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ABSTRACT Demand-side management and incentive-based optimization have the potential to improve
energy efficiency of modern smart homes and smart communities. Existing approaches only refer to
consumers’ comfort level to thermal-related electric appliances. Other controllable appliances may not be
included in the incentive designs, and the total community power consumption is somehow neglected. Thus,
the involvement of residents’ participation is limited. To address this issue, we propose a new incentive-
based residential energy optimization system to manage community demand reduction requests efficiently
and, meanwhile, reward consumers with multi-level financial incentives and guaranteed comfort. A new
design of comfort indicator is used, which considers both thermal and major controllable electric appliances
based on the consumers’ comfort level. We integrate a genetic algorithm to solve this optimization problem,
i.e., to minimize the reward costs for the utility (according to maximize the consumers’ comfort level).
As an alternative approach, the mixed integer programming technique is also employed if the objective
function includes a certain piecewise linear decision variable. Simulation studies on both 10-house and 100-
house cases show that the proposed approach is outperformed two existing approaches in terms of reward
incentives, comfort levels, and the number of active appliances.

INDEX TERMS Community energy optimization, financial incentives, genetic algorithm, comfort indicator,
demand response, and residential energy management system.

NOMENCLATURE
N Total number of households.
PAC,i Power rating for the air conditioner of res-

ident i, kW .
SAC,i,t Status of the air conditioner of resident i at

time t .
1{.} Indicator function which represents the

value should be 1 if the conditions are met.
ScAC,i,t Controller status of the air conditioner of

resident i at time t .
Tor,i,t Initial room temperature of resident i, ◦F at

time t .
LRa,i Room temperature loss rate of resident i.
TAa,i Ambient temperature for the air condi-

tioner of resident i, ◦F.
ai Effect of the air conditioner of resident i,

◦F/kW.
TLow,i Low temperature defined by resident i, ◦F.

THigh,i High temperature defined by resident i, ◦F.
PWH ,i Power rating for the electric water heater of

resident i, kW .
SWH ,i,t Status of electric water heater of resident i

at time t .
ScWH ,i,t Controller status of the electric water

heater of resident i at time t .
Tow,i,t Initial tank temperature for the electric

water heater resident i, ◦F at time t .
TWH ,L,i Low temperature for the electric water

heater defined by resident i, ◦F.
TWH ,H ,i High temperature for the electric water

heater defined by resident i, ◦F.
LRw,i Tank temperature loss rate of resident i.
TAw,i Ambient temperature for the electric water

heater of resident i, ◦F.
ei Effect of the electric water heater of resi-

dent i, ◦F/kW.
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Ph,CD,i Cloth dryer heating rated power of
resident i, kW.

SCD,i,t Control signal from community energy
management system for the cloth dryer of
resident i at time t .

Pm,CD,i Cloth dryer motor rated power of resident
i, kW.

TCD,i,t Operation status of the clothes dryer of
resident i at time t .

Ph,DW ,i Dish washer heating rated power of resi-
dent i, kW.

SDW ,i,t Control signal from community energy
management system for the dish washer of
resident i at time t .

Pm,DW ,i Dish washer motor rated power of
resident i, kW at time t .

TDW ,i,t Operation status for the dish washer of res-
ident i at time t .

PEV ,i Electric vehicle rated power of
resident i, kW.

SEV ,i,t Status of the electric vehicle of resident i at
time t .

pcri,i,t Critical loads of resident i, kW at time t .
TAi Total number of appliances of resident i.
NAi,t Total number of active appliances of resi-

dent i at time t .
CPi,t User defined number of active appliances

should be turned on at time t .
R1, R2 and R3 Reward rates, cents/kW .5minutes.
Ptotal,i,t Power consumption capacity of resident i,

kW at time t .
Pc,i,t Total power consumption of resident i, kW

at time t .
PL,i Lower bound of the power consumption

defined by resident i, kW.
w1, w2 and w3 Weights of comfort indicator.
RWi,t Total reward cost of resident i at time t , $.
M Large enough constant.
vi,t Binary variable.
η Weight of objective function.
l Priority number.

