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ABSTRACT High precision localization information is the precondition of unmanned ground vehicles. But
the global navigation satellite system (GNSS) signal turns unreliable in urban and forest areas since it is
blocked by buildings and trees easily, which causes decline of localization accuracy. In order to solve this
problem, an integrated navigation system based on the strapdown inertial navigation system and binocular
camera visual odometer is utilized in this paper to provide navigation parameters for unmanned ground
vehicles when the GNSS signal denies. However, the existing integrated navigation algorithm cannot meet
the requirement of the high precision localization for unmanned ground vehicles because of the uncertainty
and nonlinearity. As a result, a robust nonlinear filter based on the H∞ filter and the cubature Kalman filter,
named RHCKF, is proposed in this paper, adopted in unmanned vehicle navigation. Simulation and real test
are both carried out to verify the effectiveness of the novel navigation algorithm when the GNSS signal
denies.

INDEX TERMS Unmanned ground vehicle, strapdown inertial navigation system, visual odometer,
integrated navigation, robust filter, nonlinear filter.

I. INTRODUCTION
With the rapid development of the autonomous navigation
and control technologies, the unmanned ground vehicles has
been widely used both in military and civilian such as trans-
portation, rescue, investigation, explosive disposal and so
on [1]–[4]. No matter what kinds of purpose, accurate nav-
igation information is the precondition. As a result, the nav-
igation technique of unmanned ground vehicles is becoming
the significant research orientation of unmanned vehicles.

Nowadays, various navigation systems, including Global
Navigation Satellite System (GNSS), Strapdown Inertial
Navigation System (SINS) and Visual Odometer (VO), have
been equipped in unmanned vehicles [5], [6]. But they have
limitations in different applications. The SINS is the most
widely used in modern navigation thanks to its autonomous,
compact and low-cost. However, its navigation accuracy will
decrease inevitably due to the accumulative error of inertial
components, especially in long-term navigation [2]. Despite
the fact that the GNSS can correct the accumulative error
of SINS by using its high signal-point positioning, it is easy
be interfered by the surroundings or human factors, such as

clouds, buildings or active jamming. So the GNSS has low
precision or even cannot be used in urban areas [7]. The VO is
the process of estimating the ego-motion of unmanned vehi-
cles using image sequences captured by the camera equipped
on it [8]. Thus, the accuracy of the VO algorithm relies
on the quality of image sequences which is influenced by
the surrounding. As a result, any single of these navigation
systems cannot meet the needs of unmanned ground vehicles.

Therefore, the integrated navigation system has attracted
more and more attentions. In integrated navigation systems,
the redundant and complementary measurements from differ-
ent sensors can effectively improve the accuracy of the whole
system. Taken the advantages of SINS and VO into account,
we focus on the SINS/VO integrated navigation system when
GNSS is denied to enhance its navigation performance and
reliability in this paper.

It is well known that the essence of integrated navigation
system is the optimal estimation, so the estimation algorithm
is the conclusive and key factor in the SINS/VO integrated
navigtion system. The most commonly used state estimation
method is the Kalman filter (KF), which is a high efficiency
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recursive filter. However, KF can only be used to deal with the
linear system because of that the signal process is regarded
as the output of the linear system. Due to large misalignment
angles or other jolts in actual systems, nonlinearity does exist
in SINS/VO integrated navigation systems. If linear KF is
still used, the estimated error will be produced or even the
filter divergent in practice [9]–[11]. Thus the nonlinear filter
becomes the focus of research.

At present, there are plenty of nonlinear filters, such
as Extend Kalman Filter (EKF), Unscented Kalman Filter
(UKF) and Cubature Kalman filter (CKF) [12]–[17]. In EKF,
the Taylor expansion is used to solve nonlinear state, but the
filter precision is limited and calculating Jacobian matrix is
complicated. Instead of practical linearization, the UKF uses
the Unscented Transform (UT) to approximate the system
distribution. But the UKF can not be used in high dimensional
systems since its non-positive covariance matrix [13], [14].
So the CKF based on Cubature Transform (CT) was proposed
to avoid the dimensionality curse. CKF is proposed to solve
this nonlinear filtering problem on the basis of the spherical-
radial cubature criterion. CKF approximates the mean and
variance of probability distribution through a set of 2N (N
is the dimension of the nonlinear system) Cubature points
with the same weight firstly, then propagates the above cuba-
ture points through the nonlinear functions, and calculates
the mean and variance of the current approximate Gaussian
distribution by the propagated cubature points at last
[14], [18], [19]. Due to its high precision and low calculation,
the CKF is widely used to solve the nonlinearity problem in
practical systems.

