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ABSTRACT In this paper, we address the target device localization problem in the asynchronous networks.
For the purpose of saving power resources, the target device is not synchronized with the anchor nodes,
but is only required to listen to the signals transmitted from the anchors, which, however, introduces
two extra nuisance parameters: the target’s clock skew and clock offset. By transforming the time-of-
arrival measurements into time-difference-of-arrival measurements, the clock offset of the target’s clock
is eradicated. However, there still exists the unknown clock skew, which may degrade the localization
performance. Since the range of the clock skew is usually known as a priori, we assume that it follows
a uniform distribution within this range. By doing so, we take it as a part of measurement noise and estimate
the target node position only. To estimate the target node position, we formulate a fractional programming
problem and further show that it can be solved by solving one single mixed semidefinite and second-order
cone program (SD/SOCP). Simulation results illustrate the superior performance of the proposed method
over the existing methods.

INDEX TERMS Fractional programming (FP), localization, time-of-arrival (TOA), time-difference-of-
arrival (TDOA).

I. INTRODUCTION
Localization has received much attention in recent years
owing to its extensive applications in many fields and
various networks such as transportation, target tracking,
surveillance, and emergency rescue response [1], [2]. Tra-
ditionally, the localization problem can be categorized into
two classes: time-based and feature-based. The former class
utilizes time related information to localize the target. This
class requires high-precision time synchronization but pro-
vides high localization accuracy; time-of-arrival (TOA) based
localization [3]–[6] and time-difference-of-arrival (TDOA)
based localization [7]–[10] belong to this class. The latter
class utilizes the features of the received signals. This class
does not require time synchronization and only requires to
compute the power of received signals, i.e., the received
signal strength (RSS) [11]–[15]; however, it cannot provide
accurate and reliable localization due to strong shadowing
effect in urban and indoor areas, although some newly pro-
posed methods using RSS have improved the localization
precision [14], [15]. Hence, RSS-based localization cannot

meet the requirement of high-precision localization. On the
other hand, traditional TOA- and TDOA-based localization
require the target device to send or broadcast signals to the
anchors, which may quickly drain the power resources of the
target.

In this paper, we focus on the high-precision target device
localization with relatively low power cost. A typical applica-
tion is the target device localization in the Internet of Things
(IOT) [16], in which the device is usually equipped with sim-
ple chips. We utilize a trade-off approach to achieve this aim.
In this approach, the anchors are assumed to be time synchro-
nized, which can be easily realized in some available systems,
e.g., time synchronization among base stations can be easily
implemented in the cellular system. However, different from
the traditional TOA- and TDOA-based localization, the target
only needs to listen to the anchors and record the arrival
time of the signals from the anchors. Apparently, it saves
much power since the target does not transmit signals. More-
over, it does not require the target to be time synchronized
with the anchors. However, it introduces two extra nuisance
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parameters due to the unsynchronized target: the skew and
the offset of the clock on the target [17], which will make the
localization problem more difficult.

A common approach to deal with the unknown clock skew
and clock offset is to jointly estimate these parameters and
the target position, which is usually referred to as joint syn-
chronization and localization. Various TOA-based joint syn-
chronization and localization methods have been proposed.
Zheng and Wu [18] addressed the TOA-based localization
problem, in which they assume that the anchors are syn-
chronized, and the clock skew and the clock offset of the
target’s clock and the target position are jointly estimated.
Ahmad et al. [19] proposed two methods to tackle
the joint time synchronization and target localization
problem using TOA measurements. One is called the
Expectation-Maximization (EM) method, and the other is the
more computationally efficient least squares (LS) method.
Wang et al. [20] proposed to localize a target by using
the two-way TOA (TW-TOA) measurements, in which the
anchors and the target are required to record the time stamps
to compute the TW-TOA measurements. More importantly,
they proposed a procedure to avoid the internal attacks of
the network. Gholami et al. [21] proposed a new TW-TOA
measurement model, in which only the target is required to
record the time stamps and the clock offset is eliminated.
However, this model introduces some unknown auxiliary
variables, i.e., the turn-around times, which have to be dealt
with. They first estimated these unknown variables and then
using the estimates, they introduced and solved two subop-
timal problems, i.e., the generalized trust region (GTR) sub-
problem and the linear least squares (LLS) problem, to jointly
estimate the clock skew and the target position. Gao et al. [22]
proposed a different way to address the unknown turn-around
times, which are taken as nuisance parameters, and proposed
a robust least squares method to estimate the target position
only. More recently, Vaghefi and Buehrer [23] proposed a
semidefinite relaxation (SDR) method to solve the coopera-
tive joint synchronization and TOA-based localization prob-
lem by leveraging synchronous anchors. Cooperation of the
sensor nodes significantly improves the synchronization and
localization performance.

