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ABSTRACT The volume of telemetry data is gradually increasing, both because of the increasingly larger
number of parameters involved and the use of higher sampling frequencies. Efficient data compression
schemes are therefore needed in space telemetry systems to improve transmission efficiency and reduce the
burden of required spacecraft resources, in particular of their transmitter power. In this paper, a differential-
clustering (D-CLU) compression algorithm for lossless compression of real-time aerospace telemetry data
is proposed. Because of the temporal-spatial correlation characteristics of telemetry data, the use of a
differential compression strategy can efficiently improve compression performance. However, differential
compression faces two non-negligible problems, reliability and compression ratio, both of which may be
solved by clustering. This is the approach pursued in the proposed D-CLU compression algorithm. The
algorithm involves both clustering and coding. In the clustering stage, a one-pass clustering method based
on a similarity metric is used to group the original data into clusters. In the coding stage, two traditional
encoding algorithms, Lempel–Ziv–Welch and run-length encoding, are used to encode the data, based on the
clustering results. Compared with the direct use of differential compression, the clustering-based differential
compression algorithm can reduce the error propagation range, thus increasing reliability. The experimental
results demonstrate that the proposed D-CLU algorithm can also achieve better compression performance
than the other existing algorithms.

INDEX TERMS Real-time aerospace telemetry data, lossless compression, similarity metric, clustering.

I. INTRODUCTION
Aerospace telemetry is a process where the internal or exter-
nal operating parameters of a spacecraft are collected by the
sensors of a data acquisition system, and are then transmit-
ted to a ground station through a communication channel.
Users are then provided feedback after analysis by the ground
station. Aerospace telemetry systems are typically used to
monitor the environmental parameters of spacecraft and their
subsystems, thus providing a basis for fault analysis and data
processing [1], [2]. In space telemetry systems, both the stor-
age memory and the transmission channel bandwidth are lim-
ited; data compression is therefore necessary to improve the
transmission efficiency and decrease the transmitter power
requirements.

Data compression, which includes both lossy and loss-
less compression, is the process of removing redundant

information from the original data. In telemetry systems,
the ground station needs to obtain complete and accurate
information to estimate the state of the spacecraft. Therefore,
lossless compression is a preferable choice. Several lossless
compression solutions are currently used for telemetry data.
In [3], the author investigated the Huffman and Arithmetic
algorithms; however, the use of a single compression algo-
rithm for all types of data usually results in a lower com-
pression ratio (CR). In [4], a compression algorithm combin-
ing both the move to front (MTF) and run-length encoding
(RLE) approaches was shown to improve the CR compared
to the direct use of RLE. The Rice algorithm proposed in
[5], which is recommended by the Consultative Committee
for Space Data Systems, consists of two separate functional
parts: the preprocessor and the adaptive entropy coder; the
effectiveness of this algorithm is determined by the prepro-
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cessor performance. As can be seen from [4] and [5], some
data preprocessing is performed before encoding to improve
the CR; unfortunately, the complexity of these preprocessing-
based algorithms may be higher. In [6], a simple and fast
compression method is proposed, which can be referred to
as deleting the unchanged bytes (DUB); however, it may be
ineffective when the compared packets differ by half or more
than half the bytes; in addition, this technique suffers from an
error propagation problem that may decrease the reliability of
the telemetry system.

The effectiveness of lossless compression methods is
largely determined by the properties of the telemetry data [7],
especially the temporal-spatial correlation (also known as
similarity). It is known that clustering techniques can be used
to find correlations among sensor data [8]. Data clustering
partitions a data set into clusters according to certain similar-
ity indices, such that members within a cluster are somehow
similar and members of different clusters are dissimilar [9].
By grouping similar data into a cluster, the compression per-
formance can be significantly improved by preprocessing the
cluster members. In addition, while the occurrence of errors
in one frame may affect the results of decoding subsequent
frames, leading to poor system reliability, clustering-based
compression guarantees that the errors will only affect the
decoding results in the cluster within which they occur, which
can reduce the error propagation range and thus enhance
reliability.

Considering the aforementioned advantages of clustering-
based compression, we propose the differential-clustering
(D-CLU) compression algorithm in this paper. This clustering
method is based on similarity metric; two traditional encod-
ing algorithms, RLE and Lempel-Ziv-Welch (LZW) are then
used to perform compression based on the clustering results.

