greedy (ICG) algorithm.
Bargaoui et al. [89] investigated an artificial chemical reac-
tion meta-heuristic to minimize the maximum completion
time. Ying et al. [90] presented an Iterated Reference Greedy
(IRG) algorithm for the distributed no-idle permutation flow-
shop scheduling problem (DNIPFSP) with the objective of
minimizing the makespan. Komaki and Malakooti [91] min-
imized the makespan of the distributed no-wait flow shop
scheduling problem utilizing a general variable neighborhood
search (GVNS) algorithm. Deng and Wang [92] developed
a competitive memetic algorithm (CMA) to solve the multi-
objective DPFSP using the makespan and total tardiness
criteria. Lin et al. [93] addressed the distributed assembly
permutation flow-shop scheduling problem (DAPFSP) using
a backtracking search hyper-heuristic (BS-HH) algorithm.
Zhang et al. [94] solved the distributed flowshop scheduling
problem with flexible assembly and setup time using a con-
structive heuristic (TPHS) and two hybrid meta-heuristics.

III. PROBLEM DESCRIPTION
A. PROBLEM DESCRIPTION
Gao and Pan [95] considered the steelmaking continuous-
casting process as an extension of the classical FJSPs.
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Li and Huo [39] also considered the steel tube production sys-
tem as a multi-objective FJSPs. In this study, we investigated
the distributed features of the steelmaking production system
and considered it as a distributed FJSP. In the distributed
FJSP problem, there are n jobs,mmachines, and s distributed
factories. Each job has its own pre-defined and deterministic
processing stages, and which constructs a set of operations
for it. To schedule each job, the first task is to decide which
factory should be assigned to the job. After assigning a certain
factory, the job should be processed through pre-defined
stages. In each pre-defined stage, the operation has a set
of candidate machines for processing, which is the second
task for the problem, that is, to select a suitable machine
from candidate machines for each job. After assigning the
candidate machine for each job, the third task is to schedule
all jobs on the assigned machine in each factory. Therefore,
the key issues for the distributed FJSP are as follows.

• Assign a suitable factory for each job;
• Assign a suitable machine for each job from a candidate
machine set;

• Schedule all jobs on each assigned machine in each
factory.

The general constraints for the distributed multi-objective
FJSP with E/T criteria are given as follows:

• Each job should select exactly one factory;
• Each operation should select exactly one machine in
each stage;

• Each machine can process at most one operation at a
given time;

• Each operation can be processed at most on onemachine
at a given time;

• The processing of any operation cannot be interrupt
during its processing;

• Each operation can be transported to its following stage
after the completion of the current stage;

• On any machine, the overlap of the processing different
operations is not permitted;

• The disruption events, such as machine breakdown, job
insertion, and job cancelation are not considered; and

• The processing time for any operation on any suitable
machine is pre-defined and deterministic.

In this study, we examine the distributed FJSP with four
objectives, minimization of themakespan, themaximal work-
load, the total workload, and the earliness/tardiness (E/T)
penalty. The E/T penalty is used to assign a lower fitness
value to the solutions which can not release the needed jobs
at a given due date. The E/T penalty aims to allow the
completion time of all jobs at the given dates to maximize the
economic profit. Earliness is not always profitable because
the jobs which have been completed before the due date need
an additional memory buffer. Tardiness is not beneficial for
the economic profit because it cannot satisfy the customer’s
demand. Therefore, the algorithm should consider both the
earliness and the tardiness to maximize the economic profit.
The notations used in this study are given in Table 3.

TABLE 3. Notations employed in the paper.

In addition, to apply the Pareto-based optimization algo-
rithm, which is efficient for solving problemwith two or three
objectives, we combine the second and the third objectives
into one objective. Based on the above notations, the objec-
tives are used in this study:

1) minimization of maximum completion time
(makespan):

F1 = max{Ci|i = 1, 2, . . . , n} (1)

2) minimization of the workloads:

F2 =Wmax +WT (2)

where the critical machine workloadWmax is computed
as follows: Wmax = max{Wk |k = 1, 2, . . . ,m}, and
the minimization of total workloadWT is computed as
follows:

WT =
∑

pi,j,k , i = 1, 2, . . . , n;

k = 1, 2, . . . ,m; ∀j.