All the above localization methods are derived based on
the TOA measurement models. Different from these works,
Gholami et al. [24] proposed to transform the TOA mea-
surement model into a TDOA measurement model. During
the transformation, the clock offset of the target’s clock is
removed, and the target position and the clock skew are
jointly estimated. In this paper, we employ the same idea
of transforming the TOA measurements into TDOA mea-
surements. However, unlike the way of addressing the clock
skew in [24], we do not estimate the clock skew but take
it as a random variable. Since its range is usually known
a priori, we assume that it follows a uniform distribution
within this range. By doing so, we can take it as a part
of measurement noise, and thus we only need to estimate
the target position. Moreover, we propose a novel fractional

programming (FP) method to estimate the target position.
In particular, we formulate the localization problem as a frac-
tional program. It is, however, difficult to solve the FP prob-
lem owing to its non-convex nature. Performing semidefinite
relaxation to the FP results in a quasi-convex problem, which
can be solved efficiently in a globally optimal manner. To fur-
ther reduce the computational complexity, we prove that the
quasi-convex problem is equivalent to a mixed semidefinite
and second-order cone program (SD/SOCP), which can be
solved more efficiently. More importantly, the relaxed quasi-
convex problem is quite tight such that it does not require any
postprocessing techniques to be further tightened.

The contributions of this work are twofold:
1.We propose a newmethod to localize a target device with

high localization accuracy and relatively low power cost.
2. We propose a novel FP method to solve the localization

problem, and it does not require any further postprocessing.
The rest of this paper is organized as follows. In Section II,

the measurement model is introduced. The FP method is
presented in Section III. Section IV derives the Cramer-Rao
lower bound (CRLB) and presents the Mean Square Error
(MSE) analysis. Next, the simulation results are illustrated in
Section V, and finally, the conclusion is drawn in Section VI.

The following notations will be adopted throughout the
article. Bold face lower case letters and bold face upper case
letters denote vectors and matrices, respectively. Ai,j denotes
the (i, j)th element of matrix A and A1:k,j denotes a vector
formed by the elements at rows from 1 to k and column j.
0k×` denotes the k × ` all-zero matrix; 1k and Ik denote
the k × ` all-one column vector and the k × k identity
matrix, respectively. ⊗ denotes the Kronecker product. En[·]
refers to the expectation with respect to n. diag{a1, . . . , a`}
denotes the ` × ` diagonal matrix with a1, . . . , a` on the
diagonal. Tr(A) and rank(A) stand for the trace and rank of A,
respectively. For matrix A and B, A � B means that A−B is
positive semidefinite.

II. MEASUREMENT MODEL
A. MEASUREMENT MODEL
Consider an `-dimensional (` = 2 or 3) wireless network
with N + 1 anchors and one target device. The anchor
positions are known, which are denoted by si ∈ R` for
i = 0, . . . ,N , and the target position is unknown, which
is denoted by xo ∈ R`. We assume that the anchors are
synchronized with a reference clock, while the target is not
synchronized. The local time of the target can be denoted by
the following affine model:

C(t) = wt + θ (1)

where t is the reference time, and w and θ are the clock skew
and the clock offset of the target’s clock, respectively.

Assume that the target measures the ranges to the anchors
by performing the one-way ranging protocol. The process
of measurement is conducted as follows. The anchors send
their signals to the target at time T k0 , k = 1, 2, . . . ,K for K
times, and the target detects the signals and records the TOAs.
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Based on this measurement process, the TOA measurements
can be denoted by:

tki = w(T k0 + ‖x
o
− si‖/c+ ñki )+ θ,

i = 0, . . . ,N , k = 1, . . . ,K (2)

where c and ñki are the speed of light and the measure-
ment noise, respectively. Here, the measurement noise ñki is
assumed to follow the Gaussian distribution with mean zero
and variance (σ̃ ki )

2, i.e., ñki ∼ N (0, (σ̃ ki )
2).

It is worth noting that if the target sends signals to the
anchors, then the problem of clock imperfection of the target
will not exist because the anchors are time synchronized.
However, this measurement procedure consumes more power
of the target during the process of sending signals, thus
quickly draining the power resources of the target. Moreover,
this measurement procedure requires a fusion center to pro-
cess the measurement data and to send the target position
estimate back to the target [24]. In comparison, the mea-
surement procedure adopted in this paper only requires the
target to listen to the broadcasting signals transmitted from
the anchors, and hence consumes much less power of the
target.