This paper is organized as follows. After a brief introduc-
tion to the telemetry systemmodel and the data characteristics
in Section II, Section III describes the proposed clustering
method, which is based on a similarity metric, as mentioned
above. Section IV then presents the clustering-based com-
pression and decompression processes, and discusses the
most important associated parameters. In Section V, the pro-
posed compression algorithm is evaluated on six test datasets,
and performance comparisons are made with other algo-
rithms. Section VI concludes the paper.

II. SYSTEM MODEL AND TELEMETRY DATA
CHARACTERISTICS
A simple diagram of the data transfer model of real-time
telemetry systems is shown in Fig. 1. The telemetry data are
received in real time by the various sensors in the teleme-
try terminals [10]. After data compression, these data are
continuously transmitted to the ground station, frame by
frame, so that the ground station may obtain the complete
and accurate information required to estimate the state of
the spacecraft. Generally, the original telemetry data com-
prise measurements of multiple parameters obtained by mul-
tiple sensors, all sampled with the same sampling rate.

FIGURE 1. Telemetry system data transfer model.

Suppose that xi = {xi1, xi2, · · · , xij, · · · , xin} represents the
sample data collected at time i, where xij denotes the j-th-th
data element. The original data sampled over a certain period
of time can then be represented by a telemetry matrix Xm×n,
as follows:

Xm×n =



x1
...

xi
...

xm

 =


x11 . . . x1j . . . x1n
...

. . .
...

. . .
...

xi1 . . . xij . . . xin
...

. . .
...

. . .
...

xm1 . . . xmj . . . xmn

 ,

1 ≤ i ≤ m, 1 ≤ j ≤ n, (1)

where m and n are the number of sampling moments and
the number of elements collected at each sampling instant,
respectively.

The parameters of the telemetry system can be divided into
two categories: slowly-varying parameters and fast-varying
parameters [11]. For slowly-varying parameters, the observed
values change slowly, or remain unchanged for consecutive
periods; for fast-varying parameters, the observed values
change rapidly or frequently over time. A high sampling
rate is therefore needed for fast-varying parameters to avoid
information loss; for consistency, the slowly-varying param-
eters are also sampled at this high sampling rate, which may
generate a considerable amount of redundant information.
This redundant information causes a high degree of similarity
between consecutive sampling times, and therefore leads to
high levels of (temporal) correlation between neighboring
rows of the telemetry matrix. In addition, the parameter
values obtained from neighboring sensor nodes are usually
similar, leading to high levels of (spatial) correlation within
the rows of the telemetrymatrix. Therefore, the telemetry data
are correlated in two dimensions: temporal and spatial.

To directly observe the temporal-spatial correlation
characteristics of telemetry data, Fig. 2(a) and (b) show two
randomly selected row vectors xi and xc obtained at two con-
secutive sampling times. As shown, the data are distributed
irregularly in each row vector (i.e. along the different param-
eters), but the data corresponding to the same parameter
are almost identical at the two consecutive sampling times,
with only a small fraction of the parameters showing any
considerable difference. Fig. 2(c) shows the difference vector
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FIGURE 2. Data distribution for xi , xc and d ic .

between xi and xc, which is obtained as

d ic = xi−xc = {xi1 − xc1, · · · , xin − xcn} , (2)

where i = c+1 (c, 1 = 1, . . . , m− 1; i = 2, . . . , m) .
Because of the similarity between two consecutive time sam-
ples, the difference vector d ic has long continuous sequences
of zeros, and it can therefore be efficiently compressed using
the RLE algorithm. To the best of our knowledge, RLE is
the best choice in this context for real-time systems, given
its fast compression and decompression performance [12].
Moreover, as can be seen from Fig. 2(a) and 2(b), the (spatial)
correlation existingwithin single row vectormakes it possible
to compress the data within those row vectors, a task for
which the LZW algorithm is a better choice [13].

According to the above analysis, two-dimensional com-
pression combining differential compression between two
vectors with temporal correlation and simple compression
within the individual vectors presenting spatial correlation
will be more efficient for telemetry data. However, when
differential compression is performed on two vectors, two
problems will be appeared, which cannot be ignored.

(1) Differential compression is more efficient on similar
vectors than dissimilar vectors. If differential compression is
used on two dissimilar vectors, the CR will be lower than
that obtained by compressing a single vector with a suitable
algorithm. Therefore, in order to obtain a satisfactory CR,
it is important to distinguish between similar and dissimilar
vectors.