However, same as theKF, the CKF is based on the Bayesian
estimation. That means, the estimation is optimal only when
the statistical property are exactly known, which is diffi-
cult in practice. Besides, the noise model is time-varying
actually because of the inertial sensors’ error or low quality
figures caused by illumination and many other reasons. As a
result, the actual system has severe uncertainty. If traditional
filters still be used, the reliability and accuracy cannot meet
the requirement of unmanned vehicle navigation systems.

Aimed against the uncertainty problem, the robust filter
algorithm has been considered to enhance the robustness of
the SINS/VO integrated navigation system [12], [20]–[22].
Literature [23] investigated the tracking control problems for
a class of uncertain nonlinear systems in lower triangular
form, and to solve the uncertainty problem the adaptive neural
control approach for nonlinear systems in presence of unmod-
eled dynamics nonlinear systems was presented in [24]–[26].
The H∞ filter is a kind of robust filter method and it has
good performance in restraining the modeling uncertainty
and disturbance [21], [22], [27]. The Riccati Iteration algo-
rithm based on robust H∞ filter was proposed in [20]. And
it has been successfully used in the SINS/Radar integrated
navigation system whose statistical property of observation
model is uncertain; [21] focused on the multiple satellites
integrated navigation system with nonlinear system model
and the robust filter method is used to estimate system states;

[12], [28], [29] focused on a navigation system whose statis-
tical property is unknown and a closed-loop robust H∞ filter
method has been used to enhance both the robustness and the
filter accuracy. However, the initial parameters in the regular
robust filter cannot reach the balance between the robustness
and estimation accuracy which leads the filter algorithm has
a large conservative property.

To solve the uncertainty and nonlinearity problems of
actual systems, taken the advantages of the nonlinear CKF
and robulst H∞ filter into account, a novel SINS/VO inte-
grated navigation algorithm based on nonlinear CKF and an
adaptiveH∞ robust filter was proposed to enhance the system
accuracy and adaptivity. In this manuscript, the nonlinear
system model of SINS/VO integrated systems was built up to
enhance the positioning accuracy of the integrated navigation
system, and then we give the novel algorithm framework.
In this novel algorithm, the CKF is used to deal with the
system nonlinearity while the adaptive H∞ filter is used to
solve the system uncertainty.

The main contributions of this paper are summarized as
below.

1) To improve the positioning accuracy of the unmanned
ground vehicle, an integrated navigation system based
on the SINS and OV is proposed in this manuscript.
Taken the nonlinearity into account, the nonlinear sys-
tem equation of the SINS/VO integrated navigation
system is derived.

2) An robust integrated navigation system algorithm
based on the H∞ filter and the CKF, named RHCKF
algorithm, is proposed in this paper. This RHCKF
algorithm not only has the capacity of processing non-
linearity but also is able to achieve great accuracy
and robustness of the SINS/VO integrated navigation
system for unmanned ground vehicles.

The rest of this manuscript is organized as follows.
Section II presented the nonlinear model of the SINS/VO
integrated navigation system while the improved RHCKF
algorithm based on the robust H∞ filter and nonlinear CKF
method for SINS/VO integrated navigation systems is pro-
posed in Section III. The simulation and experiment are
shown in Section IV. Section V concludes this manuscript.

II. SYSTEM MODEL OF SINS/VO INTEGRATED
NAVIGATION SYSTEM
A. ERROR MODEL OF STRAPDOWN INERTIAL
NAVIGATION SYSTEM
Considering numerous advantages of SINS in the unmanned
ground vehicle navigation, the SINS is usually used as
the main system. To improve the system precision remark-
ably, the nonlinear error model of the SINS is derived here
detailedly.