B. COPING WITH THE NUISANCE PARAMETERS
Our aim is to estimate the target position under the assump-
tion that the nuisance parameters T k0 , w, and θ are unknown.
There are generally two ways to cope with these nuisance
parameters. One way is to jointly estimate all these param-
eters and the target position. However, from the CRLB anal-
ysis, the mean square errors of T k0 and θ estimates are not
lower bounded, implying that we cannot estimate T k0 and θ
separately. Instead, we can only jointly estimate xo, w, and
wT k0 + θ . However, this joint estimation problem involves
solving an optimization problemwith `+1+K variables; it is
thus amore difficult problem that cannot be solved efficiently.
Thus, we adopt the other way, i.e., removing these parameters
by subtracting a reference measurement [24]. Without loss of
generality, we choose the zeroth measurement as the refer-
ence measurement (s0 is the reference anchor accordingly)
in each measurement period, and form the following trans-
formed TDOA measurements:

c(tki − t
k
0 ) = w

[
‖xo − si‖ − ‖xo − s0‖ + c(ñki − ñ

k
0)
]
,

i = 1, . . . ,N , k = 1, . . . ,K , (3)

which can further be written as

dki

= w
(
‖xo − si‖ − ‖xo − s0‖ + nki

)
= w

(
roi − r

o
0 + n

k
i

)
, i = 1, . . . ,N , k = 1, . . . ,K , (4)

with roi = ‖x
o
− si‖, i = 1, . . . ,N , ro0 = ‖x

o
− s0‖,

dki = c(tki − tk0 ) and nki = c(ñki − ñk0). By stacking
nki for i = 1, . . . ,N and k = 1, . . . ,K into a vector
n = [n11, . . . , n

1
N , . . . , n

K
1 , . . . , n

K
N ]

T , n follows the Gaussian

distribution with mean zero and covariance Q, where Q =
c2diag

{
(σ̃ 1

1 )
2, . . . , (σ̃ 1

N )
2 . . . , (σ̃K1 )2, . . . , (σ̃KN )2

}
.

From (4), we see that the clock skew w still remains in the
localization process. Based on the transformed measurement
model, Gholami et al. [24] proposed to jointly estimate the
clock skew and the target position. In this paper, we propose
a novel method to address the nuisance parameter w, which
will be detailed in the next section.

III. FRACTIONAL PROGRAMMING
Wemake the following assumptions on the clock skew w and
the noise nki .
Assumption A: We assume that w = 1 + δ because the

value of w is around 1, and |δ| is upper-bounded by a known
constant δmax , i.e., |δ| ≤ δmax .
Assumption B: The value of nki is much smaller than

the range between the target and the reference node,
i.e., |nki | � ‖x

o
− s0‖.

Note that these are very common assumptions made in
the literature, e.g., [7], [24], and [25]. For Assumption A,
the value of δmax can be determined by the technical spec-
ifications of the crystal oscillator embedded in the sensor
node. For Assumption B, if this assumption is not satisfied,
the measurements would be erroneous, and are thus useless.

By using w = 1+ δ, (4) can be approximately written as

(1− δ)dki ≈ ‖x
o
− si‖ − ‖xo − s0‖ + nki , i = 1, . . . ,N ,

(5)

where the approximation 1/w ≈ 1− δ is used.
By moving δdki to the right-hand side, (5) can be written as

dki ≈ ‖x
o
− si‖ − ‖xo − s0‖ + nki + δd

k
i , i = 1, . . . ,N .

(6)

Note that the approximate measurement model (6) is
similar to that adopted in [25], which is the measurement
model under the non-line-of-sight (NLOS) condition. Hence,
the two robust methods in [25], which take the NLOS errors
as nuisance parameters, can naturally be applied to solve the
problem in this work. However, the comparison between the
measurement model (6) and the model in [25] reveals their
differences. The NLOS errors in the model in [25] can be
much larger than the noise, while δdki in (6) is relatively
small and is on the magnitude of the noise. Based on this
observation, we adopt an approach different from that in [25]
to handle the term δdki , i.e., we take δ as a random variable and
the term δdki as part of the noise. Since themagnitude of δdki is
not as large as the NLOS errors, the localization performance
will not be degraded much even with inaccurate statistical
information of δ. In contrast, the NLOS errors considered
in [25] cannot be tackled in this manner because the NLOS
errors can be much greater than the noise.

By letting eki = nki + δd
k
i , (6) becomes

dki ≈ ‖x
o
− si‖ − ‖xo − s0‖ + nki + δd

k
i

= ‖xo − si‖ − ‖xo − s0‖ + eki , i = 1, . . . ,N . (7)
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Obviously, if we take δ as a random variable, then eki can be
seen as a new random variable. Moreover, it is reasonable
to assume that nki and δ are independent. Assume that δ
has zero mean and variance σ 2

δ . By stacking eki and dki for
i = 1, . . . ,N and k = 1, . . . ,K into vectors e and d ,
respectively, we have e = n + δd . Obviously, e has mean
zero and covariance R, where R = Q+ σ 2

δ dd
T .

In the following, we present a novel FP method to solve
this problem.

