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ABSTRACT In magnetic resonance imaging (MRI), the super-resolution technology has played a great
role in improving image quality. The aim of this paper is to improve edges of brain MRI by incorporating
the gradient information of another contrast high-resolution image. Multi-contrast images are assumed to
possess the same gradient direction in a local pattern. We proposed to establish a relation model of gradient
value between different contrast images to restore a high-resolution image from its input low-resolution
version. The similarity of image patches is employed to estimate intensity parameters, leading a more
accurate reconstructed image. Then, an iterative back-projection filter is applied to the reconstructed image
to further increase the image quality. The new approach is verified on synthetic and real brain MRI images
and achieves higher visual quality and higher objective quality criteria than the compared state-of-the-art
super-resolution approaches. The gradient information of the multi-contrast MRI images is very useful.
With a proper relation model, the proposed method enhances image edges in MRI image super-resolution.
Improving the MRI image resolution from very low-resolution observations is challenging. We tackle this
problem by first modeling the relation of gradient value in multi-contrast MRI and then performing fast
supper-resolution methods. This relation model may be helpful for other MRI reconstruction problems.

INDEX TERMS MRI, image reconstruction, super-resolution, multi-contrast images.

I. INTRODUCTION
In magnetic resonance imaging (MRI), the low-resolution
(LR) is usually encountered due to acquisition constrains
such as limited sampling time or moving subjects. These
LR may seriously affect the post-processing and medical
diagnosis. To recover a high-resolution (HR) image from
its low-resolution version [1], super-resolution technologies
have been widely used in MRI [2]–[11].

Super-resolution methods can be roughly grouped into
two main categories: Interpolation and non-interpolation.
Interpolation approaches, e.g., the bicubic and bi-spline, are
usually fast but frequently generate over-smooth images.
Non-interpolation methods incorporate various image priors,

e.g., sparse representation [3]–[6], [11] non-local recon-
struction [7], [10] and total variations [8], [9], leading to
more attractive super-resolved images. However, these non-
interpolation methods usually require time-consuming iter-
ation processing and do not pay special attention to edge
information.

Edge structures of medical images have a particularly sig-
nificant impact on visual scenes to detect suspicions, classify
malformations and make diagnosis [15]. Thus, it is valu-
able to consider edge factor in image super-resolution. For
example, edges are preserved pretty well in a contrast-guided
interpolation (CGI) approach [16]. Edges are also sharpened
by considering gradient features [2], [12]. These methods,
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only explore the information from a single target image in the
low resolution, thus a faithful super-resolution may be hard to
achieve since the available information is very limited.

Other prior information beyond a single image is expected
to improve the image resolution [5], [7], [13], [14], [17], [18].
For example, non-local similarity of image patches is intro-
duced as the prior information [5], [7], [13], [14], [17]. These
methods also require time-consuming iteration processing.
In addition, Zheng et al. [18] introduced a fast interpolation
approach using the local weight similarity (ILWS) between
multi-contrast brain images to improve the resolution of the
LR MRI image. But, it does not perform satisfactorily when
the LR image is too smooth.

Recently, an effective interpolation method that establish-
ing gradient relations between the LR image and HR ref-
erence image with different contrast was proposed [19] in
the remote sensing. This method has a simple but effective
non-iterative linear model, and does not require training sets.
Image edges were interpolated much well according to the
reported results [19]. This model is called as the Super-
Resolution of using Gradient Relations (SRGR) model here.
The SRGR provides a promising direction to model rela-
tionship between the multi-contrast images due to its fast
computing and attractive performance. The SRGR, as far as
we know, has not been applied for MRI. What is more, to fit
for the multi-contrast MRI interpolation, SRGR should be
carefully modified since the images in MRI are very different
from those in remote sensing [19]. This aim of this work is
to model the gradient relations of multi-contrast MRI images
and improve MRI super-resolution.