3) minimization of E/T penalty:

F3 =
∑m

k=1
(max(0, Sk−CM k )+max(0,CM k−Ek ))

(3)

B. PROBLEM EXAMPLE
Fig. 1 gives an example of the distributed FJSP problem
in Gantt chart, where there are two factories, f1 and f2.
In each factory, there are five machines which construct
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FIGURE 1. An example of Gantt for the distributed FJSP.

TABLE 4. Processing time table.

two stages. In the first stage of each factory, there are two
parallel machines and three identical machines in the sec-
ond stage. Six jobs are to be scheduled, and among them,
the first three jobs are assigned to the first factory and
the second three jobs are processed in the second factory.
In the first factory, each job has two operations which should
be assigned to one machine from the parallel machines
in each stage. For example, in the first stage of the first
factory, the operation O11 is assigned to the machine M1.
The machine assignment for the first factory is as foll-
ows: {〈O11,M1〉, 〈O21,M2〉,〈O31,M2〉,〈O12,M3〉,〈O22,M4〉,
〈O32,M5〉}. In each assigned machine, all of the waiting jobs
should be scheduled, for example, on M2, the processing
sequence of the assigned jobs are {O21,O31}. The processing
time for each job on each machine is given in Table 4.

From the example Gantt chart, we can see that the main
difference of the distributed FJSP and the canonical FJSP is
that, in the former, all jobs should first be assigned the pro-
cessing factory. Therefore, the distributed FJSP is harder than
the classical FJSP.

IV. THE PROPOSED ALGORITHM
This section presents the components of the proposed algo-
rithm. First, the framework of the proposed algorithm is
described. Then, the other components are detailed in the
following sub-sections.

A. THE FRAMEWORK OF HPTSA
The detailed steps of the proposed HPTSA algorithm are
given in Algorithm 1.

B. CODING
In order to represent the machine assignment and operation
scheduling simultaneously, we design a three-component-
based vector for the solution representation. For example,
given a solution {{1, 1, 1, 2, 2, 2}, {1, 3, 2, 4, 2, 5, 6, 10, 6, 8,
7, 9}, {1, 2, 3, 2, 1, 3, 4, 6, 5, 4, 6, 5}, the detailed description
of the solution representation is as follows.
(1) Factory assignment vector (hereafter called A1): In

each factory assignment vectorA1= {A1(1),A1(2), . . . ,
A1(n)}, where A1(i), i = 1, 2, . . . n represents the
corresponding assignment device for the ith operation.
In Fig. 1, the factory assignment vector can be consid-
ered as follows:

f1: {J1, J2, J3} and f2 : {J4, J5, J6}.

(2) Routing vector (hereafter called A2): In each routing
vector A2 = {A2(1),A2(2), . . . .,A2(κ)}, where A2(i),
i = 1, 2, . . . κ represents the corresponding assignment
device for the ith operation, where κ denotes the num-
ber of operations. In Fig. 1, the routing vector can be
considered as follows:

f1: {〈O11,M1〉, 〈O12,M3〉, 〈O21,M2〉, 〈O22,M4〉,

〈O31,M2〉, 〈O32,M5〉}

f2: {〈O41,M6〉, 〈O42,M10〉, 〈O51,M6〉, 〈O52,M8〉,

〈O61,M7〉, 〈O62,M9〉}

(3) Scheduling vector (hereafter called A3): In the schedul-
ing vector, each operation belonging to the same job
is represented with the same integer number, and the
occurrence sequence of the integer number represents
the operation one by one. For the example solution
in Fig. 1, the corresponding scheduling vector can be
interpreted as follows:

f1 : {1, 2, 3, 2, 1, 3} → {O11,O21,O31,O22,O12,O32}

f2 : {4, 6, 5, 4, 6, 5} → {O41,O61,O51,O42,O62,O52}

C. INITIAL SOLUTIONS
The initial solutions are used to initialize the population,
from which the initial solution for the TS algorithm was
selected, and the initial Pareto archive set was generated. The
factory assignment vector is generated in a random way, that
is, to assign a random available factory for each operation.
To increase the performance of the initial solutions, the initial
population was generated according to two types of priority
rules: routing initial rules and scheduling initial rules.