I. INTRODUCTION
Due to the increasing penetration of intermittent distributed
energy resources and the ever-increasing electricity demand,
community energy optimization becomes a critical issue in
peak hours. Demand side management (DSM) is one popular
solution to solve this problem. The main objective of DSM
is to encourage users to consume less power during peak
hours and shift their needs to off-peak hours [1]. According
to [2], in the U.S.A., residential load demands consume 38%
of total electricity energy consumption. Involving residents
and encouraging them to participate in certain energy man-
agement and optimization schemes becomes a critical issue
in modern smart home and smart community area.

In the existing literature, demand response (DR) can be
categorized into price-based demand response (PBDR) and
incentive-based demand response (IBDR) programs [3]. Gen-
erally, various techniques are used in the PBDR program,
such as time-of-use, critical peak pricing, peak load reduc-
tion pricing, and real-time pricing [4]–[13]. Many residential
customers are risk-averse, and they are not making decisions
about electricity consumption on a daily or hourly basis.
Also, equity problems might arise from time-dependent retail
rate schemes, such as the day shift versus the night shift.
Because of these issues, time-varying retail rate schemes still
face obstacles in many regions when it comes to large-scale
deployment [14].

According to [15], the IBDR programs are responsible
for 93% of peak load reduction in the U.S. today. In recent
years, the utility companies started to conduct IBDR pro-
grams to increase their revenues by aggregating residen-
tial demands [16], [17]. Fifty-five utility companies across
the U.S.A. offer IBDR programs to their residential cus-
tomers [18]. The IBDR program is based on DSM and
the participants are financially rewarded according to their
quantified contributions during peak hours. It can also be
described as an incentive payment program to reduce usage
of electricity when the grid reliability is jeopardized [3].
The consumers who participated these programs reported
that their comfort levels were affected and the incen-
tives are not attractive enough [18]. Hu et al. [18] and
Perfumo et al. [19] investigated DR programs where the
aggregated demands are controlled by adjusting the tempera-
ture settings of the thermostatically controllable loads, i.e., air
conditioner. Khalid et al. [20], Ghazvini et al. [21], [22],
Cole et al. [23], Das and Ni [24], Anandalaskhmi et al. [25],
Ni et al. [26], and Paudyal et al. [27] proposed different meth-
ods to minimize the peak hour load demands, to minimize
the operational cost of the utilities and to maximize the bene-
fits of the program participants. In [28]–[30], decentralized
coordination techniques for DR aggregation are presented.
These studies mainly focused on off-line algorithms, which
are more suitable for day-ahead markets. The aggregated
costs of the decentralized coordination techniques are usu-
ally higher than the centralized coordination techniques [31].
The DR problem considering residential appliances with
mixed-integer operating constraints is proposed in [32]. The
DR problem is only formulated for inelastic residential appli-
ances which is a limitation in practice.

Pipattanasomporn et al. [9], Shao et al. [33], and
Haider et al. [34] propose DR schemes that consider both
controllable and non-controllable residential appliances for
minimizing the peak-hour load demand and operational cost
of the utility. A centralized DR framework with consumers’
responsiveness for different pricing strategies are presented
in [35]. In [36], an incentive-based demand reduction bid-
ding strategy is proposed for the consumers. They propose
an algorithm based on dynamic programming technique to
maximize the profit of the energy service provider. A hier-
archical residential load management system using particle
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swarm optimization is proposed to optimize the load and the
customer comfort index (comfort parameters are temperature,
illumination, and indoor air quality) in [37]. Ozturk et al. pro-
pose a branch and bound algorithm based technique for mini-
mizing the cost of scheduling consumer load according to the
environment/social factors. In the aforementioned literature,
maximizing consumers’ comfort levels while minimizing the
operational cost of the utility are not well-organized. Spe-
cially, for the calculation of consumer comfort level, major
residential electric appliances are not taken into consideration
which may misguide the controller in terms of consumer
comfort level.