By moving ‖xo − si‖ to the left-hand side in (7) and
squaring both sides, we have

(dki )
2
− 2dki ‖x

o
− si‖ − 2(si − s0)T x+ ‖si‖2 − ‖s0‖2

≈ −2‖xo − s0‖eki + (eki )
2. (8)

Since δ is typically small, |δdki | � ‖x
o
− s0‖ usually holds.

Combining this fact and Assumption A, we have |eki | �
‖xo− s0‖. Thus, we can neglect the second-order noise terms
(eki )

2 for i = 1, . . . ,N and k = 1, . . . ,K . Dividing both sides
by −2‖xo − s0‖, we have

eki ≈
(dki )

2
−2dki ‖x

o
−si‖ − 2(si − s0)T xo + ‖si‖2 − ‖s0‖2

−2‖xo − s0‖
, θki (x

o). (9)

Based on (9), we can formulate an approximate weighted
least squares (WLS) problem:

min
x

f (x) , θ (x)TR−1θ (x), (10)

where θ (x) = [θ11 (x), . . . , θ
1
N (x), . . . , θ

K
1 (x), . . . , θKN (x)]T .

Problem (10) can be equivalently written as

min
y

(Ay− b)TR−1(Ay− b)
4‖x− s0‖2

s.t. ‖x− si‖ = ri, i = 1, . . . ,N , (11)

where y = [xT rT ]T is the optimization variable vector,

A =



−2(s1 − s0)T −2d11 0 · · · 0

−2(s2 − s0)T 0 −2d12
. . . 0

...
...

...
. . .

...

−2(sN − s0)T 0 0 · · · −2d1N
...

...
...

...
...

−2(s1 − s0)T −2dK1 0 · · · 0

−2(s2 − s0)T 0 −2dK2
. . . 0

...
...

...
. . .

...

−2(sN − s0)T 0 0 · · · −2dKN



,

and

b =



‖s0‖2 − ‖s1‖2 − (d11 )
2

‖s0‖2 − ‖s2‖2 − (d12 )
2

...

‖s0‖2 − ‖sN‖2 − (d1N )
2

...

‖s0‖2 − ‖s1‖2 − (dK1 )2

‖s0‖2 − ‖s2‖2 − (dK2 )2

...

‖s0‖2 − ‖sN‖2 − (dKN )
2



.

To facilitate the following relaxation, we rewrite
Problem (11) as

min
y

(Ay− b)TR−1(Ay− b)
4‖By− s0‖2

s.t. ‖By− si‖ = y`+i, i = 1, . . . ,N , (12)

where B = [I` 0`×N ].
By introducing Y = yyT and Z = [Y y; yT 1], Prob-

lem (12) can be equivalently written as

min
Z

Tr(FZ)
Tr(D0Z)

s.t. Zi+`,i+` = Tr(DiZ), i = 1, . . . ,N , (13a)

ZN+`+1,N+`+1 = 1, (13b)

Z � 0, (13c)

rank(Z) = 1, (13d)

where

F =
[
ATR−1A −ATR−1b
−bTR−1A bTR−1b

]
,

D0 = 4
[
BTB −BT s0
−sT0B ‖s0‖2

]
,

Di =
[
BTB −BT si
−sTi B ‖si‖2

]
, i = 1, . . . ,N . (14)

Problem (13) is a non-convex problem due to the follow-
ing: (1) the objective function is non-convex, but is quasi-
convex; (2) the rank-1 constraint is non-convex. To make this
problem tractable, we propose to yield the following problem
by dropping the rank-1 constraint:

Z∗ = argmin
Z

Tr(FZ)
Tr(D0Z)

s.t. (13a)− (13c), (15)

where Z∗ denotes the optimal solution of Problem (15).
According to [25], the relaxed problem (15) is not quite

tight such that the rank of Z∗ is much higher than 1. To allevi-
ate this problem, we utilize the same procedure as that in [25]
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to tighten Problem (15). Particularly, we add some second-
order cone constraints ‖x−si‖ ≤ ri (i.e., ‖Z1:`,N+`+1−si‖ ≤
Zi+`,N+`+1) for i = 1, . . . ,N to Problem (15), thus yielding
the following much tighter problem:

Z∗ = argmin
Z

Tr(FZ)
Tr(D0Z)

s.t. (13a)− (13c),

‖Z1:`,N+`+1 − si‖ ≤ Zi+`,N+`+1,

i = 1, . . . ,N . (16)

Note that Problem (16) is a quasi-convex problem since
the objective function is quasi-convex and the constraint set
is convex [26], and it can be solved in a globally optimal
manner by the bisection method in which a sequence of
SDP feasibility problems need to be solved [26]. However,
we show that the problem is equivalent to a mixed SD/SOCP,
which means that the globally optimal solution of (16) can be
obtained by solving one mixed SD/SOCP.
Proposition 1: The quasi-convex problem (16) can be

equivalently transformed to the following mixed SD/SOCP

min
U

Tr(FU)

s.t. Tr(D0U) = 1, (17a)