1) ROUTING INITIAL RULES
• Random rule is denoted asMSa.
• Local minimum processing time rule is denoted asMSb.
For each operation of the same job, select the machine
with the minimum processing time and fix the selection.
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Algorithm 1 General Framework of HPTSA
input: system parameters
output: the Pareto set
1. for i ← N do
2. Initialize the factory assignment component of

each solution in a random way.
3. Initiate the routing component of each solution

randomly use the random rule, the operation
minimum processing time rule (OPT), and
the global minimum processing time rule
(GPT).

4. Initiate the scheduling component of each
solution randomly use the most work
remaining rule (MWR), the most number of
operations remaining (MOR) rule, and the
shortest processing time rule (SPT).

5. end
6. Evaluate each solution and initialize the Pareto

archive set, select the best one as the initial
solution for the TS algorithm

7. If the stopping criterion is satisfied, output the
Pareto archive set. Otherwise, perform the
following steps

8. while stop criterion is not satisfied do
9. Perturbation in the factory assignment

component phase.
10. for i← N do
11. Produce a neighboring solution by applying

the neighborhood structure V to the
current solution.

12. Evaluate the neighboring solution, and insert
it into a solution set.

13. end
14. Perturbation in the routing component phase.
15. for i ← N do
16. Produce a neighboring solution by applying

the function neighborhood structure
I , 5, III to the current solution.

17. Insert the neighboring solution into a solution set
18. end
19. Apply the non-dominated sort algorithm to the

current neighboring population.
20. Update the tabu list by adding the best

neighboring solution and removing the
oldest solution.

21. Update the Pareto archive set.
22. Perturbation in the scheduling component

phase
23. for i ← N do
24. Produce a neighboring solution by applying

the critical block neighboring structure
to the current solution

25. Insert the neighboring solution into a solution set
26. end
27. Apply the non-dominated sort algorithm to the

current neighboring population.
28. Update the tabu list by adding the best

neighboring solution and removing the oldest
solution.

29. Update the Pareto archive set.
30. end

• Global minimum processing time rule is denoted
as MSc. From the processing timetable, find the global
minimum processing time, fix the assignment, then add

the selected processing time to every other entry in the
same column.

2) SCHEDULING INITIAL RULES
• Random rule is denoted as OSa.
• Last Processing rule, denoted asOSb. The detailed steps
are as follows: (1) calculate the completion time for each
machine; (2) record each machine with the completion
time equal to the current makespan into a set namedMlp;
(3) mark all of the critical operations; (4) randomly
select a critical operation and assign it to another dif-
ferent candidate machine.

• EDD (Earliest Due Date) rule, denoted asOSc. First,
sort all operations according to the due date in non-
decreasing order. Then, select the operation with the
earliest due date to schedule on the assigned machine.

• Modified due date rule, denoted as OSd. This rule com-
bines the EDD rule and the total processing time of the
operations belonging to the same job which have been
scheduled before Oi,j. First, we define a modified due
date as follows:

di,j =


di −

j−1∑
h=1

pi,h,j, if j > 1

di, otherwise

where di is the due date of the job Ji,
j−1∑
h=1

pi,h,j is the

total processing time of the operations belonging to the
job Ji which have been scheduled before Oi,j. Then, sort
the remaining operations according to the modified due
date di,j in non-decreasing order.