Motivated by the above mentioned references, we propose
a new residential energy optimization scheme to address
demand reduction requests (DRRs) efficiently. Compared
to prior works [18], instead of considering only thermal-
related electric appliances, the proposed energy optimization
scheme considers all the residential home electric appliances
(both controllable and critical loads) in demand response. The
problem is formulated to minimize the sum of total reward
cost for utility and comfort indicator (CI) for consumers.
Note, minimizing CI is to maximize the comfort level of
the consumers. Genetic algorithm (GA) approach is used
as a general approach to solve the non-linear residential
demand optimization problem considering operational con-
straints. As an alternative approach, mixed integer program-
ming (MIP) technique is also investigated which is applicable
for the proposed optimization scheme due to piecewise lin-
ear objective/reward function. The performance of the pro-
posed approach is compared with the existing approaches
in [18] and [25] in terms of total financial rewards from
the utility and average comfort level of the residents. For
participants, the proposed strategy can 1) distribute financial
rewards according to their quantified participation in the DR
events, and 2) maintain their comfort level based on their
energy consumption preferences. For the utility, the proposed
strategy can 1) execute the DRRs by controlling residential
appliances, and 2) minimize the total reward costs of the
utility by performing DRRs. By benefiting both users and
the utility, the proposed strategy is expected to attract more
participants and further utilize the potential capability of
controllable residential demand-side resources.

The rest of this paper is organized as follows. The model
description of the residential appliances is presented in
Section II. The proposed optimization scheme is described
in Section III. The solution designs are demonstrated in
Section IV. The simulation setup and results analysis are
carried out in Section V. Finally, the conclusion is provided
in Section VI.

II. MODEL DESCRIPTION OF THE RESIDENTIAL
APPLIANCES
Residential appliances can be classified into two types:
1) controllable or non-critical loads and 2) uncontrol-
lable or critical loads. The controllable loads have high
potential to participate in the DR events and earn rewards.

The controllable appliances are controlled by the community
energy management system (CEMS), which is responsible to
change the status of the controllable appliances in response
to the specified DRR by the utility.

A. AIR CONDITIONER MODEL
Air conditioner (AC) is one of the major controllable residen-
tial appliances. The power consumption of the AC depends on
the operating status of the AC. If the status is ON, it consumes
the rated power; if the status is OFF then the power consump-
tion is zero. The power consumption equation of the AC for
resident i at time t can be expressed as [9],

pAC,i,t = PAC,iSAC,i,t . (1)

where, SAC,i,t represents the ON/OFF status, and
SAC,i,t = 1{TRoom,i,t>THigh,i}.
The indoor air temperature of the house with the ACs can

be estimated as [18],

Tr,i,t = Tor,i,t − LRa,i(Tor,i,t − TAa,i)− aipAC,i,t . (2)

where, the parameters LRa,i, ai, and pAC,i,t are different for
each resident.

B. ELECTRIC WATER HEATER MODEL
The power consumption of the electric water heater (EWH)
for resident i at time t can be calculated as [9],

pWH ,i,t = PWH ,iSWH ,i,t . (3)

where, SWH ,i,t represents the ON/OFF status and
SWH ,i,t = 1{TWH ,i,t<TWH ,L,i}.
For estimating the water temperature in EWH at time t ,

the equation can be written as [18],

Tw,i,t = Tow,i,t − LRw,i(Tow,i,t − TAw,i)+ eipWH ,i,t . (4)

where, the parameters LRw,i, ei, and pWH ,i,t are different for
each resident.

C. CLOTH DRYER AND DISHWASHER
The cloth dryer (CD) and dishwasher (DW) are task-based
appliances. In these appliance models, two power consump-
tion parts need to be considered, one is for motor part and
another one is for heating coils. The CEMS controls these
appliances by turning OFF the heating coils without inter-
rupting the motor part to ensure that these appliances can
resume its operation without the residents’ action. The power
consumption equation of the cloth dryer for resident i at time t
can be expressed as [33], [34],

pCD,i,t = Ph,CD,iSCD,i,t + Pm,CD,iTCD,i,t . (5)

Like the CD, the power consumption equation of the DW
can be written as,

pDW ,i,t = Ph,DW ,iSDW ,i,t + Pm,DW ,iTDW ,i,t . (6)
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FIGURE 1. The community energy management system model and
information flow.

In this paper, we assume that the DW consumes the rated
power during its operation. In reality, the power consumption
of this type of appliance may differ with different cycles but
we can always average the power consumption in a period of
time.

D. ELECTRIC VEHICLE MODEL
The power consumption by the electric vehicle (EV) for
charging, can be written as [9],

pEV ,i,t = PEV ,iSEV ,i,t . (7)

For electrical vehicles, we consider only normal charging
mode and assume that the electrical vehicles consume the
rated power during the active mode.