Traditional linear differential equations are used under
the assumption that misalignment angles are small for sim-
plicity and convenience. However, the system is nonlinear
when misalignment angles are large caused by the vehicle’s
maneuvering or external disturbances. And estimated errors
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will exist if the linear model is still used. Thus the general
expression of the nonlinear attitude error equation of SINS is
shown as follows:

φ̇ = C−1ω
[(
I−Cn′

n

)
ω̂nin + C

n′
n δω

n
in−C

n′
b ε

b
]
+ C−1ω Cn′

b W
b
g

(1)

wherein φ = [φx φy φz ]> is the Euler error angle vector,
the direction cosine matrix from the navigation coordinate
system (n) to the calculated navigation coordinate system (n′)
is Cn′

n . C
n′
b denotes the direction cosine matrix from the

vehicle coordinate system (b) to n′, εb and W b
g are the

gyro constant drift vector and the corresponding zero-mean
Gaussian white noise vector, respectively, ω̂nin is the practical
gyro measurement vector, ωnin is the rotating angular rate vec-
tor of n relative to the inertial coordinate system (i), δωnin is the
calculated error vector of ωnin. Cω is an intermediate matrix.
The gyro measurement vector is equal to ω̂nin = ω

n
in + δω

n
in.

The direction cosine matrix Cn′
n related to three rotations,

so it can be written:

Cn′
n = CφyCφxCφz

=

cosφy 0 − sinφy
0 1 0

sinφy 0 cosφy

.
1 0 0
0 cosφx sinφx
0 − sinφx cosφx

.
 cosφz sinφz 0
− sinφz cosφz 0

0 0 1

 (2)

In Eq. 1, the Cω is an intermediate variable, and we have
this:

C−1ω =
1

cosφx
·

cosφy cosφx 0 sinφy cosφx
sinφy sinφx cosφx − cosφy sinφx
− sinφy 0 cosφy


(3)

Suppose that the accelerometer error is composed of the
constant bias error ∇b and the zero-mean Gaussian white
noise vector W b

a . Ignored the gravity acceleration error,
the SINS velocity error equation is given by:

δv̇n = Cn′
b f̂

b
− Cn

b f̂
b
+ Cn

b∇
b

− (2δωnie + δω
n
en)(v̂

n
− δvn)

− (2ω̂nie + ω̂
n
en)δv

n
+ Cn

bW
b
a (4)

wherein f̂ b and δf b denote the specific force vector and its
corresponding error vector respectively, ω̂nie is the calculated
Earth’s rotating angular rate, ω̂nen is the calculated angular rate
vector, δωnie and δω

n
en indicate the error vectors of ω̂

n
ie and ω̂

n
en

respectively, v̂n and δvn denote velocity measurement vector
and its corresponding error vector, and Cn

b = Cn
n′C

n′
b .

It is assumed that the inertial sensor error meets the combi-
nation of a constant bias and a random noise which satisfies

zero-mean and Gaussian distribution. As a result, their differ-
ential equations are: {

ε̇b = 0
∇̇
b
= 0

(5)

Position error equations comprise the longitude error δλ
and the latitude error δL :{

δL̇ = δvy
/
RM

δλ̇ = secLδvx
/
RN + secL tanLδLvx

/
RN

(6)

whereinRM andRN are the Earth’s radii of themeridian circle
and the prime vertical circle, respectively; λ and L are the
longitude and latitude of a point of interest; vx and vy are the
east and north velocities with their velocity errors δvx and δvy,
respectively.

B. SYSTEM MODEL OF BINOCULAR CAMERA BASED
VISUAL ODOMETER
Two independent cameras capture the environment scene
simultaneously in the binocular camera VO system and then
the environment features are extracted from two different
figures by utilizing the feature extraction algorithm simulta-
neously. The features from different figures are matched by
using the feature matching method and the depth information
are obtained by the triangulation theory. As a result, the three
dimensional coordinate of the features in the field-of-view
can be calculated accurately and the visual images can be
projected to the three-dimensional world finally.

The schematic of binocular camera VO system is shown
as Fig.1. The feature M is denoted as (X ,Y ,Z ) in the world
frame and (xc, yc, zc) in the camera frame. o1u1v1 and o2u2v2
denote the pixel coordinates of the left camera and the right
camera, respectively. olxlyl and orxryr denote the coordinates
of the left image plane and the right image plane, respectively.
The subscripts l and r denote left and right, respectively.