(2) The compressed data are susceptible to some degree
of error propagation. Errors occurring in one frame during
data transmission may affect the decoding results of sub-
sequent frames, which lead to poor system reliability. The
DUB algorithm in [4], for example, deletes the unchanged
bytes between adjacent packets; all subsequent decoding
results are damaged once an error occurs in one packet.
Therefore, our compression algorithm should overcome this
error propagation problem.

A clustering-based compression strategy may solve the
above problems. Clustering is a useful and ubiquitous tool
in data analysis. Similar data vectors are assigned to the

same cluster of a partition according to a chosen similar-
ity metric, whereas dissimilar vectors are assigned to dif-
ferent clusters. Differential compression performed within
a cluster created by such clustering methods may therefore
ensure higher CRs. Furthermore, the compressed data vec-
tors obtained from different clusters are independent of each
other; therefore, the errors occurring in one frame will not
affect the decoding results in other clusters.

We therefore propose here a clustering-based compression
algorithm. This algorithm contains two main components:
clustering and coding. The details of the clustering method
are presented in Section III, and the compression and decom-
pression procedures are described in Section IV.

III. CLUSTERING METHOD
In this section, we provide a complete description of the
proposed clustering method used to improve compression
performance. In Section III.A, we introduce a novel similar-
ity metric, which is then applied to the proposed clustering
method. In Section III.B, we propose a data stream clustering
method that can meet the requirements of real-time compres-
sion and transmission of telemetry data.

A. SIMILARITY METRIC
The choice of a similaritymetric is a critical step in clustering.
The similarity metric is used to indicate how suitable a pair
of vectors is for inclusion in the same cluster [14]. A large
similarity value implies that those vectors are highly likely
to belong to the same cluster. Therefore, the effectiveness
of clustering algorithms always depends on the appropriate-
ness of the similarity measures to the data being processed.
A similarity measure proposed in [15] is based on considering
that two objects are more similar when one can be further
compressed given the information in the other. This means
that the CR can be used as a similarity measure index. Based
on this inspiration, we present here a novel compression-
based similarity measure between data vectors.

Our first objective is to derive an appropriate model for
measuring similarity between data vectors. As discussed in
Section II, the difference vector would be more efficiently
compressed by RLE than by the other traditional compression
algorithms. Therefore, we designed the proposed similarity
measure based on the RLE algorithm. The CR of RLE has
a strong dependence on the redundancy distribution charac-
teristics (RDC) of the data. Therefore, the similarity may be
obtained by analyzing the RDC of the difference vector.

In order to analyze the RDC of the elements in a given
vector, a variable Y is defined, which denotes the number of
repetitions of the same byte value in consecutive locations;
the possible range of variable Y is yk ∈ {1, 2, 3, 4, · · · , n},
and its probability distribution is P{Y = yk} = pk . The
mathematical expectation E(Y ) |u is used as an indicator of
the RDC of vector u, and can be calculated as

E(Y ) |u =
n∑

k=1

pkyk =
n
N

, (3)
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TABLE 1. The probability distribution of Y.

where N =
n∑

k=1
Nk , and Nk is the number of yk occur-

rences. An example is now given to illustrate the calcu-
lation of E(Y ) |u . Let us consider a given vector u =
{u1, u1, u2, u1, u1, u1, u1, u3, u3, u2, u1, u1, u1, u1, u1, u2}, for
which n = 16 and N = 7; the probability distribution of Y
can be estimated as shown in Table 1.

From (3), the mathematical expectation is E(Y ) |u = 1 ×
3
7 + 2× 2

7 + 4× 1
7 + 5× 1

7 =
16
7 . To obtain the relationship

between CR and E(Y ) |u , we use RLE to compress the vector
u; and calculate CR as follows:

CR = (1−
z′

z
)× 100% = (1−

2N
n

)× 100%, (4)

where z and z′ denote the original data size and the com-
pressed data size in bytes, respectively. From (3) and (4),
we obtain the relationship between CR and E(Y ) |u as

CR = (1−
2

E(Y ) |u
)× 100%. (5)

It can be seen from (5) that the greater the mathematical
expectation value is, the higher the CR becomes. Based on
this analysis, we define the similarity measure between two
vectors as

S(xi, xc) = E(Y )
∣∣d ic , (6)

where d ic is the difference vector between xi and xc.