D. NEIGHBORHOOD STRUCTURES
For the problem considered, we design five types of neigh-
borhood structures as follows.

1) NEIGHBORHOOD STRUCTURE I
The main procedures of the first neighborhood structure are
described as follows:
Step 1. For each machine, compute the total number of

critical operations;
Step 2. Sequence all of the machines according to the

number of critical operations in descending order;
Step 3. For the first machine in the resulted sequence,

denotes it as Mold, randomly select a critical oper-
ation and denoted it as Os;

Step 4. For the selected critical operationOs, from its can-
didate machine set, select a machine with relative
less number of critical operations;

Step 5. Replace the routing component.

2) NEIGHBORHOOD STRUCTURE II
The neighborhood structure II is based on the critical path
theory. Fig. 2 shows a Gantt chart of a critical path, where
the critical path is the longest path with critical operations.
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FIGURE 2. Gantt chart for a critical path example.

The critical operation is the operation which cannot be
right or left shift given the maximal completion time. For
example, in Fig. 2, the operation O22 is the critical operation
and any shift of it will affect the makespan of the solu-
tion. However, the operation O12 is not the critical opera-
tion, because we can right shit it without any effect of the
makespan.

It can be seen in Fig. 2, the example solution contains two
critical paths, i.e., CP1 = {O21,O22,O32,O43}, and CP2 =
{O21,O22,O32,O33}. In Fig. 2 the critical pathCP1 is divided
into two blocks, B11 = {O21} and B12 = {O22,O32,O43},
while the critical path CP2 is divided into three blocks, B21 =
{O21}, B22 = {O22,O32}, and B23 = {O33}, where any of the
operation in the block is called a critical operation. The two
critical paths contain two public adjacent critical operations,
i.e., {O22,O32}, which construct a public critical block. The
example solution shown in Fig. 2 contains five critical oper-
ations, i.e., {O21,O22,O32,O33,O43}. The detailed steps of
the neighborhood structure 5 are shown as follows:
Step 1. Get all critical operations of the current solution;
Step 2. Randomly select a critical operation Oi,j (with a

position in the routing component of the current
solution denoted by posi,j) with at least two can-
didate devices, denote the current machine as Mk .
For each candidate machine other thanMk , denote
asM

′

k . If one of the following criterions is satisfied,
replaceMk withM

′

k at position posi,j in the routing
component of the current solution. 1) The newly-
resulted pi,j,k ′ is smaller than pi,j,k (to improve the
total workload). 2) Mk is the busiest machine and
therefore Wk ′ + pi,j,k ′ < Wmax (to improve the
critical workload).

3) NEIGHBORHOOD STRUCTURE III
The neighborhood structure III is embedded in the scheduling
algorithm to minimize the makespan.

a: PUBLIC CRITICAL BLOCK
In Fig. 2, we give an example of a Gantt chart form for a
feasible solution with two critical paths. The adjacent crit-
ical operations belonging to at least two critical paths are
called a public critical block. For example, in Fig. 2, the

TABLE 5. Notations for the modified backward procedure.

three operations {O21,O22,O32,O43,O33} constructs a crit-
ical block, and which is the only block in the Gantt chart.
It should be noted that, in the critical block, the critical
operation in the first position is called the block head, while
the ending critical operation in the block is called the block
tail. The block head and block tail have an important role in
the local search.

b: LOCAL SEARCH
To improve the local search abilities, three types of neigh-
borhood structures are developed, which are named Swap,
Insert_I , and Insert_5, respectively. Assume that a public
critical block in a feasible solution is denoted by PB =
{pb1, pb2, . . . pbc}, where pb1 and pbc are the first and end-
ing operations, respectively, of the public critical block.
pb2, . . . pbc−1 are the remaining operations of the critical
block. First, we define three functions: (1) swapping x with y
is denoted by swap(x, y); (2) inserting x just after y is denoted
by insert8(x, y); (3) inserting x just before y is denoted by
insert9 (x, y). Next, we give three neighborhood structures as
follows:

1) Swap neighborhood structure.