Ui+`,i+` = Tr(DiU), i = 1, . . . ,N , (17b)

UN+`+1,N+`+1 > 0, (17c)

U � 0, (17d)

‖U1:`,N+`+1 − siUN+`+1,N+`+1‖ ≤ Ui+`,N+`+1,

i = 1, . . . ,N . (17e)

Moreover, by denoting U∗ as the optimal solution of (17),
the optimal solution of (15) can be obtained through the
following relation:

Z∗ = U∗/U∗N+`+1,N+`+1. (18)
Proof: On one hand, for any feasible solution U

of Problem (17), we can always define a point Z̄ =

U/UN+`+1,N+`+1 since UN+`+1,N+`+1 > 0. It is easy to
show that Z̄ is feasible for Problem (16) and has the same
objective value Tr(FU) = Tr(FZ̄)/Tr(D0Z̄). On the other
hand, it is reasonable to assume that x 6= s0 such that ‖x −
s0‖ > 0 holds. Under this assumption, Tr(D0Z) > 0 holds.
For any feasible Z of Problem (16), we can define a point
Ū = Z/Tr(D0Z). It is also easy to show that Ū is feasible
for Problem (17) and has the same objective value Tr(FŪ) =
Tr(FZ)/Tr(D0Z). Thus, we conclude that Problems (16) and
(17) are equivalent and the optimal solution of (16) can be
obtained through (18).
The proposition indicates that Problem (16) can be solved

by solving only one mixed SD/SOCP, thus significantly
reducing the computational complexity. Moreover, it is worth
noting that the proposed FP method only takes the target
position as variable. This is different from the LLS and SDR
methods in [24], which take both the target position and the
clock skew as variables.

It is seen from the derivations that a known σ 2
δ is required

in the implementation of the proposed method. However,
according to our assumption, σ 2

δ is not known and only the
upper bound δmax is known. To obtain an approximate value
of σ 2

δ from δmax , we suppose that δ follows a uniform distri-
bution U(−δmax , δmax) based on the known information that
δ ∈ (−δmax , δmax). By this assumption, we obtain an approxi-
mation to σ 2

δ , denoted by σ̂
2
δ , which is equal to σ̂

2
δ = δ

2
max/3.

Replacing σ 2
δ in R by σ̂ 2

δ , we can obtain an approximation
to R, R̂, and R̂ is used in the whole implementation of the
proposed method.
Remark 1: The mismatch between R and R̂ may degrade

the performance of the WLS method (Eq. (10)). However,
we see from the simulations that the proposed method is not
sensitive to the inaccurate weighting matrix. This observation
complies with the results in [7], [9], and [10].
Remark 2: Remark 1 shows that the way of using the

known information of the upper bound on δ (i.e., δmax) used
in this paper is different from that in [24], in which this
information is included as constraints in the optimization
problem.

After solving the SD/SOCP (17), we can obtain the target
position estimate x∗ = Z∗1:`,N+`+1. By using x∗ and accord-
ing to (4), we can estimate the clock skew w by solving the
following problem:

min
α

(a− dα)T Q−1 (a− dα)

s.t.
1

1+ δmax
≤ α ≤

1
1− δmax

, (19)

where a = (r∗ − 1N r∗0 ) ⊗ 1K with r∗ = [‖x∗ − s1‖, . . . ,
‖x∗ − sN‖]T and r∗0 = ‖x

∗
− s0‖. The estimate of w can be

denoted by w∗ = 1/α∗ with α∗ being the solution of (19).

IV. ANALYSIS
A. CRLB ANALYSIS
In this subsection, we derive a performance bound for the
proposed method. Note that we cannot directly derive the
CRLB based on the original measurement model (4) since
we do not jointly estimate the target position and the clock
skew. Hence, we need to transform the measurement model
and derive a matched CRLB for the proposed method. To this
end, we start transforming (4) as follows:

dki = w
(
‖xo − si‖ − ‖xo − s0‖ + nki

)
= ‖xo − si‖ − ‖xo − s0‖

+ δ(‖xo − si‖ − ‖xo − s0‖)+ wnki
≈ ‖xo − si‖ − ‖xo − s0‖

+ δ(‖xo − si‖ − ‖xo − s0‖)+ nki
= ‖xo − si‖ − ‖xo − s0‖ + ēki , (20)

where ēki = δ(‖x
o
− si‖−‖xo− s0‖)+nki = δ(r

o
i − r

o
0 )+n

k
i .

Note that (7) is an approximation to (20). Hence, we can
derive the CRLBbased on (20). In the following, we take ēki as
the measurement noise. Moreover, to facilitate the derivation
of CRLB, we assume that δ follows the Gaussian distribution
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with mean zero and variance σ 2
δ , and then ēki also follows

a Gaussian distribution. Stacking ēki for i = 1, . . . ,N and
k = 1, . . . ,K into vector ē, we have ē = n + δdo, where
do = (ro−ro01N )⊗1K with ro = [ro1 , . . . , r

o
N ]

T . Obviously, ē
follows the Gaussian distribution with mean zero and covari-
ance R̄, where R̄ = Q+ σ 2

δ d
odoT .