B. CLUSTERING
The aerospace telemetry data are real-time data streams [10],
continuously and sequentially transmitted, frame by frame,
to the ground station. Given that a data stream is an ordered
and potentially unbound sequence of data points, the tradi-
tional clustering algorithms are difficult to apply [16]. Spe-
cific data stream clustering algorithms usually differ from the
traditional clustering algorithms in three important character-
istics [17], [18]:

(1)The number of clusters is previously unknown. New
cluster will emerge as the data points are input to the
algorithm.

(2)The data points can be accessed only once or a small
number of times in the order of data inflow.

(3)The algorithm should have the ability to analyze and
process outliers.

Data stream clustering is a process where new clusters
emerge unceasingly, while old clusters disappear, as all data
points are sequentially read to form clusters [17]. Most data
stream clustering algorithms proposed in recent years contain
two steps [17], [19], [20]: an online and an offline step.
During the online step, micro-clusters are created, using a

single pass over the data; these micro-clusters are then re-
clustered into macro-clusters in the offline step. Although
these existing data stream clustering algorithms can effi-
ciently group data into clusters with high quality, they are
not directly applicable to our real-time data compression and
transmission context. To satisfy the real-time requirement,
we will only consider a one-pass clustering strategy, i.e., one
in which all data are clustered in a single step, without
re-clustering. Furthermore, the outliers in our method are
compressed and transmitted, instead of being deleted as in
other algorithms.

The proposed clustering method is described below. It is
inspired on the idea of micro-cluster creation present in the
online step of data stream clustering. A cluster contains a set
of similar data points with a cluster head (CH) (also known
as cluster center) and several cluster members (CMs), and
is created using a similarity metric, in real time, as the data
points arrive.

Our clustering method considers each row of the telemetry
matrix as a data point in the data streams, and each data point
as a potential CH (P-CH) (the concept of P-CH is first defined
in [21]). Let Cxc denote the cluster currently being processed
whose real CH is xc, and let xpc denote the current P-CH.
A CH-buffer is defined, which can store either a real CH or a
current P-CH. The existence of a real CH in the CH-buffer
implies that the current cluster exists; otherwise, there is no
current cluster. In addition, we define parameter kp to repre-
sent the cluster width (the number of elements in the current
cluster Cxc ); its upper limit value is K . The cluster width
has a great influence on the compression performance; this
influence depends on the design of the compression process.
Therefore, we will provide a detailed discussion of the cluster
width in Section IV.C, and on how to obtain the optimal
value of K in Section V. The similarity threshold Vh(to be
discussed below) is another important parameter to determine
the cluster width kp in view of similarity, andwill be discussed
in Section V.

The overall proposed clustering method is summarized in
Algorithm 1. Once a new data point is input, the clustering
process is enabled. At the beginning, the similarity between
the new input data point xi and the data point in the CH-buffer
is calculated, effectively starting the clustering process. Two
different processes flow are followed within the clustering
procedure:

Case one: the data point in the CH-buffer is a current
P-CH, xpc . If the similarity between xi and xpc exceeds the
threshold Vh, a new current cluster is created and this P-CH
is upgraded to a real CH. Otherwise, xpc is considered to be an
outlier and removed from the CH-buffer. Then, xi is loaded
into the CH-buffer as the new current P-CH.

Case two: the data point in the CH-buffer is the current real
CH, xc, of Cxc . If kp is below K , and the similarity between
xi and xc exceeds the threshold, this new input data point xi
is assigned to Cxc . Otherwise, the current cluster process is
terminated; then, xc is removed from the CH-buffer and xi is
loaded into the CH-buffer as the new current P-CH.
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Algorithm 1 Clustering Method
Input: the new data point xi ∈ Xm×n
if the data point in the CH-buffer is xpc then
Calculate S(xi, x

p
c)

if S(xi, x
p
c) ≥ Vh then

xpc is upgraded to xc, and a new Cxc is created.
else
Remove xpc from the CH-buffer and load xi into the
CH-buffer as the new current P-CH.

end if
end if
if the data point in the CH-buffer is xc then
Calculate S(xi, xc)
if S(xi, xc) ≥ Vh and kp < K then

Merge xi into the current cluster Cxc ;
else
Remove xc from the CH-buffer and load xi into the
CH-buffer as the new current P-CH.

end if
end if

IV. COMPRESSION AND DECOMPRESSION
In this section, we provide a brief description of the
clustering-based compression and decompression processes.
In addition, we present a detailed discussion of the cluster
width parameter.