5swap = {swap(pb1, x)|x ∈ PB− {pb1}}

∪swap(pbc, x)|x ∈ PB− {pbc}}} (4)

2) Insert I neighborhood structure.

5insert = {insert8(pb1, x)|x ∈ PB− {pb1}}

∪insert9 (pbc, x)|x ∈ PB− {pbc}}} (5)

3) Insert II neighborhood structure.

5insertII = {insert8(x, pbc)|x ∈ PB− {pbc}}

∪insert9 (x, pb1)|x ∈ PB− {pb1}}} (6)

The detailed local search procedure is shown
in Algorithm 2.

4) NEIGHBORHOOD STRUCTURE IV
The neighborhood structure IV is embedded in the schedul-
ing algorithm to minimize the E/T criteria. Thus, the ideal
schedule is the one which schedules each operation just fol-
lowing its due date. Before the modified backward procedure,
we first give the following notations in Table 5.

The modified backward procedure is given in Algorithm 3.
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Algorithm 2 Local_Search

input: a set named Mpb which contains all the critical
operations.

output: the best neighboring solution of the current
solution

1. Set the global best solution gbest with a large
value.

2. for each public critical block pb in Mpb do
3. if there are two ormore operations in pb, then
4. Apply the swap, InsertI and Insert5

neighborhood structures in Equations
(4), (5) and (6) to search the
neighboring solutions.

5. Evaluate each neighboring solution; replace
the gbest with the best new solution if
the latter is better.

6. end
7. end
8. Output gbest as the best neighboring solution.
9. end

5) NEIGHBORHOOD STRUCTURE V
The neighborhood structure V is to generate a different
neighboring solution by randomly changing the assigned
factory for one or two jobs. The detailed implements of the
neighborhood structure V are to perform the following two
approaches in a random way.
(1) One job changing approach: This type of approach

performs the following steps: first, randomly select one
job from the factory with most workload; then, ran-
domly assign a different factory to process the selected
job.

(2) Two job changing approach: This type of approach
performs the following steps: first, randomly select two
jobs with different processing factories; then, swap the
two assigned factories for the two selected jobs.

6) EXAMPLE OF THE NEIGHBORING STRUCTURES
Given the routing component of a feasible solution, {2, 2,
1, 1, 2, 1}, the problem is two jobs to be processed on two
machines, and each job has three operations. The due date
and the coefficient for the earliness and tardiness are given
in Table 6. For the scheduling component, we apply the above
two neighborhood structure to decide the sequence of each
operation on each machine. The neighborhood structure III
considers the makespan criteria while the neighborhood
structure IV considers the E/T criteria. Fig. 3(a) gives
a schedule applying the first neighborhood structure but
without left-shift. Fig. 3(b) gives a schedule applying the
first neighborhood structure with left-shift. Fig. 3(c) gives
a schedule applying backward procedure while Fig. 3(d)
gives a schedule applying the modified backward pro-
cedure. The fitness values of the two objectives are as
follows:

Algorithm 3 Modified_Backward
input: a feasible solution
output: an modified feasible solution
1. Initialization phase
2. Let U =

{
Oi,ni |i = 1, 2, ....., n

}
3. Calculate the possible start time of each job:

ri = dmax −max
{
di,
∑ni

k=1 pi,k
}

4. Set the idle time of each machine: Im = 0
5. Set the possible earliest start time of each opera-

tion in
U : ei,k = ri

6. end
7. Scheduling phase
8. While (U is not empty) do
9. Calculate the possible completion time of each

operation: Qi,k = ei,k + pi,k∀Oi,k ∈ U
10. Find the operations with the minimum possible

completion time and the assigned machine m∗ for
the operation: Q∗ = min

{
Qi,k

∣∣Oi,k ∈ U }
11. Memory all operations found so far in the set

C : C = {Oi,k
∣∣Oi,k ∈ U ∧ Qi,k ≤ Q∗ ∧mi,k = m∗}

12. Calculate the priority index for all operations in the
set C : Si,k = k ×

(
(αi + βi)/pi,k

)
13. Select the operation with the maximum priority

index denoted by O∗i,k , and then schedule it on the
assigned machine m∗

14. Update the idle time of machine m∗:
I
′

m∗ = max
{
Im∗ , ei,k∗

}
+ pi,k∗

15. Delete O∗i,k from U
16. If O∗i,k is not the first operation of job Ji, insert

Oi,(k−1) to U
17. Update the possible start time of the operations

Oi,(k−1) in U : ei,(k−1) = max
{
Qi,k , Imi,(k−1)

