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ABSTRACT Kirchhoff beam migration (KBM) is a ray-based seismic imaging method, which can handle
multi-arrivals caused by model complexity. Apart from its high imaging precision, it also retains the merits
of Kirchhoff migration, such as efficiency, stability, and flexibility. However, two issues should be taken into
consideration when this method is expanded to the complicated surface conditions: first, the computational
accuracy deficiency of the original local plane-wave decomposition method cannot suit for low signal-
to-noise ratio seismic data; second, as the rays traveling, the beam width increases rapidly, which cannot
guarantee the computational accuracy of the corresponding grid points’ attribute information. In addition,
the insufficient coverage of the beam in the shallow part of the model might affect the imaging quality of
this region. Kirchhoff dynamic focused beam migration based on compressed sensing is proposed to resolve
these two problems. For the first problem, the local plane-wave decomposition method based on compressed
sensing is introduced into KBM to enhance its computational accuracy. To solve the second problem, this
paper adopts the dynamic focused beam to replace the original simplified Gaussian beam in the migration
method, control the divergence of beam, and increase the coverage of beam in the shallow part of the model.
Both Marmousi model and Canadian Foothills model are employed in this paper to test the new migration
imaging method.

INDEX TERMS Signal processing, compressive sensing (CS), seismic imaging method, Kirchhoff beam
migration, dynamic focused beam.

I. INTRODUCTION
Prestack depth migration is an important seismic imaging
method [1], which has a wide application in seismic prospect-
ing [2]–[9] and can mainly be divided into two types, includ-
ing ray-based methods and finite-difference methods [10].
Beam migration is a ray-based methods, in which seismic
data panels are decomposed into plane waves at beam centers
and every plane wave will be migrated in the algorithm [11].
So beam migration is able to handle multi-arrival energy,
which make it to be an imaging method boasting the advan-
tages of high accuracy and high efficiency [12].

Hill [13] (1990) put forward poststack Gaussian beam
migration (GBM), which laid the theoretical foundations

for beam migration. Several key issues were then dis-
cussed to improve the computational efficiency of poststack
GBM [14], [15]. Even so, it is difficult to extend themethod to
the prestack case for its inefficiency. Hill [16] (2001) solved
this problem by reducing the integration in the imaging
formula with a saddle-point approximation approach and
proposed the prestack depth Gaussian beam migration on
common-offset gathers. To widen its application, prestack
depth GBMwas further adapted to a common-shot migration
method by Nowack et al. [17] (2003) and Gray [18] (2005).
Dip filtering was introduced into beam migration by
Ting and Wang [19] (2009) and was successfully applied in
Gulf of Mexico. Sherwood et al. (2009) proposed a beam
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migration method based on wavelets, in which the recorded
data is decomposed into a basic of wavelets and migrated
by a ‘‘point to point mapping’’ approach. This method could
easily be extended from a 2D case to a 3D case [20].
Gray and Bleistein (2009) proposed a true-amplitude GBM
method [21], which introduced the true-amplitude theory into
GBM [22], [23]. Popov et al. [24] (2010) presented the GBM
summation method, which strictly follows the Kirchhoff
migration principles. Compared with Hill’s (2001) GBM,
this method has higher accuracy but much lower compu-
tational efficiency, so it is usually used in oriented region
imaging. The GBM summation method could also be used
in born modeling for heterogeneous media [25]. Focusing on
obtaining kinematic accuracy and computational efficiency,
Kirchhoff beam migration (KBM) was proposed [26]. The
mechanics of KBM are analogs to GBM except for ignor-
ing the dynamic information and employing the simplified
Gaussian beam to control the beam coverage. Then KBM
was further developed for accommodating the common-shot
data sets [27]. Delta packet was also used for calculating
the Green’s function, which is essential to beam migra-
tion [28], [29]. By adopting this method, GBM could be
transformed into a time domain imaging method. In order
to improve the traveltime calculation accuracy in the seis-
mic imaging method, Sun et al. (2017) combined Wavefront
Construction (WFC) and Fast Marching Method (FFM) to
achieve a new traveltime calculation method [30]. Complex
traveltime was also obtained by solving the complex eikonal
equation [31]-[33].