Now, it is easy to show that the expression of the CRLB is
the same as that for TDOA-based localization in [7], i.e.,

CRLB = (CT R̄
−1
C)−1, (21)

where

C =



(xo − si)T

‖xo − si‖
−

(xo − s0)T

‖xo − s0‖
...

(xo − si)T

‖xo − si‖
−

(xo − s0)T

‖xo − s0‖
...

(xo − si)T

‖xo − si‖
−

(xo − s0)T

‖xo − s0‖
...

(xo − si)T

‖xo − si‖
−

(xo − s0)T

‖xo − s0‖



. (22)

Remark 3: The exact value of σ 2
δ is used in computing the

CRLB (21). From Remark 1, we know that the exact value
of σ 2

δ is actually not known in implementing the FP method.
Hence, the CRLB (21) is an overoptimistic lower bound for
the MSE of the proposed method. This, in turn, implies that
the FP method is not sensitive to the inaccurate σ 2

δ if it could
achieve the CRLB accuracy.
Remark 4: Comparing to the CRLB for joint estimation of

the target position and the clock skew [24], the CRLB (21) is
lower since the joint estimation methods in [24] estimate one
more parameter, i.e., the clock skew.

B. MEAN SQUARE ERROR ANALYSIS
In this subsection, we derive the MSE of the original WLS
method (Problem (10)) and show that the MSE can approach
the CRLB at sufficiently small noise level.

Denote the optimal solution of Problem (10) as x∗. Accord-
ing to the Karush-Kuhn-Tucker (KKT) optimality condition,
we have

g(x∗) = 0`×1, (23)

where g(x∗) is the gradient vector of f (x) (defined in (10))
at x∗.
Using the first-order Taylor-series expansion, we can

approximate g(x∗) as

g(x∗) ≈ g(xo)+H(xo)(x∗ − xo) ≈ 0, (24)

where g(xo) andH(xo) are the gradient vector and theHessian
matrix at xo, respectively.
According to (24), we have

x∗ − xo ≈ −H(xo)−1g(xo). (25)

The MSE of the estimate x∗ is

MSE = En
[
(x∗ − xo)(x∗ − xo)T

]
≈ En

{
[H(xo)−1g(xo)][H(xo)−1g(xo)]T

}
. (26)

Using the definition of f (x) in (10), we have

H(xo) = 2PTR−1P,

g(xo) = −2PTR−1e, (27)

where P = ∂θ (x)/∂xT |x = xo and can be expressed as

P=



d11 (x
o
− si)T

‖xo − s0‖‖xo − si‖
+

(si − s0)T

‖xo − s0‖
−
e11(x

o
− s0)T

‖xo − s0‖2
...

d1N (x
o
− si)T

‖xo − s0‖‖xo − si‖
+

(si − s0)T

‖xo − s0‖
−
e1N (x

o
− s0)T

‖xo − s0‖2
...

dK1 (xo − si)T

‖xo − s0‖‖xo − si‖
+

(si − s0)T

‖xo − s0‖
−
eK1 (x

o
− s0)T

‖xo − s0‖2
...

dKN (x
o
− si)T

‖xo − s0‖‖xo − si‖
+

(si − s0)T

‖xo − s0‖
−
eKN (x

o
− s0)T

‖xo − s0‖2



.

(28)

Substituting dki in (7) into (28), we can rewrite P as (29),
as shown at the bottom of the next page.

At a sufficiently low noise level, we have eki � ‖x
o
− s0‖.

Thus, P can be approximated by

P ≈



(xo − s0)T

‖xo − s0‖
−

(xo − si)T

‖xo − si‖
...

(xo − s0)T

‖xo − s0‖
−

(xo − si)T

‖xo − si‖
...

(xo − s0)T

‖xo − s0‖
−

(xo − si)T

‖xo − si‖
...

(xo − s0)T

‖xo − s0‖
−

(xo − si)T

‖xo − si‖



= −C. (30)

Substituting (30) into (27) and then substituting (27)
into (26), we have

MSE(x∗) ≈ En
{
[H(xo)−1g(xo)][H(xo)−1g(xo)]T

}
= En

[
(PTR−1P)−1

]
. (31)

It is easy to show that

R = Q+ σ 2
δ dd

T
= Q+ σ 2

δ (d
o
+ n)(do + n)T

= Q+ σ 2
δ d

odoT + 2σ 2
δ d

oTn+ σ 2
δ nn

T

≈ R̄+ 2σ 2
δ d

oTn, (32)
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where the approximation is obtained by neglecting the
second-noise term.