FIGURE 1. The schematic of binocular stereo imaging.
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The coordinates ol and or are represented as (u10, v10) and
(u20, v20) in coordinates o1u1v1 and o2u2v2. The projected
coordinates on the left and right image plane of feature
are represented as pl(xl, yl) and pr (xr , yr ), respectively. The
baseline length which defined as the distance between two
cameras’ projection center is b. The optical axes of two
cameras are parallel and vertical to the baseline. The focal
length is f . yl = yr when the two cameras are in the same
plane. The image disparity of the two cameras is

D = xl − xr (7)

The image disparity is a significant parameter which is
used to transfer the feature point from the 2-D plane coordi-
nate system to the 3-D camera coordinate system. It is known
from the geometrical relationship that

xl = f
xc
zc

xr = f
xc − b
zc

yr = yl = f
yc
zc

(8)

As a result, the 3-D feature (xc, yc, zc) in the camera
coordinate can be obtained from

xc =
xl · b
D

yc =
y · b
D

zc =
f · b
D

(9)

The relationship between the camera coordinate and the
world coordinate is expressed asXWYW

ZW

 = R ·

 xcyc
zc

+ T (10)

where R is a 3 × 3 orthogonal matrix which denotes the
rotation matrix from the camera coordinate to the world
coordinate; T = [ t1 t2 t3 ]> denotes the translation matrix.
In consideration of the transformation of coordinates and con-
necting adjacent motions, we can get the vehicle’s velocity
and pose relative to its original velocity, position and attitude.

From the above statement, it is obviously known that
the feature extraction is one of the the most basic and
vital techniques in VO systems. Nowadays, there are vari-
ous feature extraction methods, such as the Harris feature
extractor, the Binary Robust Independent Elementary Fea-
tures (BRIEF), the Scale Invariant Feature Transform (SIFT),
the Speeded Up Robust Features (SURF), the Features from
Accelerated Segment Test (FAST) and the Oriented Rotated
BRIEF (ORB) [5], [7]. Taken the real-time into consideration
in actual applications, a feature extraction algorithm with
low computation complexity should be taken into account.
In FAST method, the gray values of a part of the pixel
are compared to extract features instead of computing their
gradients. Therefore, the computation complexity can be

effectively reduced, improved the effectiveness of FAST fea-
ture extraction. Since the FAST method have been described
in detail in [5], we will not be repeated. Hence, the FAST
method introduced in [5] is used to extract features in this
manuscript, assisted the SINS for navigation.

C. NONLINEAR FILTER EQUATION OF SINS/VO
INTEGRATED NAVIGATION SYSTEM FOR
UNMANNED GROUND VEHICLES
In this paper, the SINS and VO system are integrated to get
more accurate navigation information for unmanned ground
vehicles. In this SINS/VO integrated navigation system,
the SINS is used as the main system to obtain the vehicle’s
motion while the VO is the aided system, which can get
vehicle’s velocity and pose to restrain filter errors, enhanced
the accuracy of the integrated navigation system. The diagram
of SINS/VO integrated navigation systems is shown as Fig. 2

FIGURE 2. Diagram of the SINS/VO integrated navigation system.

The filter equations are established based on error models
of SINS andVO system. Since we focus on unmanned ground
vehicles, the altitude, the vertical velocity and the vertical
acceleration are ignored. Thus, considered the position error,
the velocity error, the attitude error and the inertial sensors’
error, the state vector is denoted by Eq. 11 as follows:

X = [δλ δϕ δvx δvy φx φy φz ∇x ∇y εx εy εz]> (11)

wherein, δλ and δϕ are the longitude error and the latitude
error, respectively; δvx and δvy represent the east and north
velocity errors; εx and εy indicate the accelerometer bias
in the horizontal direction; εx , εy and εz are the constant
gyroscope drift; φx , φy and φz denote the attitude error.
On the basis of Eq. 1 ∼ Eq. 6, the differential equation of

the position, velocity and attitude can be derived, expressed
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as follows:

δL̇ =
δvy
RM

δλ̇ =
δvx
RN

secL +
δvx
RN

secL tanL · L

δv̇x = −fx(cosφz − 1)+ fy sinφz

− fz(φy cosφz + φx sinφz)

+
vy
RM

tanLδvx + (2ωie sinL

+
vx
RN

tanL)δvy + (2ωie cosL

+
vx
RN

sec2 L)vyδL +∇x

δv̇y = −fx sinφz − fy(cosφz − 1)