In this work, we propose a new gradient linear relation
model for multi-contrast brain MRI super-resolution, which
is inspired by SRGR. The gradient information on edges
of a HR reference is used to guide the interpolation of a
LR MRI image. To further improve the resolution, the non-
local similarity of image patches is employed to robustly
estimate the intensity parameter of the model and the Iterative
Back-Projection (IBP) filter is enforced. Experimental results
will verify more promising results for our method than the
compared MRI interpolation approaches.

This paper is structured as follows. Section II gives a brief
review of the related work. Section III presents the proposed
approach. Section IV provides experimental results followed
by discussions in Section V. Finally, we summarize this work
in Section VI.

II. BACKGROUND AND RELATED WORKS
A. MULTI-CONTRAST IMAGES IN MRI
Multi-contrast images are frequently acquired in
MRI [1], [20] and the commonly acquired ones are T1w
and T2w. Plentiful edge structures are visible in these two
contrast images of the same subject (Fig. 1). According to the
MRI physics [21], the image S (Er) of T1w or T2w is generated
as follows:

S (Er) ∝ ρ (Er)
(
1− e−TR/T1(Er)

) (
e−TE/T2(Er)

)
, (1)

FIGURE 1. Multi-contrast MRI brain images: (a) a T1w image;
(b) a T2w image.

where ρ (Er) is the proton density at spatial location Er ,
TR refers to the repetition time and TE denotes the echo
time. By setting different values of TR and TE , multi-contrast
images will be acquired. Yet, these images share the proton
density of the subject and hence they largely share similar
anatomical structures but with different contrasts in regions.
The shared information between inter-contrast images was
previously considered to profit the super-resolution [18] and
other image reconstruction tasks [22]–[24].

B. BRIEF REVIEWS OF SRGR MODEL
The SRGRmodel was proposed in super-resolution of remote
sensing images [19]. Its basic idea is described below.

Suppose that a LR image X̃L of its target HR image X̃
(Fig. 2(a)) and a HR reference image R̃ (Fig. 2(b)) are avail-
able while X̃ and R̃ have same size. SRGR consists two
steps: 1) A pre-interpolated image X (Fig. 2(c)), that is with
the same size of X̃, is obtained with some classic interpola-
tion methods; 2) Gradient information from R̃ is applied to
update X.
To improve the interpolation, the same gradient direction

is assumed between the multi-contrast images X̃ and R̃. The
relationship of gradient is modeled as [19]

g(X̃i,j)

g(R̃i,j)
= λ0, (2)

where g (·) is a second order gradient function, X̃i,j is the pixel
of X̃, R̃i,j is the pixel of R̃ and λ0 is a parameter that models
this relationship ideally.

Assuming that an adjustment parameter δi,j is added to the
(i, j) pixelXi,j of a pre-interpolated imageX, the SRGRmodel
is formulated as [19]

min
δi,j
{[g(Xi,j + δi,j)− λg(R̃i,j)]2

+ [g⊥(Xi,j + δi,j)− λ⊥g⊥(R̃i,j)]2} (3)

by considering a gradient direction l (Fig. 2(d)) and its normal
direction, also called edge direction, l⊥ (Fig. 2(d)).

Now, we are prepared to discuss the essential parts
in Eq. (3). First, the gradient functions g(Xi,j + δi,j) and
g⊥(Xi,j + δi,j) are defined as

g(Xi,j + δi,j) = Xi+1,j−1 + Xi−1,j+1 − 2(Xi,j + δi,j)

g⊥(Xi,j + δi,j) = Xi−1,j−1 + Xi+1,j+1 − 2(Xi,j + δi,j) (4)
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FIGURE 2. Illustration for SRGR model in a local pattern. (a) is the target
HR image X̃; (b) is the HR reference image R̃ with different contrast; (c) is
the pre-interpolated image X obtained from the low observation of X̃;
(d) An example of the gradient direction l in a local pattern and the edge
direction. Note: The gradient direction is denoted by the vector l .
In estimation, a more accurate pixel, e.g. Xi,j + δi,j , indicated by dark
circles within (c) is used to replace the pre-interpolated HR pixel,
e.g. Xi,j , to generate a better HR image.