A. COMPRESSION
In general, the selection of a suitable compression algorithm
depends on the correlation characteristics of the data so
that better compression performance can be achieved. In the
proposed algorithm, two traditional compression algorithms
are combined to encode the original telemetry data, con-
sidering the two types of correlation present in those data.
As described in Section II, if we consider both the correla-
tion characteristics and the real-time requirement, the RLE
algorithm becomes a better choice to compress the difference
vector obtained from two similar vectors. The clustering
process ensures that all members in a cluster are similar to
their CH. Therefore, we use RLE to encode the difference
vector between each CM and its CH. Moreover, CHs and
outliers should be encoded to further enhance the overall
CR of the telemetry data. The LZW algorithm is used to
encode them. We note that all CHs and outliers originate in
P-CHs; therefore, in order to avoid repeated encoding, once
a P-CH is determined, it is compressed with LZW, instead of
performing the compression on a real CH or outlier.

The compression algorithm accepts each row vector of the
telemetry matrix as an input at each time period. The main
steps of the compression procedure are

(1) Take x1 as the first P-CH, and load it into the CH-buffer.
Then, encode it with LZW and transmit it.

(2) As the next vector is input, the clustering process starts,
as described in Section III.B. If this new input vector is

FIGURE 3. Clustering-based real-time compression and transmission.

FIGURE 4. Frame format.

classified as a new P-CH, encode it with LZW and transmit
it; otherwise, encode the difference vector between the new
input and the vector in the CH-buffer with RLE, and transmit
it. Repeat this step as long as there are new input vectors.

The most important characteristic of the proposed algo-
rithm is the real-time compression and transmission.
To achieve it, we perform data clustering and encoding simul-
taneously. Once a new input is classified as a P-CH or a CM,
the encoding procedure is enabled, according to the encoding
strategy described above. The compressed data are organized
into a frame format before being transmitted. Fig. 3 shows
a simple diagram of the clustering-based real-time compres-
sion and transmission procedure. For convenience, a trans-
mission frame containing a compressed CH or outlier referred
to as a CH frame; otherwise, it is referred to as a CM frame.
A CH flag is added to each CH frame in order to identify
CH frames and allow a correct data decompression. Check
bits are added to all frames, thus implementing an error
detecting code. The transmission frame format is shown
in Fig. 4.

B. DECOMPRESSION
D-CLU is a lossless compression algorithm, and therefore
enables a full reconstruction of the original data at the ground
station through the decompression procedure. This procedure
follow the inverse process flow used in the compression step:
it uses LZW to decode the CH frames, and RLE to decode the
CM frames.

A CH-buffer is also defined at the receiving end to store
a CH frame, which is then used to recover the other CMs in
the corresponding cluster. Once a CH frame is detected by
identifying a CH flag, it is decoded, and the decoded data are
loaded into the CH-buffer; the processing then proceeds to
the next frame. Depending on the type of frame immediately
following a CH frame, two different procedures are followed:

Case one: another CH frame is detected. Remove the for-
mer CH frame from the CH-buffer, and load the currently
decoded CH frame into the CH-buffer.
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Case two: a CM frame is detected. Decode it using the
RLE algorithm, and then add the decoded data to the data
stored in the CH-frame, thus retrieving the original data.

Error control is an important issue in lossless compression
because the decompressed data will be damaged if errors
occur during transmission in noisy channels. In our algo-
rithm, check bits are added in the transmission frames for
error detection.When an error is detected in a received frame,
two recovery procedures are executed:

(1) If the frame in error is a CH frame, all the data in the
current cluster are discarded. This is a direct consequence
of the fact that all the CMs in a cluster are recovered using
their CH, and therefore, an error in the CH frame will damage
all the CMs of that cluster.

(2) If the frame in error is a CM frame, discard only this
frame. Given that an error in a CM frame cannot affect the
other CMs in the cluster, they can still be correctly recovered
using their CH.

From the above discussion, we can see that a frame error
can only affect the decoded results belonging to the same
cluster, and will not, in any way, be propagated to other
clusters. Therefore, our proposed algorithm can significantly
enhance the reliability performance when compared with the
direct use of differential compression. Moreover, we note
that there is no clustering analysis in the decompression pro-
cess; therefore, the decompression time (DT) of the proposed
algorithm will theoretically be shorter than the compression
time (CT).