}
18. end
19. Calculate the fitness value.
20. Calculate the Cmax of the obtained schedule
21. Calculate the E/T value of the obtained

schedule
22. end

Right-shift procedure
23. If Cmax > dmax, then perform step4.1 to step4.5 to

consider right-shift.
24. Record the idle time interval of each machine in the

form of several pairs of <start, end>
25. Sort all operations according to the processing time

in non-decreasing order, the position
corresponding to Oi,k denoted by Li,k

26. Create a set of flags denoted by F to indicate
whether an operation needs a right-left move,
whose length equals the total number of
operations. The initial flag for each operation is
set to false

27. For each machine, from right to left, check whether
an operation being operated can be moved to the
right. Then, set the flag to true corresponding to
the selected operation

28. select the operation O
′

i,k by following the rule, and
then move it to the right position on the machine.
O
′

i,k =
{
Oi,k

∣∣max
(
Li,k

)
∧ F

(
Oi,k

)
= true

}
where F

(
Oi,k

)
represents the flag for a move right

of Oi,k
29. end
30. end
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FIGURE 3. Gantt form for the scheduling example.

1) Schedule without left-shift: makespan = 53,
E/T = 189;

2) Schedule with left-shift: makespan = 50, E/T = 96;
3) Schedule with backward procedure: makespan = 66,

E/T = 144;
4) Schedule with modified backward procedure:

makespan = 58, E/T = 72.
From the above results we can see that, the results obtained

by (2) and (4) are two optimal solutions, while the other two
solutions are not optimal. Therefore, in the scheduling phase,
neighborhood structure III and neighborhood structure IV are
applied for minimizing the makespan and the E/T criteria,
respectively.

V. EXPERIMENT RESULTS
This section discusses the computational experiments
that were used to evaluate the performance of the

TABLE 6. Example for a feasible solution.

proposed algorithm.Our algorithmwas implemented in C++
on an Intel Core i5 3.3 GHz PC with 4GB memory. The
compared algorithms were NSGA-II [96], MOEA/D [97],
DHS [98] and EEM [86]. All five compared algorithms utilize
the same coding mechanism, the same initialization function,
and the same stopping criterion.

In order to made detailed comparisons for solving the
FJSP problems with due date constraints, we randomly gen-
erated 20 realistic instances after considering the processing
data from the Baosteel industries. Several constraints are
described as follows.
• There are 10 charges, which can be divided into 1, 2, 3,
5, 6, or 10 sub-lots and are to be processed in five or ten
stages.

• The processing times for each sub-lot are randomly
generated in the range of [30, 40].

• The release time for each machine is set to zero.
• The transfer times between consecutive phases are gen-
erated randomly in the range of [10, 15].

• The processing time for each job contains the setup time.
• The start and end of the due date window are set to
[1440 − δ, 1440 + δ] according to the minute numbers
of a whole working day, where δ is a random integer
number in [0, 720].

A. SETTING PARAMETERS
The detailed descriptions of the system parameters are given
as follows:
• The population size Psize is set to 1000;
• The stop of the criterion is set to n× m iterations;
• The maximum non-improvement local search parameter
itermax is set to op_num/2;

1) Tabu tenure: The tabu tenure in the algorithm ranged
from Tenuremin = op_num/2 to Tenuremax =

op_num/2, where Tenuremin and Tenuremax represents
the minimum and maximum values of the tabu tenure,
respectively, and op_num denotes the total number of
operations. The adjustment feature of the tabu tenure
Tenurec is given as follows:

Tenurec = Tenuremin + (Tenuremax − Tenuremin)

× (t/Tmax).
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TABLE 7. Comparisons of the Pareto number for 20 realistic problems.