where Xi+1,j−1 and Xi−1,j+1 are the neighborhood pixels of
Xi,j along the direction l, while Xi−1,j−1 and Xi+1,j+1 are the
nearest neighbors of Xi,j along the direction l⊥, respectively.
Second, the λ and λ⊥ in Eq. (3) are parameters that adjusting
intensity in two directions. Too smaller λ and λ⊥ will lead to
blur edges. On the contrary, too larger λ and λ⊥ will cause
artificial edges [19]. In SRGR, their values are estimated as

λ = (Xi+1,j−1 − Xi−1,j+1)/(R̃i+1,j−1 − R̃i−1,j+1)

λ⊥ = (Xi−1,j−1 − Xi+1,j+1)/(R̃i−1,j−1 − R̃i+1,j+1). (5)

Overall, the SRGRmodel in Eq. (3) tries to refine the pixels
of pre-interpolated image by minimizing the consistent sec-
ond order gradient that is parallel and perpendicular to the
edges. Since each term in this model is quadratic, Eq. (3) can
be solved fast by forcing the first derivative of the objective
function to be zero. More details of implementation can be
found in [19].

However, the basic SRGRmay not suit well for recovering
MRI since the local-contrast may be more complex than the
remote sensing images presented in [19]. How to modify the
SRGR to fit for multi-contrast MRI will be the main focus of
our work.

III. PROPOSED METHOD
An overview of the proposed approach is summarized
in Fig. 3. First, the LR image is pre-interpolated by the
CGI method. Second, the HR reference image is registered

to pre-interpolated image (Benefit of registration is shown in
Appendix C). Then, the HR image of interest will be restored
by using the gradient information of the registered HR ref-
erence image in another contrast. Finally, the HR image will
be enhanced with an IBP filter. In the following, the essential
parts of the proposed method will be presented.

A. MEASURING GRADIENT DIFFERENCE ON SAME
CONTRAST IMAGES
The essence of SRGR model in Eq. (3) is to estimate the
relationship of the second gradient order between the pre-
interpolated image X and the HR reference image R̃. Now,
let us consider an ideal step. Assume that an ideal pre-
interpolation can generate a HR image X that is as good as
the target HR image X̃. Accordingly, there may exist a pre-
interpolated reference image R that is as good as R̃. Then,
according to Eq. (2), the following relationship holds true

g(Xi,j)
g(Ri,j)

≈ λ0, (6)

where Ri,j is the (i, j) pixel of R. Through the elementary
mathematical manipulation of Eqs. (2) and (6), one obtains

λ0
′

=
g(X̃i,j)− g(Xi,j)

g(R̃i,j)− g(Ri,j)
≈ λ0, (7)

which is the ratio of gradient difference estimated from the
same contrast images.

The Eq. (7) implies that one may turn to measure the
ratio of the gradient difference for the pairs of target/pre-
interpolated images and reference/pre-interpolated reference
images. This modification is important since the gradient
difference is computed within one contrast, but not across
two contrasts in the original SRGR in Eq. (2). Thus, Eq. (7)
is able to reduce the effect of large contrast variations on
degrading the multi-contrast MRI super-resolution, which
will be systematically analyzed in the following section.

B. SUPER-RESOLUTION MODEL
Based on Eq. (7), our model can be expressed as

min
δi,j
{[(g(Xi,j + δi,j)− g(Xi,j))− λ(g(R̃i,j)− g(Ri,j))]2

+ [(g⊥(Xi,j + δi,j)− g⊥(Xi,j))

− λ⊥(g⊥(R̃i,j)− g⊥(Ri,j))]2} (8)

which finds refinements on pixels to minimize the gradient
difference between the HR images and HR reference images.

In this model, the accuracy of λ and λ⊥ is essential for
image reconstruction. Thus, error analysis on λ (same anal-
ysis for λ⊥ is omitted) and edge pixels will be briefly given
below (More details can be found in Appendix A). The fol-
lowing analysis will show that, comparing with the SRGR,
the new method will obtain lower reconstruction error on
edge pixels.