Substituting (32) into (31) yields

MSE

≈ En
[
(PTR−1P)−1

]
= En

{[
PT (R̄+ 2σ 2

δ d
oTn)−1P

]−1}
≈ En

{[
PT (R̄

−1
− 2σ 2

δ R̄
−1
doTnR̄

−1
)P
]−1}

≈ (PT R̄
−1
P)−1 + 2σ 2

δ

×En
[
(PT R̄

−1
P)−1PT R̄

−1
doTnR̄

−1
P(PT R̄

−1
P)−1

]
= (PT R̄

−1
P)−1

≈ (CT R̄
−1
C)−1

= CRLB, (33)

where the second and the third approximations follow from
the approximation (V + δ2M)−1 ≈ V−1 − δ2V−1MV−1 for
small δ2.

C. COMPLEXITY ANALYSIS
The SD/SOCP (17) can be solved in polynomial time by an
interior-point method [27, Lecture 6]. The worst-case com-
putational complexity of solving an SD/SOCP is on the order
of [25]

√
µ·

(
m
Nsoc∑
i=1

(
nsoci

)2
+ m2

Nsd∑
i=1

(
nsdi
)2
+ m

Nsd∑
i=1

(
nsdi
)3
+ m3

)
· ln(1/ε),

wherem is the number of equality constraints,Nsoc (resp.Nsd)
is the number of second-order cone (resp. semidefinite cone)
constraints, nsoci (resp. nsdi ) is the dimension of the ith second-
order cone (resp. semidefinite cone),

µ =

Nsd∑
i=1

nsdi + 2Nsoc

TABLE 1. Positions of the anchor nodes (unit: km).

determines the order of iterations, and ε > 0 is the solution
precision.

In (17), there are 4N+2 equality constraints, 1 semidefinite
cone of sizeN+`+1 (corresponding to (17d)), andN second-
order cone constraints of size `+ 1 (corresponding to (17e)).
Hence, the worst-case complexity of the proposed method is
on the order of

O
{
N 0.5[(4N + 2)2

(
(N + `)2 + (4N + 2)

)
+ (4N + 2)(N + `)3

]}
· ln(1/ε). (34)

V. SIMULATION RESULTS
In this section, the performance of the proposed FP method
(denoted by ‘‘FP’’) is validated through simulations. For
comparison, the performance of the SDR method for
solving the TOA based localization problem (denoted by
‘‘SDR-TOA’’) [23], the LLS and the SDR methods (denoted
by ‘‘LLS’’ and ‘‘SDR’’, respectively) [24], and the robust
SDR method [25] (denoted by ‘‘SDR-Robust’’) is included.
The CRLB for joint estimation of the target position and
the clock skew [24] (denoted by ‘‘CRLB-Joint’’), the perfor-
mance of the original WLS method (Problem (10)), and the
CRLB (21) are also included as performance benchmarks.
The positions of the anchors are listed in Table 1, and the
position of the target is randomly and uniformly chosen from
a square region of size [0, 1.5] × [0, 1.5] km2. Note that
the target may lie outside of the convex hull of the anchor
positions. Taking s0 as the reference anchor, we generate the
rangemeasurements using themeasurementmodel (4). In (4),
w is randomly chosen according to the Gaussian distribution
N (0, 0.003). The SD/SOCP (17) and the SDP in [24] are
solved using MATLAB toolbox CVX [28], and the solver
is SDPT3 [29]. The localization performance is evaluated in

P =



(xo − s0)T

‖xo − s0‖
−

(xo − si)T

‖xo − si‖
+

e11(x
o
− si)T

‖xo − s0‖‖xo − si‖
−
e11(x

o
− s0)T

‖xo − s0‖2
...

(xo − s0)T

‖xo − s0‖
−

(xo − si)T

‖xo − si‖
+

e1N (x
o
− si)T

‖xo − s0‖‖xo − si‖
−
e1N (x

o
− s0)T

‖xo − s0‖2
...

(xo − s0)T

‖xo − s0‖
−

(xo − si)T

‖xo − si‖
+

eK1 (x
o
− si)T

‖xo − s0‖‖xo − si‖
−
eK1 (x

o
− s0)T

‖xo − s0‖2
...

(xo − s0)T

‖xo − s0‖
−

(xo − si)T

‖xo − si‖
+

eKN (x
o
− si)T

‖xo − s0‖‖xo − si‖
−
eKN (x

o
− s0)T

‖xo − s0‖2



. (29)
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FIGURE 1. RMSE of the target position estimates versus the standard
deviation of noise using different methods.

FIGURE 2. RMSE of the clock skew estimates versus the standard
deviation of noise using different methods.

terms of root mean square error (RMSE), which is defined as

RMSE =

√√√√ 1
M

M∑
i=1

‖x̂i − xi‖2.