− fz(φy sinφz − φx cosφz)

− (2ωie sinL +
vx
RN

tanL)δvx

− (2ωie cosL +
vx
RN

sec2 L)vxδL

+∇y

φ̇x = −
δvy
RM
+ (ωie sinL +

vy
RM

tanL)φy

− (ωie cosL +
vx
RN

) sinφz + εx

φ̇y =
δvx
RN
+ (1− cosϕz)ωie cosL

−ωie sinLδL − (ωie sinL +
vx
RN

tanL)φx −
δvy
RM

sinφz + εy

φ̇z =
δvx
RN

tanL + (ωie cosL +
vx
RN

sec2 L) · δL + (ωie cosL cosφz

+
vx
RN

)φx − φy sinφzωie cosL

+
vy
RM

φy + εz

(12)

Since the vehicle’s velocity can also be obtained by
the binocular VO system, the velocity difference between the
SINS and the VO system is used as the measurement of the
SINS/VO integrated navigation system. Thus, the measure-
ment vector is as follows:

Z =
[
vSINSx − vVOx
vSINSy − vVOy

]
(13)

Therefore, based on the SINS model and VO model
introduced in Section 2, the filter equation can be established
as: {

Xk = f (Xk−1)+ Gk−1ξk−1
Zk = HkXk + ηk

(14)

wherein the f (·) is the nonlinear state transform matrix while
Hk is the measurement matrix; Gk−1 is the noise driven
matrix; ξk−1 and ηk are the process noise and the measure-
ment noise, respectively.

So now we can obtain the f (·) matrix easily from this
above differential equation. Meanwhile the measurement
matrix can also be derived as follows:

H =
[
02×2 I2×2 02×8

]
(15)

Taken constant and random errors of inertial sensors into
account, the process noise vector ξk−1 is:

ξk−1 = [01×2 wax way wgy wgz 01×5]> (16)

The noise driven matrix Gk−1 is where

G =


02×5 02×2 02×3 02×2
02×5 Cn′

b (1) 02×3 02×2
03×5 03×2 Cn′

b 03×2
05×5 05×2 05×3 05×2

 (17)

Cn′
b (1) =

[
Cn′
b (1, 1) Cn′

b (1, 2)
Cn′
b (2, 1) Cn′

b (2, 2)

]
(18)

Based on the above system model, we can use nonlinear
filters to estimate the system state, realizing the autonomous
navigation for unmanned ground vehicles with the SINS/VO
integrated navigation system.

III. AN IMPROVED INTEGRATED NAVIGATION
ALGORITHM BASED ON ROBUST H∞ FILTER
AND CKF METHOD
A. THE NONLINEAR CKF METHOD
As we all known, in actual engineering applications, the non-
linear filter should be used. Since the EKF and UKF methods
have their limitations, the CKF used the Cubature points
based on spherical-radial cubature criterion to approximate
the mean and variance of the nonlinear system, getting more
and more attention in practical applications.

Considering the nonlinear system:{
xk = f (xk−1)+Wk−1

zk = h (xk)+ ηk
(19)

wherein xk and zk are the state vector and the measurement
vector at time k , respectively; f (·) and h (·) are specific
known nonlinear functions; and Wk−1 and ηk are the noise
vectors from two independent zero-mean Gaussian processes
with their covariance matrices Qk−1 and Rk , respectively.

The set of 2n cubature points are given as followed, where
ξi is the i−th cubature point and ωi is the corresponding
weight. ξi =

√
n[1]i

ωi =
1
2n

, i = 1, 2, . . . , 2n (20)

where n is the dimension of the nonlinear system.
Assume that at time k − 1 the state estimation x̂k−1|k−1

and the matrix of the error covariance Pk−1|k−1 are already
known. The steps involved in the time-update and the
measurement-update of the CKF is summarized as follow.
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1) Time Update

Pk−1|k−1 = Sk−1|k−1 S>k−1|k−1 (21)

Xi,k−1|k−1 = Sk−1|k−1 ξi + x̂k−1|k−1 (22)

X∗i,k|k−1 = f
(
Xi,k−1|k−1

)
(23)

x̂k|k−1 =
1
2N

2N∑
i=1

X∗i,k|k−1 (24)

Pk|k−1 =
1
2N

2N∑
i=1

X∗i,k|k−1X
∗>

i,k|k−1

−x̂k|k−1 x̂>k|k−1 + Qk−1 (25)