In our model, the error on λ is denoted by 1λ′ defined as

1λ′ = λ0
′

− λ, (9)
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FIGURE 3. Block diagram of the proposed method.

and the reconstruction error on edge pixels is denoted
by 1δ′i,j. According to Eq. (8), we know that

1δ′i,j ∝ 1λ
′[g(R̃i,j)− g(Ri,j)]. (10)

In SRGR model (Eq. (3)), the error 1λ is

1λ = λ0 − λ. (11)

and its reconstruction error 1δi,j is determined as

1δi,j ∝ 1λg(R̃i,j). (12)

Then, since λ0
′

≈ λ0 in Eq. (7), combing Eqs. (9) and (11)
we will get

1λ ≈ 1λ′. (13)

In addition, most edge pixels in the HR reference image R̃i,j
and the pre-interpolated reference image Ri,j satisfy
(More details are provided in Appendix A)∣∣∣g(R̃i,j)− g(Ri,j)∣∣∣ < ∣∣∣g(R̃i,j)∣∣∣ . (14)

Finally, by comparing Eq. (10) with Eq. (12), it can be con-
cluded that the condition∣∣∣1δ′i,j∣∣∣ < ∣∣1δi,j∣∣ (15)

holds for most edge pixels. This indicates, in our model, the
reconstruction error of edge pixels is mostly smaller than that
of SRGR.

Above analysis can be verified inMRI images with smooth
pixels at the boundary of two contrast regions, such as the
laminar structure [7] in brain. The brainMRI image possesses
the characteristics of laminar structure which is formed by
the brain gyri and sulci [7]. In Figs. 4(a) and 4(b), one pair
of multi-contrast toy examples which imitate local laminar
structures is presented. With arbitrarily changing local con-
trasts, both Eqs. (14) and (15) are often satisfied as shown
in Figs. 4(c) and 4(d), respectively. Analysis onmore complex

FIGURE 4. Error analysis on a toy example with the characteristics of
laminar structure. (a) is the HR original image, in which p1 = 0, q1 = 1
and the edge pixel value is the average of p1 and q1; (b) is the HR
reference image, in which p2 = 1, q2 = 0 and the edge pixel value
changes from 0 to 1. This change of edge pixel value is embodied on the
horizontal axis of Fig. 3(c-d). (c) Curves for

∣∣∣g(R̃i,j )
∣∣∣ and

∣∣∣g(R̃i,j )− g(Ri,j )
∣∣∣

of the edge pixel. (d) Curves for reconstruction errors.

images, e.g. Brainweb MRI [25], is given in Fig. 5. The aver-
age reconstruction error is measured as the root mean square
error between the reconstructed pixel value and the original
pixel value. Fig. 5(e) implies that Eq. (15) also holds true
(More details of Figs.4 and 5 are presented in Appendix B).
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FIGURE 5. Comparison of reconstruction errors on Brainweb MRI data.
(a) HR image using SRGR model, the PSNR = 21.54; (b) HR image using
the proposed model, the PSNR = 24.17; (c) original T2w image (ground
truth); (d) original T1w image (HR reference). (e) Mean error of
reconstructed HR pixel values versus second order gradients.

FIGURE 6. Reconstruction comparisons of λ and λ� on Brainweb MRI
data. (a) HR image produced with using λ; (b) HR image using the
proposed model (i.e., λ� are exploited), the PSNR = 23.85. Note:
the ground truth and HR reference images are presented
in Fig. 5(c) and (d), respectively.

C. ROBUST ESTIMATION FOR λ AND λ⊥

We further propose a robust estimation for λ (the same
method for λ⊥). We assume that λ is the same for all
similar patches within a local region �. First, we search
similar patches in � using a fast global search method
that exploring the same geometric direction for patches is
adopted [22], [26], [27]. Then, the λ is computed for each
patch according to Eq. (5). Last, the λ for all similar patches
are averaged to a final λ� for these patches. Improvement
on estimating λ with similar patches is shown in Fig. 6,
indicating that λ� successfully avoids abnormal-pixel-values
encountered using different λ for different patches.