2) Neighborhood size: The neighborhood size represents
the searching strength, which ranged from nbmin =
op_num/5 to nbmax = op_num.

3) Tabu element: In this study, the weighted sum of the
three objectives (F(c)) was employed as the structure
of the tabu list.

B. COMPARISON METRICS
To test the performance of the proposed algorithm, we uti-
lized the three performance metrics that were discussed
in [99], i.e., the average Pareto distance Vpd , total number
of optimal solutions or non-dominated solutions Vnp, and
the ratio of the non-dominated solutions Vrd . Let SP denote
the reference solution set which was obtained by running
all the compared algorithms for 3000 iterations. Let S j (j =
1, 2, 3, 4) represent the non-dominated solution set that was
obtained by algorithm j, where SP = ∪S j. Then, the detailed
computation processes of the three metrics are as follows.

1) AVERAGE PARETO DISTANCE Vpd

Let Vpd = 1
|SP|

∑
y∈SP dy(S

P) and

dy
(
S j
)
= {

∑2

i=1
(

fi (x)− fi (y)

f maxi (.)− f mini (.)
)2}, y ∈ SP,

where fi (.) represents the ith objective value, and f maxi (.) is
the maximum value of the ith objective value in the Pareto
referent point set SP, whereas, f mini (.) is the minimum value.
dy
(
S j
)
represents the shortest normalized distance from a

reference solutions y in SP to the solution set S j. Vpd indicates

the average of those shortest normalized distances from all the
reference points to the solution set S j.
The average Pareto distance is usually used to evaluate

the spread and distribution of the obtained solution set. That
is, a smaller Vpd indicates that the obtained solution set has
better distribution and better approximation to the reference
set SP. The most promising situation is that Vpd equals 0,
which means that the set of obtained solutions is equal to the
reference point set.

2) NUMBER OF NON-DOMINATED SOLUTIONS Vnp

The number of non-dominated solutions is the number of
obtained solutions that are not dominated by the refer-
ence solutions. A larger value of Vnp indicates that there
are more non-dominated solutions in the obtained solu-
tions set S j. The computational process uses the following
formulation:

Vnp = {S j − {x ∈ S j|∃y ∈ SP : y ≺ x}},

where y ≺ x means that solution y dominates solution x.

3) RATIO OF NON-DOMINATED SOLUTIONS Vrd
The metric Vrd was used to compute the ratio of non-
dominated solutions in the obtained solution set S j. A larger
value of Vrd represents a solution set with a higher probability
for the obtained solution to be a non-dominated solution.
If Vrd is close to one, the obtained solution set is equal
to or near the non-dominated solutions set, whereas if Vrd
is close to zero, each obtained solution will be dominated
by one of the solution in the reference solution set. The
computational process uses the following formulation:

Vrd =
Vnp
|S j|

C. COMPARISON RESULTS
The computational results for the Pareto number, Pareto rate,
and the Pareto distance among the five compared algorithms
are reported in Tables 7, 8, and 9, respectively.

Table 7 shows the comparison results of the Pareto num-
ber. It can be concluded from the computational results
for the Pareto number that: (1) for the 20 realistic FJSP
problems, the proposed HPTSA obtained 19 optimal solu-
tions out of 20 instances, whereas the second-best algorithm
EMM only obtained five optimal instances; (2) it can be
observed from the last line that on average, the proposed
algorithm performed the best. Further, we also take a mul-
tifactor analysis of variance (ANOVA) to test whether the
differences are significant. Fig. 4 shows that, considering
the Pareto number comparison results, the five pairs of
compared algorithms show significant differences with each
other.