Seismic explorations are often conducted in rugged topog-
raphy. Gray [18] (2005) corrected the elevations of the
receivers according to the beam center’s elevation and pro-
posed a common-shot topographic GBM. On the basis of this
method, Yue et al. [34] (2010) also studied the topographic
GBM. The local slant stacking formula in Yue’s method is
modified to obtain more accurate plane waves under topog-
raphy and the migration results verify that this method can
improve the imaging quality in the shallow part of Canadian
Foothills model compared with Gray’s method. Based on
the same implementation strategy, true-amplitude GBM was
adapted to suit for the rugged topography [35]. Wave field
approximation in effective vicinity and Fresnel beam were
also considered to combine with topographic true-amplitude
GBM for improving its imaging quality [36].

Local plane wave decomposition is a critical step in beam
migration, which has an important impact on beam migration
methods’ imaging abilities. Hu and Stoffa (2009) presented
a slowness-driven GBM to remove the migration swing
artifacts, which were generated from low-fold seismic data
imaging. In this method, the coherency of a locally coherent
seismic event is employed for calculating the weighting func-
tion, which is added to the imaging formula of GBM [37].
Yang et al. (2015) also used the local similarity analysis
in local plane wave decomposition of GBM and proved it
effective for low-fold data sets [38]. Introducing the least
square inversion fashion into local slant stacking operator,

Wu et al. (2014) proposed a high-resolution beam form-
ing method for 3D common-offset KBM [39], which
was also employed for velocity analysis [40]-[43].
Wu et al. [44] (2015) then applied the migration algorithm
to image the SEAM model. Wang et al. [45] (2015) decom-
posed the plane waves under the framework of compressed
sensing in the characteristic-wave imaging method. This
decomposed method can sparely express the seismic data
[46]. Liu et al. [47] (2015) further studied this characteristic-
wave prestack depth migration and extended it to be an
anisotropic medium imaging method. Sun et al. [48] (2018)
incorporated compressive sensing technique into KBM to
improve its imaging ability.

Beam propagator’s effect to the imaging method received
more and more attention in recent years. Conventional
GBM adopted Gaussian beam [49] as its propagator, whose
geometry is determined by dynamic ray-tracing parame-
ters. If the initial beam width is small, the beam width
will increase rapidly along with ray propagation. Employing
the stationary-phase approximation to integral of Kirchhoff
migration’s imaging formula, Sun and Schuster [50] (2001)
succeed in controlling the imaging region and obtaining more
clearer migration images. Nowack [51] (2008) used focused
Gaussian beam in GBM, which actually is a transformed
Gaussian beam. Focused Gaussian beam can flexibly con-
trol the narrowest part of the beam to occur at the target
location. Nowack [52] (2011) further studied the focused
Gaussian beam and transformed it to a dynamic focused
beam and proposed a dynamically focused Gaussian beam
migration algorithm. The dynamic focused beam can control
beam width along all the ray path. Yang et al. [53] (2015)
introduced also studied the dynamically focused Gaussian
beam migration and extended it to a true-amplitude seismic
imagingmethod. Analogous to focused beam, laser beam also
can control the geometry of the beam and was respectively
applied to viscoelastic medium beam migration [54] and
anisotropic medium beam migration [55]. Huang et al. [56]
(2015) adopted Fresnel beam to control the shape of the beam
by combining the concept of Fresnel zone with the wave
field approximation theory. A common-shot Fresnel beam
migration method was presented and extended to suit for the
complex topography.

This paper studies the KBM under irregular topography.
Two improvements are made to improve the imaging ability
of KBM. Key steps of CS-KDFBM including imaging prin-
ciple, local plane-wave decomposition method and dynamic
focused beam propagator will be stated in the next part. Mar-
mousi model and Canadian Foothills model will be employed
to test the new method.

II. METHODS
The common-shot migration formula of KBM can be sum-
marized as [27]:

Is(x) =
∑
Lr

∫
dps

∫
dprA · Ds(L, p′, τ ′) (1)
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FIGURE 1. Schematic diagram of the imaging region, Bs represents the
beam emitted from the source, Bg represents the beam emitted from
beam center, the overlap region A is the computational area. Time shift
calculation under complex topographic condition, asterisk represents
beam center; inverted triangle represents receiver.