D. IMAGE IMPROVEMENT WITH IBP
As we discussed before, the CGI method is utilized to per-
form the initial interpolation on the original LR image to
produce the pre-interpolated image. Edge pixels in the pre-
interpolated image are reconstructed one by one (in the order:

from top left to bottom right) by our model and replace
original residents of the pre-interpolated image. Finally,
the HR image with more sharp and distinct edges will be
obtained.

In order to take into account MRI acquisition properties,
we impose Iterative Back-Projection (IBP) on the recon-
structed HR pixels. The IBP iteratively minimizes the differ-
ences between the original LR image and LR version of the
reconstructed HR image. Previously, inMRI super-resolution
field, IBP was used for recovering image details in LR brain
images [6], [28].

The IBP process is given by

(X+ δ)(t+1) = (X+ δ)(t) + (U(X̃L − DS(X+ δ)(t)))P (16)

where (X + δ)(t) denotes the estimated HR image after the
t th iterative calculation, and X̃L denotes the original
LR image. P is the back project filter, S is the blurring filter,
D is the down-sampling operator and U is the up-sampling
operator whose factor is the same with D. More details and
analysis about IBP can be found in [29].

For MRI images, IBP will improve the PSNR (Fig. 7(a))
of reconstruction by increasing the number of iterations
(denoted by k) in the IBP. Considering the computation com-
plexity, we choose k = 5 for all experiments in this paper,
which generally yields satisfactory results (Fig. 7(d)).

IV. RESULTS
In this section, the proposed approach will be compared
with the bicubic interpolation, the state-of-the-art CGI [16]
and the ILWS that considers the multi-contrast images [18].
Experiments are conducted on Brainweb brain images and
real MRI images. All methods run on a personal computer
with Dual-Core CPU 3.00GHz and 2 GB memory.

Two objective criteria, the peak signal-to-noise ratio
(PSNR) and the structural similarity (SSIM) [30], are
exploited to quantitatively evaluate the super-resolution
results. The higher PSNR indicates that the reconstructed
image is more consistent to the original HR image and the
higher SSIM implies that more accurate image structures are
preserved.

A. SIMULATION SET UP
Before conducting reconstructions, a LR image is generated
from an original HR image by using a Gaussian smooth filter
and a down sampling operator. This is a common way of
simulating LR images in MRI super-resolution [6]. In exper-
iments, the Gaussian smooth filter is in the size of 3× 3 with
standard deviation of 1 and the down-sampling factor of 2.
The LR image is interpolated by CGI because CGI takes an
important factor, edge contrast, into interpolation and effec-
tively avoid image artifacts with fairly low computational
complexity.

The purpose of our method is to recover edge details of
LR brain image. In our work, a pixel is declared to be an
edge pixel if the local variance within its nearest neighbors
is greater than or equal to an established threshold of 0.0003,
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FIGURE 7. Magnified regions of reconstruction results versus the number of iterations k . (a) The PSNRs of using IBP versus the
different k . The bottom row shows a zoom-up region in the reconstruction result and from left to right: (b) k = 0
(i.e., without IBP); (c) k = 1; (d) k = 5.

on the premise that intensities of images are all normalized
between 0 and 1. The same value of the threshold is utilized
in all experiments of this paper.

B. COMPARISONS WITH OTHER METHODS
Brainweb [25] (http://www.bic.mni.mcgill.ca/brainweb/) is
a publicly available dataset which provides two kinds of
MRI simulated image: normal (e.g., Imag_B1 and Imag_B2)
and multiple sclerosis (e.g., Imag_B3 and Imag_B4). A note
about multiple sclerosis lesions data is that they have been
extracted from real MRI data. The data of in-plane pixel size
is automatically set as 1× 1mm. In addition, we select noise
percentages of 1%. The original 2D T1w and T2w data are in
the size of 181× 217.