C. CLUSTER WIDTH
The cluster width, kp, was defined in Section III.B as being
the number of vectors in the current cluster. This subsection
discusses this parameter in detail.

The selection of a cluster width value has a significant
influence on the reliability and compression performance
of the proposed algorithm. On the one hand, cluster width
affects reliability. The smaller the value of kp, the smaller
the error propagation range on the decompressed data, given
that error propagation is always limited to the cluster where
the error occurred. Therefore, having too many members per
cluster may lead to poor system reliability. Moreover, clus-
ter width affects the compression performance. Intra-cluster
compression, in the proposed algorithm, combines LZW and
RLE algorithms to process CH vectors and difference vectors.
A different value of kp implies a different number of vectors to
be compressed by each one of these compression algorithms,
which leads to different compression performances. With
increasing cluster width, the number of vectors that need to
be compressed by LZW will be reduced, resulting in higher
CRs and shorter CTs. Therefore, from the point of view of
reliability, the value of kp should be as smalle as possible;
the opposite is true in terms of compression performance.
To balance these two aspects, we define another parameterK ,
which corresponds to the upper limit of kp. The optimal value
of K will be experimentally determined in Section V.

FIGURE 5. CR for different values of cluster width.

V. PERFORMANCE EVALUATION
In this section, the performance of the proposed compres-
sion algorithm is evaluated through numerical simulation
using the MATLAB software package. First, we experimen-
tally determine the optimal values of two of the methodąŕs
important parameters. Then, we evaluate the compression
performance of the proposed algorithm in terms of CR, CT
and DT, and compare this performance with those of several
other existing algorithms.

The evaluation is performed using six real-world datasets
from a certain aerospace application. Each dataset is pro-
cessed into a telemetry matrix, as described in Section II.
The resulting telemetry data matrices contain 2000 rows
of 512 bytes, for a total of 1024 KB. The uncompressed
original telemetry data contain multiple parameter samples
and additional service information. All the original and dif-
ferential data are presented in 8-bit complementary code.

A. PARAMETERS
In the proposed method, we need to experimentally find
the optimal value of two parameters: the upper limit of the
cluster width, K and the similarity threshold Vh. Both these
parameters have a significant influence on the compression
performance.

1) CLUSTER WIDTH
The choice of K should consider the need to balance the
relationship between compression performance and the error
propagation effect. According to the analysis in Section IV.C,
an optimal value of K should be found at the minimum value
of kp for which satisfying compression performances are
obtained. We therefore simulate the CR, CT, and DT under
different values of cluster width, and find an optimal value of
K that guarantees the desired compression performance. The
compression performance obtained with the D-CLU algo-
rithm for different values of kp is shown in Fig. 5 and 6.
As shown, both CR and CT improve monotonically when
the value of kp increases from 5 to 30; these improvements
become less significant when the value of kp exceeds 20.
This effect can be understood by noticing that, for data vec-
tors with high levels of similarity, the CR of LZW applied
to a single vector is lower than that of RLE applied to
a difference vector; additionally, the compression delay of
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FIGURE 6. CT and DT for different values of cluster width.

TABLE 2. CRs obtained using different single algorithms (%).

LZW is larger than that of RLE. Therefore, the compression
performance is fundamentally affected by the number of vec-
tors compressed using LZW. With increasing cluster width,
the influence of this parameter on compression performance
becomes smaller because the proportion of CHs requiring
LZW compression in the whole telemetry matrix is gradually
reduced; when the cluster width exceeds 20, its influence on
the compression performance decreases. Because the decom-
pression delay of LZW is basically the same as that of RLE,
the cluster width has only a small effect on DT. Therefore,
the optimal value of K selected for the proposed method
is 20.

2) SIMILARITY THRESHOLD
The similarity threshold, Vh, is another important parame-
ter in the proposed algorithm. A higher threshold implies
smaller cluster width, which may lead to lower CRs and
longer CTs; a lower threshold, on the contrary, may shorten
the CT, but may also reduce the CR, given that relatively
dissimilar vectors will be assigned to the same cluster. In this
paper we will experimentally determine the optimal value
of Vh. The proposed algorithm should ensure that the CR
of differential compression with RLE is higher than that
of single vector compression. Therefore, we simulate the
CRs obtained using different single compression algorithms
for all the original vectors; the obtained results are shown
in Table 2. The average CR is 31.32%, and the highest
CR of an individual algorithm over all sets is 32.84%. The
relationship between similarity and CR is shown in Fig. 7.
Clearly, the CR improves with the increase of similarity;
when S(xi, xc) ≥ 3, CR > 33% is expected. Based on
these experimental results, we chose a value of Vh = 3 for our
simulation.