Where x is the imaging node; Is is the migration result of
single shot; Lr is the window; ps is the slowness of rays
emitted from the source; pr is the slowness of rays emitted
from the beam centers; A is the weight function; p′ is the local
plane waves decomposed from the original seismic data. The
imaging conditions of the migration formula are:

τ ′ = ts + tg (2)

p′ = pr (3)

Where ts and tg respectively denote traveltime from the target
points to the source and beam center. The expression of the
migration formula is an integral of the beams. Every pair of
the beams will be migrated and only the overlap regions will
be calculated (See Fig. 1).

A. LOCAL PLANE WAVE DECOMPOSITION
To image the subsurface nodes, it is required to decompose
the seismic records into plane waves. Conventional beam
migration methods employed linear radon transform (LRT)
to finish this task.

The seismic records of every window need to be decom-
posed into plane waves in KBM. The expressions of seismic
record D(ω) and plane-wave result P(ω) are:

D(ω) = [x1(ω), x2(ω), · · ·, xnx(ω)]T (4)

P(ω) = [p1(ω), p2(ω), · · ·, pnp(ω)]T (5)

where, nx is the number of traces; np is the number of slow-
ness samples; x1(ω) ∼ xnx(ω) is the records; p1(ω) ∼ pnx(ω)

FIGURE 2. Time shift calculation under complex topographic condition,
asterisk represents beam center; inverted triangle represents receiver.

is the plane wave data. In CS-LRT, the minimized target
function is established as:

J = ‖D(ω)− L(ω)P(ω)‖2 + ‖WP(ω)P(ω)‖2 (6)

where, WP(ω) is the space weighted matrix, L(ω) is the
operator matrix. Set P(ω) to 0 and we can obtain the solution:

P(ω) = [LH(ω)L(ω)+W−1P (ω)]−1LH(ω)D(ω) (7)

The plane-wave decomposition is expressed as:

min ‖P(ω)‖00 ,

S.T . ‖D(ω)− L(ω)P(ω)‖22 < ε (8)

where, ε is the noise of the target data. Then we can obtain
the high-quality plane-wave data by employing the CS-LRT.

Decomposing the seismic data under irregular topography
is different from that of horizontal surface. In this case,
not only the horizontal distance between receiver and beam
center but also their difference of height has effect on the time
shift in CS-LRT. The way to calculate the time shift under
irregular topography is shown below.

In Fig.2, the height of beam center is marked as 0 and the
horizontal location of beam center is L. The receiver has a
height of h and a horizontal location of xr . The slowness of
plane waves at beam center is pL . Time shift of the receiver
is described as:

1τ =
dxrL + dh0
V(L,0)

=
(xr − L) ∗ sin θ + h ∗ cos θ

V(L,0)
= pLx (xr − L)+ pLzh (9)

Where pLx and pLz are, respectively, the horizontal and verti-
cal component of slowness.

B. BEAM PROPAGATOR
The final image of KBM is acquired by adding the imaging
result of all pairs of beams together. Beam propagator can
influence the imaging ability of beam migration from the
aspects of imaging accuracy and computational efficiency.
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Dynamic focused beam is essentially the special form of
Gaussian beam, whose theoretical basis is the high frequency
approximate solution of the wave equation:

u(s, n, ω) =

√
V (s)
Q(s)

exp
{
iωτ (s)+

iω
2
P(s)
Q(s)

n2
}

(10)

where, s and n are the ray-centered coordinates; ω is the
frequency; u is the value of wave field; V is the velocity;
τ (s) is the traveltime along the central ray; P(s) and Q(s) are
dynamic ray parameters, which are obtained by solving the
dynamic ray equations [57]:

d
dτ

Q = v2P
d
dτ

P = v−1VQ
(11)