We also assess the performance of our algorithm on real
brain MRI images which have four types:

1) IMAGING DATA SHARED BY PHILIPS COMPANY
Imag_H1 and Imag_H2 (noting: test images of TABLE 1 in
the revision are numbered) are shared by Philips Company.
The T1w (TR = 170 ms, TE = 3.9ms) and T2w (TR =
3000ms, TE = 80ms) images of 256× 256 size are acquired
with fast field echo sequence (FOV = 230× 230 mm2, slice
thickness = 5.0 mm).

2) IMAGING DATA FROM SIEMENS SCANNERS
Imag_P1 and Imag_P2 are acquired from a 3T Siemens Trio
Tim MRI scanner using a turbo spin echo sequence (FOV =
230 × 187 mm2, slice thickness = 5.0mm) and the matrix
size of original T1w (TR = 2000ms, TE = 9.7ms) and T2w
(TR = 5000ms, TE = 97ms) images is 384× 324.

3) PUBLIC NAMIC DATA
Imag_N1 and Imag_N2 are acquired from – a publicly avail-
able MRI brain dataset (http://hdl.handle.net/1926/1687),
which is provided by National Alliance for Medical Image
Computing (NAMIC). The dataset is acquired at a 3T GE
scanner at BWH in Boston, MA, and contains 10 normal
persons and 10 schizophrenic patients. The matrix size of the
T1w (TR = 7.4 ms, TE = 3 ms) or T2w (TR = 2500 ms,
TE = 80 ms) data is 256 × 256×176, with voxel resolution

of 1 × 1×1 mm3. In this paper, two 2D brain images are
acquired from extracting 3D data along the coronal plane.

4) IMAGING DATA FROM EAST CHINA NORMAL UNIVERSITY
Imag_E1 and Imag_E2 are from East China Normal Uni-
versity dataset (ECNU_set). The experiments were carried
out on a 3 T MRI scanner (Siemens Trio Tim), with FOV
of 256 × 256 mm2. The acquired dataset includes T1w
(TR = 440 ms, TE = 2.46 ms) and T2w (TR = 6750 ms,
TE = 90 ms) images with 3mm slice, and also
T1w (TR = 250 ms, TE = 2.46 ms) and T2w (TR =
4500 ms, TE = 90 ms) images with 4 mm slice. All images
are with pixel size of 256× 256. The T1w and T2w data are
acquired with gradient echo pulse sequence and turbo spin
echo sequence, respectively.

these 1), 2), and 4) studies were respectively approved by
Institutional Review Board of Philips Company, Shenzhen
Institutes of Advanced Technology, and East China Normal
University. Their proper informed consents were obtained
from all volunteers prior to enrollment.

To better display edge structures in the experimental
results, we provide zoom-in images (Fig. 8). Among them,
reconstructions of normal and multiple sclerosis anatomical
datasets are depicted in Figs. 8 (a) and (b), respectively.
Results on real datasets are presented in Figs. 8 (c)-(e). From
top to bottom are the result of the bicubic, CGI, ILWS, the
proposed method without the IBP, the proposed method with
the IBP, the ground truth image and HR reference image. Full
figures are given in the appendix C.

In Fig. 8, the bicubic method (1st row) results in more blur
structure details than other methods. ILWS (3rd row) achieves
sharper edges compared to the bicubic, but the ringing arti-
facts can still be observed along the edges. Furthermore,
CGI (2nd row) recovers edges better than ILWS. Obviously,
the proposed algorithm without IBP (4th row) delivers more
subjective results with sharp edges than CGI. In addition,
details of edge structures are further clearly revealed in results
of the proposed method with IBP (5th row).
TABLE 1 summarizes the PSNR and SSIM values for

image interpolation. It shows that ILWS obtains higher
PSNR and SSIM than classic bicubic, but CGI outperforms
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FIGURE 8. Magnified sections of reconstructed images. Among them, (a-b) are respectively results of Imag_B1 and Imag_B3 from the
Brainweb dataset; (c-e) are based on the real data and are results of Imag_H1, Imag_P1 and Imag_P2. From top to bottom: Bicubic;
CGI; ILWS; the proposed method without IBP; the proposed method with IBP; the ground truth image; the HR reference image.
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TABLE 1. PSNR/SSIM evaluation for defferent methods.