2) Measurement Update

Pk|k−1 = Sk|k−1 S>k|k−1 (26)

Xi,k|k−1 = Sk|k−1 ξi + x̂k|k−1 (27)

Yi,k|k−1 = h
(
Xi,k|k−1

)
(28)

ŷk|k−1 =
1
2N

2N∑
i=1

Yi,k|k−1 (29)

Pzzk|k−1 =
1
2N

2N∑
i=1

Yi,k|k−1 Y>i,k|k−1

−ŷk|k−1 ŷ>k|k−1 + Rk (30)

Pxzk|k−1 =
1
2N

2N∑
i=1

Xi,k|k−1 Y>i,k|k−1 − x̂k|k−1 ŷ
>

k|k−1

(31)

Then with the new measurement vector zk , the blueestima-
tion of the state vector x̂k|k and its covariance matrix Pk|k at
time k can be obtained by the following equations:

Kk = Pxzk|k−1
(
Pzzk|k−1

)−1
(32)

x̂k|k = x̂k|k−1 + Kk
(
zk − ẑk|k−1

)
(33)

Pk|k = Pk|k−1 − KkP
zz
k|k−1K

>
k (34)

B. NOVEL RHCKF INTEGRATED NAVIGATION ALGORITHM
Although the CKF has a high estimated accuracy, it can
be only used when the system noise is already known and
Gaussian white noise which is difficult to satisfy in practical
systems. So considering the uncertainty of the whole system,
the H∞ filter attracts more and more attentions due to its
significant robustness.
In H∞ filter, the noise is considered as energy-bounded

random signal. And after introduced H∞ norm into esti-
mation framework, this filter is constructed, minimizing the
H∞ norm of the disturbance input and the filter output.
Thus, the estimation error has been minimized even worst
disturbance exists. So, to solve the nonlinearity and uncer-
tainty of the unmanned ground vehicle system, we proposed a
novel robust integrated navigation algorithm, named RHCKF
algorithm, based on the robustH∞ filter and the CKFmethod
in this paper.

Different from minimum variance estimation theory,
the robust H∞ filter guarantees the norm of the transfer
function from the input noise to the estimation error to be
minimum. It means to minimize the maximum gain from the
input signal to the output signal to make the filter has stronger
robustness. The cost function is proposed by Huber expressed
as:

J =

N−1∑
k=0

(‖ek‖>‖ek‖)

‖X0 − X̂0‖2P−10
+

N−1∑
k=0

(‖Wk‖
2
Q−1k
− ‖ηk‖

2
R−1k

)

(35)

where X̂0 and P0 denote initial state estimation and estimated
error covariance matrix, respectively; ek is the state estima-
tion error; Positive weighting matrices Qk and Rk denote
the covariance matrix of Wk and ηk , respectively. So the
essence of H∞ filter is expressed as: When P0, Qk and Rk
reach the upper bound, the estimation strategy is searched to
minimize J in order to minimize the estimation error under
the circumstance of disturbance maximized.

Generally, the optimal filter solution is difficult to obtain
in actual systems, so we can design a suboptimal iterative
filtering. We set a robust factor γ of theH∞ filter which is the
upper bound of the pre-determined H∞ filter performance,
yielding:

‖J‖∞ = sup J ≤ γ 2 (36)

According to the Riccati inequation, we get

Pk|k = Pk|k−1 −
[
Pxzk|k−1Pk|k−1

]
·R−1e

(Pxzk|k−1 )>
P>k|k−1


Re =

 Pzzk|k−1
(
Pxzk|k−1

)>
Pxzk|k−1Pk|k−1 − γ

2I


(37)

The generated state distribution from the Cubature points
can be controlled utilizing the robust factor γ , so the value
of γ has a significant impact on the filtering accuracy and
robustness. Smaller γ is, stronger the filtering robustness is.
However, for convenience, the γ is generally set based on
experiences in practical applications, and is inversely propor-
tional to the innovation.

The procedure of the proposed RHCKF integrated nav-
igation algorithm of the SINS/VO integrated system for
unmanned ground vehicles is presented in Table 1. In this
improved RHCKF algorithm, the CKF is used to solve the
nonlinearity while the H∞ filter is used to solve the uncer-
tainty in practical systems. Therefore, this RHCKF integrated
navigation algorithm not only has the capacity of processing
nonlinearity but also is able to achieve great accuracy and
robustness.
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TABLE 1. Pseudo-code of the RHCKF algorithm.