Q, P and V are all 2×2 matrices. To ensure (13) is the
expression of Gaussian beam, two conditions need to be satis-
fied: one is that the value of dynamic ray parameters must be
complex and another is Im(P/Q) should be greater than zero.
In this case, the solutions of wave equation can concentrate
close to the central ray. Normally, two methods including
the direct method and indirect methods were adopted to
solve the dynamic ray tracing systems. The direct method
solves the equations by using the appropriate complex initial
value, which was adopted by conventional GBM [13], [16].
The indirect method first solves the equations to obtain real
matrices, and then the real matrices are multiplied by the
constant complex coefficient to acquire the complex results.
Dynamic focused beam employs the indirect method to solve
the dynamic ray tracing systems. The fundamental matrix of
real solutions of (11) can be expressed as:

π (s) =
(
q1(s) q2(s)
p1(s) p2(s)

)
(12)

The constant complex coefficients are z1 and z2. Complex
solutions of (11) are:(

q(s)
p(s)

)
= π (s)

(
z1
z2

)
=

(
z1q1(s)+ z2q2(s)
z1p1(s)+ z2p2(s)

)
(13)

Introduce a new complex coefficient ε = z1/z2, p(s)/q(s) is

p(s)
q(s)
=
εp1(s)+ p2(s)
εq1(s)+ q2(s)

(14)

εis a constant in conventional Gaussian beam, while in
dynamic focused beam, ε is a variable and can be expressed
as:

ε(s) =
−q2(s)− iωref l2(s)p2(s)
q1(s)+ iωref l2(s)ps(s)

(15)

Where ωref is the reference frequency. The expression of l(s)
is

l(s) =
2πv(s)
ωref

(16)

Fig. 3 is the comparison diagram of beam geometry in
Marmousi model. Fig. 3a and Fig. 3b are, respectively, the

FIGURE 3. Comparison diagram of beam geometry in Marmousi model,
(a) geometry of Gaussian beam, (b) geometry of dynamic focused beam.

geometry of Gaussian beam and dynamic focused beam.
Both the two beams have the same start point at the location
(3500 m, 4 m); the same launch direction of 15◦; the same
frequency of 15 Hz; the same reference frequency of 10 Hz;
and the same initial beam width of 200 m. It can be seen that
the width of Gaussian beam increases rapidly with the ray
propagating and the dynamic focused beam can control the
beamwidth well. The reason is that Gaussian beam employed
the constant ε in (14), as the beam travels, it will diverge and
the beam width will also increase. Dynamic focused beam
adopted a variable εin (14), the amount of change in ε is to
eliminate the change in beam width.

C. TRAVELTIME CALCULATION
Traveltime is also an important seismic attribute information,
which has great influence on migration imaging. The grid
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FIGURE 4. Schematic diagram of traveltime extrapolation.

nodes’ traveltime within the beam is extrapolation from the
information of their nearest discrete nodes in the central rays.
Traveltime calculation mainly consists of two main steps:
central ray tracing and travel time extrapolation. These two
steps are not affected by topographic surface during the cal-
culation. So, this derivation is carried out under the horizontal
surface.

As is shown in Fig. 4, x is the grid node within the beam;
x0 is the discrete node, which is nearest to x in the central ray.
The distance differences between the two points in Cartesian
coordinates are 1x along the x direction and 1z along the z
direction; in ray-centered coordinates are 1s along the ray
path and 1n perpendicular from the ray path; T (x0) and
T (x) are, respectively, the traveltime of x and x0; Taylor’s
approximation expression of T (x0) is

T (x) ≈ T (x0)+ T (x)′ +
1
2
T (x)′′ (17)

The first and second derivatives of the T (x) in the ray-
centered coordinates are respectively T (x)′ and T (x)′′. The
expression of T (x)′ is

T ′(x) =
(
1x

∂

∂x
+1z

∂

∂z

)
T

∣∣∣∣
T=T (s,n)

= 1xpx +1zpz (18)

px and pz are the components of slowness in the x and z
direction. The expression of T (x)′′ is

T ′′ (x) =
(
1s

∂

∂s
+1n

∂

∂n

)2

T

∣∣∣∣∣
T=T (s,n)

=

{
12s

(
−

1
v2 (s, n)

∂v
∂s

)
+21s1n

(
−

1
v2 (s, n)

∂v
∂n

)
+12n

∂2T
∂n2

}∣∣∣∣
T=T (s,n)

(19)

Where v represents the velocity; θ represents the ray direc-
tion; Consider the transformation between the Cartesian coor-
dinates and the ray-centered coordinates{