FIGURE 9. Effects of noise on the proposed method. (a) and (b) are PSNR and SSIM performance. Noting: Noise are randomly
generated for 30 times and the PSNR and SSIM are averaged over the 30 super-resolution experiments. Visual results based
Imag_B1with different noise level are presented in (c-g): 0%, 1%, 3% and 5% noise, respectively. Note: IBP is imbedded in the
proposed method.

both Bicubic and ILWS. The proposed method, however
without IBP or with IBP, outperforms the other three
methods.

V. DISCUSSIONS
In this section, we first evaluate the effect of noise on
the proposed method, and then extend the comparison with
a state-of-the art non-local MRI upsampling techniques,
and finally report the the computational time of different
methods.

A. EFFECTS OF NOISE
The noise at common levels (0%, 1%, 3% and 5% of the max-
imum intensity) [31], [32] are added into the T2-weighted
ground truth image. To simulate the Rician noise in real data
(Imag_H1, Imag_P1, Imag_N1, and Imag_E1) [31], [32], the
zero mean Gaussian noise are added to real and imaginary
parts of ground truth images, respectively.

Results on different level noise (Figs. 9 (a) and (b))
imply that increasing the noise level will reduce the PSNR
and SSIM. These two criteria are seriously reduced when the

VOLUME 6, 2018 57863



H. Zheng et al.: Multi-Contrast Brain MRI Image Super-Resolution With Gradient-Guided Edge Enhancement

FIGURE 10. Comparison with NMU. (a) and (b) are PSNR and SSIM performance, respectively. Visual results based
Imag_E1 are presented in (c-f): HR reference image, ground truth image, NMU, and proposed method.
Note: CGI-based pre-interpolation and IBP are imbedded in the proposed method.

TABLE 2. Reconstruction performance (PSNR/SSIM) on degraded images with average filtering.

noise level is equal or greater than 3%, indicating obvious
degraded images in Figs. 9 (f) and (g).

B. COMPARISON WITH NON-LOCAL UPSAMPLING
we add the comparison with the method ‘‘Non-local
MRI upsampling’’ [10], which is referred as NMU here.
Since NMU is a super-resolution algorithm for degraded
3D MRI images with average filtering, we rewrite it into
a 2D algorithm with Gaussian filtering for facilitating the
comparison.

Results in Figs. 10 (a) and (b) show that the NMU
obtains good PSNR and SSIM values and proposed method
achieves better evaluation criteria than the NMU. To further
verify the performance, super-resolved images are reported

in Figs. 10 (e) and (f), indicating that the proposed method
provides more consistent image structures to the ground-truth
image shown in (Fig. 10 (d)).

It is worth noting that, NMU performs very well on the
degraded images with average filtering, which is the problem
originally discussed in [10], as shown in TABLE 2. With the
NMU is as the pre-interpolation, the proposed method can
still improve the super-resolved images.

C. COMPUTATION TIME
The computation time of different methods are shown
in TABLE 3. Traditional methods consume no more
than 2 seconds while the proposed method requires
35 seconds. Thus, the new method is relatively time
consuming.
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TABLE 3. Computation time for defferent methods (units: seconds).

VI. CONCLUSION
We proposed a new super-resolution method for MRI multi-
contrast images by using gradient information of the high-
resolution reference image that has another contrast. The
connection of gradient value between different MRI contrast
images is studied and an associated model is established to
estimate values of edge pixels inside the pre-interpolated
image. Experimental results demonstrate that the proposed
algorithm is effective for both synthetic and real MRI images.
The IBP filter is suggested to be applied after our algorithm
to further improve the quality of super-resolved MRI images.

In this work, the proposed method is mainly developed for
2D MRI images. Extension and application of this algorithm
on 3D data will be an interesting future work. In addition,
how to retrieve structural distinctions hidden inmulti-contrast
MRI images more accurately still need further investigation.
Last, this modeling may benefit improving reconstruction of
fast imaging in MRI [22], [33]–[38] and reconstruction of
multi-contrast MRI images in fast sampling [39]–[41].
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