IV. SIMULATION AND EXPERIMENT
A. SIMULATION AND ANALYSIS
The simulation has been done to verify the performance of
the proposed RHCKF integrated navigation algorithm. In the
simulation, SINS and VO system constitute an integrated
navigation system of an unmanned ground vehicle, in which
velocity observations are provided by the VO system. And
the trajectory of the autonomous unmanned ground vehicle
is set as Fig.3 while the true velocity and heading are assumed
as Fig.4. The simulation time and sampling interval are
40s and 0.1s, respectively. The performance parameter of the
SINS is listed in Table 2.

FIGURE 3. True trajectory.

To verify the fault tolerance and robustness of this proposed
algorithm, the measurement noise is set as a time-varying

FIGURE 4. True velocity and heading.

TABLE 2. Performance parameters of the SINS.

noise signal. Assume that the variance of the white Gaussian
noise ηk is R0, and the time-varying noise is set as:

η′k = ηk + 0.5ηk−1 (38)

and the corresponding variance of η′k is
R = R0, t ≤ 8
R = 1.4R0, 8 < t ≤ 14
R = 0.8R0, 14 < t ≤ 40

(39)

In this manuscript, to prove the superiority of the novel
RHCKF algorithm, traditional CKF method and tradi-
tional H∞ based on EKF method, denote by CKF and HEKF
respectively, are taken as references. Monte Carlo simulation
has been repeated 20 times and curves of the positioning error,
velocity error and the heading error are expressed as Fig.5,
Fig.6 and Fig.7, respectively. In these figures, the black dash

FIGURE 5. Curves of positioning errors.
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FIGURE 6. Curves of velocity errors.

FIGURE 7. Curves of heading angle errors.

line, the blue dash-dot line and the red solid line describe
errors of the CKF algorithm, the HEKF algorithm and the
RHCKF algorithm, respectively.

From Fig.5 to Fig.7, we can see that the position error,
the velocity errors and the haeding errors are also suddenly
become larger after 4s and the error curves are fluctuant after
4s with the troditional CKF method. Correspondingly, with
the HEKF and RHCKF methods, the fluctuation are smaller.
Sowe can know that theHEKF andRHCKFmethods can deal
with the system uncertainty availably. And the largest posi-
tion errors with HEKF and RHCKF methods are about 8.5m
and 5.9m, respectively; the east largest velocity errors with
HEKF and RHCKF methods are 3.9m/s and 2.1m/s while the
north velocity errors are 2.7m/s and 1.9m/s; the heading errors
with HEKF and RHCKFmethods are−7.1◦ and 4.1◦, respec-
tively. So we can know that clearly the RHCKF algorithm has
better robustness.

In order to quantitative analyze the performance of these
three algorithms, the mean and the standard deviation of
errors are calculated and summarized in Fig.8.

From Fig.8, it is obviously that means and standard devi-
ations of the heading error, east velocity error, north velocity

and positioning error with the traditional CKF algorithm are
the largest. Between HEKF and RHCKF algorithms, corre-
sponding errors with the proposed novel RHCKF algorithm
are smaller. Means of heading angle, velocity and position
with RHCKF algorithm are reduced almost 20%, 50%, 50%,
and 50%. So we can see that the proposed RHCKF inte-
grated navigation algorithm has a better performance than
the CKF and REKF algorithms on the filtering accuracy and
robustness.

To evalutate the efficiency of these three algorithms further,
their computational times are compared. The simulation
was processed by MATLAB 2018a on the same com-
puter equipped with an AMD A10-9600P RADEON R5,
10COMPUTECORES 4C+6G, 2.40GHz processor and 4GB
RAMunderWindows 10. Tomake the comparisonmore intu-
itive, assumed that the computational time of the trodtioanl
CKF algorithm is 1, relatively computational times of HEKF
and RHCKF algorithm are 1.212 and 1.317, respectively.
So the traditional CKF algorithm is the simplest and fastest
algorithm among these three algorithm, the HEKF algorithm
takes the second place, and the RHCKF algorithm is slower
approximate 31.7% than CKF algorithm due to its calculation
of the weighted matrix. So from above analysis, we can
see that the RHCKF can obtain high accuracy and better
robustness at the cost of a certain degree of computational
times, which can be acceptted.