Here, M is the number of Monte Carlo (MC) runs and x̂i is
the estimate of the true source location xi in the ith run. In this
paper, we use M = 3000 MC runs to evaluate the RMSE.
Note thatw follows aGaussian distribution in the simulations,
and its variance is not known in implementing the proposed
method. In the simulations, we set δmax = 2.5σδ , which
yields an approximate σ̂ 2

δ equaling to δ2max/3 = 25σ 2
δ /12.

Obviously, the approximate σ̂ 2
δ is not equal to σ 2

δ .

1) SCENARIO 1
In this scenario, we use eight anchors (Indices 0-7 in Table 1)
to localize the target. We set K = 4 and vary the standard
deviation (STD) of noise, σ , from 1 m to 8 m. Figs. 1 and 2
respectively show the RMSEs of the target position estimates
and the clock skew estimates using different methods versus
σ . From Fig. 1, we see that CRLB-Joint is lower than CRLB
because joint estimation methods estimate one more param-
eter. The proposed method performs better than the other

TABLE 2. Number of MC runs with rank(z∗) = 1 for scenario 1 (3000 runs
in total).

FIGURE 3. RMSE of the target position estimates versus the measurement
rounds using different methods.

methods. Moreover, it performs comparably with the WLS
method (Eq. (10)) and can approach the CRLB even though
σ 2
δ is not accurate, indicating that the proposed method is

not sensitive to inaccurate σ 2
δ . It is worth noting that LLS

and SDR require an additional step to further improve their
performance. However, they still cannot achieve the CRLB
accuracy (i.e., CRLB-Joint). In contrast, the proposedmethod
does not need any postprocessing procedure. We observe
from the simulations that FP is generally tighter than SDR.
This can be attributed to the following two facts: (1)Minimiz-
ing the fraction in the objective function of the problem (16) is
helpful to keep the relaxed problem tight. When minimizing
the fraction, the denominator attempts to increase while the
numerator attempts to decrease, thus helping keep Z � 0
tight; (2) The constraint ‖Z1:k,N+k+1 − si‖ ≤ Zi+k,N+k+1
also tightens the relaxed problem. From Fig. 2, we see that the
proposed method also performs better than the other methods
in estimating the clock skew.

2) SCENARIO 2
Next, we examine the performance of the proposedmethod as
the number of measurement rounds increases. We fix σ = 4
and N = 7, and increase the number of measurement rounds
from K = 2 to K = 8. The simulation results are shown
in Figs. 3 and 4, from which we see that the performance of
all the methods improves as K increases. Moreover, FP pro-
vides almost 2 m reduction in target position estimation as
compared with SDR, and also performs comparably or better
as compared with the other methods in clock skew estimation.

3) SCENARIO 3
Finally, we consider the scenario when the number of anchors
varies. We fix the values of σ and K as σ = 4 and K = 4,
respectively, and vary the number of anchors from 6 (N = 5)
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TABLE 3. Number of MC runs with rank(z∗) = 1 for scenario 2 (3000 runs in total).

FIGURE 4. RMSE of the clock skew estimates versus the measurement
rounds using different methods.

FIGURE 5. RMSE of the target position estimates versus the number of
anchors using different methods.

TABLE 4. Number of MC runs with rank(z∗) = 1 for scenario 3 (3000 runs
in total).

to 9 (N = 8). The first N + 1 anchors in Table 1 are used.
Figs. 5 and 6 show the simulation results in this scenario.
From the figures, we see that the proposed robust method
still performs better than the others, especially when the
number of anchors is small. Specifically, when the number
of the anchors is 5, FP provides a 3 m reduction in RMSE as
compared to the other methods.

In Tables 2-4, we record the number of MC runs in which
the SD/SOCP (17) yields a rank-1 solution U∗1 and hence
optimally solves the original WLS problem (10). From the

1We regard U∗ to have rank 1 if the ratio between its second-largest and
largest eigenvalue is less than 10−5.

FIGURE 6. RMSE of the clock skew estimates versus the number of
anchors using different methods.

tables, we see that the proportion of optimal solutions is very
high. In all tested scenarios, SD/SOCP can yield the optimal
solution to Problem (10) in more than 99.43% of the runs.
This indicates that the relaxed SD/SOCP problem is almost
always tight.

VI. CONCLUSION
In this paper, we have presented the FP method for target
device localization. As compared with the traditional TDOA-
based localization problem, the clock skew of the target
still exists although the clock offset is eliminated. Unlike
the existing SDR and LLS methods in [24], which jointly
estimate the clock skew and the target position, we take the
clock skew as a part of measurement noise and estimate the
target position only. We then propose the novel FP method to
estimate the target position. Different from the SDR and LLS
methods in [24] that need a refined step to further improve
their performance, the proposed method does not need any
post processing procedure. Simulation results show that the
proposed method achieves superior performance over the
existing methods.
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