Table 8 shows the results of the Pareto rate, where there
are 12 columns. The 1th column gives the tested instance
name. Then, the next column tells the problem scale repre-
sented by the number of jobs in the system. Then, the next
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TABLE 8. Comparisons of the Pareto rate for 20 realistic problems.

FIGURE 4. Means and 95% LSD interval for the Pareto number.

five columns describe the average Pareto rate obtained by
NSGA-II, MOEA/D, DHS, EMM, and HPTSA. The last five
columns give the dev values based on the Pareto rate, where
dev value was computed as follows: dev = (fc − fmin)/fmin,
where fmin is the minimum values collected by the five com-
pared algorithms. It can be seen in Table 6 that: (1) for the
20 realistic FJSP problems, the proposed HPTSA obtained
17 optimal solutions out of 20 instances; (2) the last line
shows that on average, the proposed algorithm performed
the best; and (3) from the dev values, we found that HPTSA
shows better performance. Fig. 5 illustrates the means and the

FIGURE 5. Means and 95% LSD interval for the Pareto rate.

95% LSD (Fisher’s Least Significant Difference) interval for
the average Pareto rate. It can be concluded from Fig. 5 that,
considering the Pareto rate comparison results, the five pairs
of compared algorithms show significant differences with
each other.

Table 9 shows the comparison results of the Pareto dis-
tance. It can be concluded from the computational results for
the Pareto distance that: (1) for the 20 realistic FJSP prob-
lems, the proposed HPTSA obtained 17 optimal solutions
out of 20 instances; (2) the last line shows that on average,
the proposed algorithm performed the best, following with
the EMM algorithm; and (3) from the dev values, we found
that HPTSA shows better performance. Fig. 6 shows that,
considering the Pareto distance comparison results, the
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TABLE 9. Comparisons of the Pareto distance for 20 realistic problems.

FIGURE 6. Means and 95% LSD interval for the Pareto distance.

five pairs of compared algorithms show significant differ-
ences with each other.

D. COMPARISON ANALYSIS
From the experimental comparisons, it can be concluded
that the proposed algorithm is efficient and competitive to
other efficient multi-objective optimization algorithms. The
main advantages of the proposed algorithm are as follows:
(1) considering both the problem characteristics and the
objective features, in the proposed algorithm, several initial-
ization approaches are utilized to produce initial solutions
with high performance; (2) five types of neighborhood struc-
tures that consider both problem structures are developed to

enhance the exploitation and exploration capabilities; (3) to
transfer the four objectives to a three-objective optimization
problem, which can use the efficient performance of Pareto-
based optimization methods; and (4) a well-designed back-
wardmethod is embedded to optimize the E/T criteria without
affecting the other objectives.

VI. CONCLUSIONS
In this study, we considered four objectives simultane-
ously, minimization of the makespan, the maximal work-
load, the total workload, and the earliness/tardiness (E/T)
criteria, for solving the distributed multi-objective FJSP. The
main contributions are as follows: (1) detailed reviews of the
meta-heuristics, task assignment problems, multi-objective
optimization algorithms, and FJSP problems were described,
which gave a brief and clear display of the development of
algorithms and problems related to this study; (2) several
approaches considering both the problem characteristics and
the objective features were used to generate the initial popula-
tion; (3) five types of neighborhood structures which consider
both problem structures and the balance of global search and
local search abilities were developed; and (4) a well-designed
backward method was proposed to optimize the E/T criteria.

In our future works, we will consider following issues:
(1) applying the proposed algorithm to solve other complex
and realistic production problems, such as steelmaking cast-
ing problem with more realistic constraints, and distributed
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flexible job shop scheduling problem; (2) improving the
capabilities of handling more objectives, such as the energy
consumptions, and the multi-modal processing features;
(3) investigating the self-adaptive searching procedure to bal-
ance the global and local abilities of the proposed algorithm;
(4) to consider the assemble stage and the travel time between
each factory; and (5) to verify the efficiency of the proposed
algorithm in a theoretical way.
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