B. REAL DATA TEST AND ANALYSIS
In order to verify the effectiveness of the novel RHCKF
method based on the H∞ filter and the CKF, a real data
from the Karlsruhe Institute of Technology and Toyota Tech-
nological Institute (KITTI) Vision Benchmark Suite is used
here [30], [31]. The KITTI data set is the largest evaluation
data set of the computer vision algorithm in the world under
automatic driving scenarios, including the urban, rural and
highway scenes, with varying degrees of shadings. In this
open database, the recording platform is Volkswagent Passat
B6, which has been modified with actuators. The outlook
of the unmanned vehicle is shown as Fig.9 and various
sensors are installed on it. One inertial and GPS navigation
system (GPS/IMU)OXTSRT3003, a LaserscannerVelodyne
HDL-64E, 2 PointGray Flea2 grayscale cameras (FL2-
14S3M-C) and 4 Varifocal lenses are equipped. Accurate
ground truth is provided by the Velodyne laser scanner and
the GPS localization system. Performance parameters of the
OXTS RT 3003 are listed in Table 3 and Table 4. Two
FL2-14S3M-C grayscale cameras constitute a VO system and
offers the observation and the performance of the VO system
is analyzed in [7]. The data is recorded using an eight core i7
computer, and the sampling frequency is 10Hz.

Considering that trees and the illumination variant in the
residential area will interfere with the camera observation,
making the actual system uncertainty, a set of residential
area data, named Dataset 0033, is used here. In this data
set, there are 1594 pair of images, which are all calibrated
and synchronized. The size of each image is approximately
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FIGURE 8. Means and standard deviations with different algorithms. (a) Comparison of heading angle estimation. (b) Comparison of east
velocity estimation. (c) Comparison of north velocity estimation. (d) Comparison of positioning estimation.

FIGURE 9. Outlook of the unmanned vehicle.

1242 × 375 pixels. The true trajectory of this experimental
data is shown as Fig.10. Since that the means and standard
deviations of the east velocitu error, the north velocity error

TABLE 3. Technical specifications of OXTS RT 3003.

and the positioning eror of this data set are already analyzed in
details in [7], we use the velocity obtained by the VO system
as the measurement directly.

The proposed RHCKF algorithm is used to estimate
the system state while the normal CKF and HEKF algo-
rithms are also as references. And positioning errors of the
autonomous driving car with different algorithms are shown
in Fig.11while theirmeans and standard deviations are shown
in Fig.12.

From Fig.11, we can see that: the positioning error
with CKF algorithm increases quickly and the maximum
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TABLE 4. Performance parameters of OXTS sensors.

FIGURE 10. True trajectory.

FIGURE 11. Comparison of positioning errors.

is about 11.14m, with the RHCKF integrated navigation
algorithm the positioning error is smallest and its maxi-
mum is only about 6.75m; and the positioning error with
the HEKF algorithm is about 8.67m. Thus, the maximum
of positioning error with the RHCKF integrated navigation
algorithm is reduced nearly 39.4%. Then Fig.12 gives the
mean and the standard deviation with these three algorithm,
and the RHCKF algorithm has the smallest value. Therefore,
the superiority of the proposed the RHCKF integrated
navigation algorithm is verified.

FIGURE 12. Means and standard deviations of positioning errors.

V. CONCLUSIONS
In order to enhance the localization accuracy of unmanned
ground vehicles in the GNSS denied environment, a novel
robust localization algorithm based on the robust H∞ filter
and nonlinear CKF method is proposed, named RHCKF
algorithm, in this manuscript. On the basis of the established
mathematical models of the SINS and the binocular camera
VO system, the framework of the SINS/VO integrated navi-
gation system was set up firstly. Secondly, a robust nonlinear
filter based on the robust H∞ filter and nonlinear CKF was
proposed. Finally, simulations and real test are both utilized
to verify the performance of this novel novel integrated nav-
igation algorithm. Results showed that with this proposed
RHCKF algorithm the positioning accuracy and robustness of
the SINS/VO integrated navigation system can be enhanced
availably at the cost of a litter computation time which can be
acceptted.
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