FIGURE 7. Relationship between CR and similarity.

TABLE 3. CRs of different lossless algorithms (%).

B. COMPRESSION PERFORMANCE
The compression performance is usually evaluated by consid-
ering the CR, CT, and DT. In this subsection, we will follow
this approach and evaluate the proposed algorithm. Compar-
isons will also be made with other existing algorithms.

1) COMPRESSION RATIO
As shown in Table 2, applying a single compression algo-
rithm (e.g., RLE, LZW, Huffman, Arithmetic and DUB)
to the original data usually leads to a lower CR. To eval-
uate the compression performance of the proposed algo-
rithm and compare it with those of other preprocessing
algorithms, a simulation was performed and is presented in
this subsection. Table 3 shows the CRs for the six datasets
(D-1 to D-6) using different lossless compression algorithms.
The best CR for each dataset is highlighted in bold. The
last column in Tables 3 shows the average values of the
CRs in the previous columns. We observe that appropriately
preprocessing the data before coding (e.g., MTF+RLE, Rice
and D-CLU) can improve the CR. Furthermore, the average
CR of the proposed algorithm is better than those of the other
algorithms.

2) COMPRESSION AND DECOMPRESSION TIMES
The compression and decompression speeds are also impor-
tant attributes when measuring the performance of com-
pression algorithms. Therefore, we evaluated the proposed
algorithm an evaluation in terms of CT and DT on the six
datasets (D-1 to D-6). Only preprocessing-based compres-
sion algorithms are considered in this subsection, because
the traditional single compression algorithms always obtain
lower values of CR. The CT and DT of the algorithms
are obtained using a timing function. The simulation results
are shown in Fig. 8 and 9; shorter CTs and DTs imply
better real-time performances. As shown, both the CT and
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FIGURE 8. CTs of the different algorithms.

FIGURE 9. DTs of the different algorithms.

DT performances of D-CLU are better than those of the other
compared algorithms. Moreover, it should be noted that the
DTs of the Rice algorithm are similar to its CTs, whereas
the MTF+RLE and D-CLU require less time to decompress
(DTs) than to compress (CTs). The D-CLU algorithm recov-
ers the original data without similarity calculations, leading to
DTs that are shorter than the CTs. In summary, the test results
demonstrate that the D-CLU algorithm is faster than both the
MTF+RLE and Rice algorithms.
Generally, preprocessing combined with coding will raise

the complexity of the compression algorithm. Therefore,
the complexity of D-CLU algorithm is higher than that of
a single compression algorithm. However, the complexity of
D-CLU algorithm is still lower than other preprocessing com-
pression algorithms. The D-CLU algorithm is designed based
on data streaming clusters. The original data is clustered and
compressed in real-time. This strategy makes it possible to
reuse the resources with new data as the input. Therefore,
the complexity of the proposed algorithm is lower than other
preprocessing algorithms, especially as the size of the data is
increased.

VI. CONCLUSION
In this paper, an efficient D-CLU lossless compression algo-
rithm was proposed for real-time aerospace telemetry data.
A clustering method was designed based on a proposed sim-
ilarity metric. Because of the temporal-spatial correlation of
the telemetry matrix, the RLE method was combined with
LZW encoding for inter-row and intra-row compression of

the vectors in each cluster, respectively. It has been experi-
mentally demonstrated that the proposed algorithm can pro-
vide better compression performance than the other exist-
ing algorithms. Furthermore, the proposed D-CLU algorithm
offers some additional advantages. The proposed clustering-
based compression algorithm ensures that the compres-
sion/decompression of vectors in different clusters are inde-
pendent processes. Error propagation is therefore contained
within the affected cluster, thus enhancing the reliability of
the overall system. Even though the proposed algorithm has
been designed for telemetry data, it is also suitable for other
sensor data with high temporal-spatial correlation character-
istics. Moreover, the proposed algorithm can comply with
different application requirements by flexibly adjusting its
parameter values.
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