1s = sin θ1x + cos θ1z
1n = cos θ1x − sin θ1z

(20)

(19) can be further expressed as

T ′′ (x) =
{
(sin θ1x + cos θ1z)2

∗

(
−

1
v2 (s, n)

(
∂v
∂x

sin θ +
∂v
∂z

cos θ )

∣∣∣∣
v=v(s,n)

)
+ 2 (sin θ1x + cos θ1z) (cos θ1x − sin θ1z)

×

(
−

1
v2 (s, n)

(
∂v
∂x

cos θ −
∂v
∂z

sin θ)

∣∣∣∣
v=v(s,n)

)

+ (cos θ1x − sin θ1z)2
∂2T
∂n2

∣∣∣∣
T=T (s,n)

}
(21)

Then,the traveltime of x is

T (x) = T (x +1x, z+1z)

= T (x, z)+1xpx +1zpz

+
1
2
12x

(
− p2x(

∂v
∂x

sin θ +
∂v
∂z

cos θ )

− 2pxpz(
∂v
∂x

cos θ −
∂v
∂z

sin θ)

+ p2z v
2 (x, z)

∂2T
∂n2

)∣∣∣∣
T=T (x,z)

+1x1z
(
p2x(

∂v
∂x

cos θ −
∂v
∂z

sin θ )

−pxpzz

(
(
∂v
∂x

sin θ +
∂v
∂z

cos θ )+ v2 (x, z)
∂2T
∂n2

)
− (p2z

∂v
∂x

cos θ −
∂v
∂z

sin θ )
)∣∣∣∣

T=T (x,z)

+
1
2
12z

(
p2xv

2 (x, z)
∂2T
∂n2

+ 2pxpz(
∂v
∂x

cos θ −
∂v
∂z

sin θ)

−p2z (
∂v
∂x

sin θ +
∂v
∂z

cos θ )
)∣∣∣∣

T=T (x,z)
(22)

D. AMPLITUDE CALCULATION
KBM is a beam prestack depth migration method focusing on
obtaining high computational efficiency, whose requirements
for amplitude information are not as accurate as other beam
migration methods. The calculation principle of its weight
function is relatively simple, namely, the closer to the central
ray, the larger the weight function. The principle is selected
based on two considerations. Firstly, the beam energy is
attenuated from the central ray to the sides, and the closer
to the central ray, the larger the amplitude; Second, grid
nodes’ traveltime is calculated by the Taylor’s approximation,
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FIGURE 5. Schematic diagram of traveltime extrapolation.

and the closer to the central ray, the smaller the relative
error, the larger the weight function should be. In this paper,
the weight function calculation method is based on the origi-
nal method [26], which will be introduced first.

As is shown in Fig. 5, rays is the ray emitted from
the source and the angle between its initial direction and the
vertical direction is as; raybc is the ray emitted from the
beam center and the angle between its initial direction and
the vertical direction is abc; x is the imaging point and its
projection point on rays is x’s; The distance between x and
x’s is ns; The width of rays at x’s is ws; The distance between
X and its projection point on raybc is nbc; The width of rays
at the projection point of x is ws; The weight function of x
can be described as:

A = cos2
[π
4

(
n2sw
−2
s + n

2
bcw
−2
bc

)]
cos [0.5 ∗ (as − abc)]

(23)

Adding the term cos [0.5 ∗ (as − abc)] is to weaken the
effect of wide-angle post-critical energy to the migration
method.

In (23), the beam width corresponding to a certain point on
the central ray can be calculated, which cannot be achieved
in the calculation of dynamic focused beam. So this formula
is not suitable for CS-KDFBM and we need to find new
parameter to replace the distance parameter.

In the previous section, we introduce the traveltime cal-
culation method. The traveltime obtained by using (22) is
complex, whose imaginary part is related to the amplitude
attenuation of the beam. The larger the absolute value of
the imaginary part, the smaller the beam amplitude is. This
parameter can also reflect the distance between the target
and the central ray. We employ the imaginary part of trav-
eltime to replace the distance parameter in CS-KDFBM.
Dynamic focused beam is realized by a recursive algorithm,
in which a critical value of imaginary part of the traveltime
is defined. When the calculated value exceeds the critical
value, the recursive operation will be stopped. This critical

FIGURE 6. Implementing flow chart of CS-KDFBM.

value is used to replace the beam width of the central ray.
The new amplitude calculation formula in CS-KDFBM can
be obtained by referring to (23)

A = cos2
[π
4

(
τ 2isτ
−2
imax + τ

2
ibcτ
−2
imax

)]
cos [0.5 ∗ (as − abc)]

(24)

Where τis is the imaginary part of traveltime from rays; τibc
is the imaginary part of traveltime from raybc; τimax is the
defined critical value.

E. PROCESSING FLOW
The calculation flow of CS-KDFBM is shown in Fig. 6:

VOLUME 6, 2018 56671



H. Sun et al.: Topographic Kirchhoff Dynamic Focused Beam Migration Method Based on Compressed Sensing

FIGURE 7. Migration result of Marmousi model, (a) velocity of Mamousi
model, (b) migration result of KBM, (c)migration result of CS-KDFBM.

III. EXPERIMENTS AND ANALYSIS
This part employs Maoumousi model under topography
and Canadian Foothills model to test the topographic
CS-KDFBM. Marmousi model and Canadian Foothills
model are both very complex models. They contain multiple
faults, complex curved interfaces, and large anticlines. If the
new method can get good experimental results on the two

FIGURE 8. Migration result of Canadian foothills model, (a) velocity of
Canadian foothills model, (b) migration result of KBM, (c)migration result
of CS-KDFBM.

model data sets, good experimental results also could be
obtained for other simple models.

Fig. 7a is the Marmousi model under topography, whose
model size is 737 in the x dimension and 750 in the z dimen-
sion; grid spacing is 12.5 m in the x dimension and 4 m in
the z direction. The data set has 240 shots with a fixed shot
interval of 90 m. Every shot consists of 101 traces and the
receiver spacing is 25m. The sampling interval in the trace
is 4 ms and the recording time is 3.2 s. The offset ranges
from 0 m to 2500 m. Fig. 7b and Fig. 7c are respectively the
imaging results of KBM and CS-KDFBM. The two methods
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adopted the same migration parameters. The ray angles in
beam migrtion could be chosen from −90◦ to +90◦. How-
ever, it is not the larger the range of rays, the better. Too
large the range of rays will bring more migration noise, which
will affect the final imaging result. The ray angles in these
two methods range from −50◦ to +50◦ [13], [26] with a ray
quantity of 25 in every launch position.

It can be found that in the shallow part of the model,
the image produced by CS-KDFBM has higher signal-noise
ratio and reflects clearer geological structures, especially for
the fault structures in the white circle. The reason for the
differences is that dynamic focused beam can guarantee the
coverage of the beam in the shallow part of the model.

Fig. 8a is the Canadian Foothills model, whose model size
is 1668 in the x dimension and 1000 in the z dimension;
grid spacing is 15 m in the x dimension and 10 m in the z
direction. The data set has 277 shots with a fixed shot interval
of 90 m. The number of traces of each shot ranges from
238 to 480 and the receiver spacing is 15 m. Every trace
consists of 2000 sampling points with a sampling interval
of 4 ms. The minimum and maximum offset are respectively
15 m and 3600 m. Fig. 8b and Fig. 8c are respectively the
imaging results of KBM and CS-KDFBM. It can be found
that CS-KDFBM produced a clearer image with less migra-
tion artifact. The reasons for the differences are that CS-LRT
enhances the accuracy of the local plane decomposition and
the dynamic focused beam propagator controls the beam
width in the deep part of the model.

IV. CONCLUSIONS
This paper studies the Kirchhoff beam migration method
under irregular topography. In order to solve the problems
existing in local plane wave decomposition and beam prop-
agator, CS-LRT and dynamic focused beam propagator are
introduced into KBM. The new imaging method was suc-
cessfully applied to complex models (Marmousi model and
Canadian Foothills model), and could obtain better images
compared to the original method. CS-LRT improves the accu-
racy of the acquired plane waves and the anti-noise ability of
the imaging method. The dynamic focused beam propagator
increases the coverage of the beam in the shallow layer of the
model and helps to control the beam width.
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