E. CRITICAL LOADS
The critical loads (CLs) of the household may include
refrigeration, freezing, cooking, lighting and other non-
controllable electric appliances. A random profile which has
a maximum value of 2 kW and a minimum value of 1 kW is
selected in the simulation program [9]. The uniform proba-
bility distribution is used for the random profile.

III. PROPOSED OPTIMIZATION SCHEME
A. OVERVIEW OF THE OPTIMIZATION SCHEME
The proposed model and information flow chart are illus-
trated in Figure 1. In the proposed design, the CEMS serves
as an agent who receives DRRs from the utility and executes
the DRRs by controlling residential appliances. According
to the design, the utility sends DRR signal to the CEMS
(signal - A) and every household of the community sends
residential load profiles and their preferences (signal - D) to
the CEMS. Then, the CEMS generates the optimal control
strategy (signal - C) for residential appliances based on users’
preferences and sends the estimated rewards to the utility
(signal - B).

B. DESIGN OF COMFORT INDICATOR, INCENTIVES
AND OBJECTIVE FUNCTION
1) COMFORT INDICATOR DESIGN
When the utility sends theDRR signal to the CEMS, distribut-
ing that DRR to the community residents in consideration of
their comfort level is the most critical issue for the CEMS.
In a community, residents have different user habits. During
a DR event, it is very important to schedule the residential
appliances in a proper way so that the utility can minimize
their reward costs and maximize the comfort level of the
residents. To address this issue, in this paper, we propose
a CI term for each resident which will measure the comforta-
bility of the resident based on their user habit and preferences.

The proposed CI is designed considering three different
items: i) CI for the air conditioner, ii) CI for the water heater,
and iii) CI based on number of active appliances during
optimization period. A weighted sum of normalized equation
is used to aggregate the CI terms as,

CIi,t = w1CIAC,i,t + w2CIWH ,i,t + w3CIS,i,t . (8)

where the sum of the weights are assumed as 1.
The CI of the air conditioner at time t can be designed with

a normalized equation as,

CIAC,i,t =

∣∣∣∣2Tr,i,t − TLow,i − THigh,iTHigh,i − TLow,i

∣∣∣∣ . (9)

If the CIAC,i value is getting high, the resident i will start
feeling uncomfortable and vice versa. This formula is similar
as the CI in [18]. Similarly, the normalized equation of the
CI of water heater for resident i at time t can be written as,

CIWH ,i,t =

∣∣∣∣2Tw,i,t − TWH ,L,i − TWH ,H ,iTWH ,H ,i − TWH ,L,i

∣∣∣∣ . (10)

During peak hours, the comfort level of the resident also
depends on the number of appliances he/ she can use. In the
peak time period, users want to best use their appliances, and
load curtailment may hamper their daily lives. We introduce
an appliance status based CI as,

CIS,i,t =

∣∣∣∣TAi − NAi,tTAi − CPi,t

∣∣∣∣ . (11)

where, the number of active appliancesNAi,t for resident i can
be calculated as,

NAi,t =
∑
i

Si,t . (12)

The active appliance status set Si,t for resident i at time t
can be expressed as,

Si,t = {ScAC,i,t , S
c
WH ,i,t , SCD,i,t , SDW ,i,t , SEV ,i,t , Scri,i,t }.

(13)

where, the status for all critical loads Scri,i,t is assumed
as 1 (ON).

In this paper, the CI is designed in such a way that the value
of CI greater than 1 represents the resident is uncomfortable
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and the value of CI less than or equal to 1 represents the
resident is comfortable.

According to the optimization scheme, the controller dis-
tributes the available energy of the utility to the community
residents based on their load profiles, preferences and com-
fort levels. The energy distribution of the utility can also
be defined as power limit of the resident. If the power con-
sumption of the resident is higher than the optimized power
limit, then the controller turns off the appliances based on the
priority list of the resident to make the power consumption
within the power limit.When the room temperature and water
temperature are within the defined range, then the CEMS
turns off the AC and the EWH appliances and allocates the
power consumption of these appliances to other appliances
to keep the consumer in his/her comfort zone. The comfort
level of the thermostatically controllable loads depends on
the temperature. Since we incorporated the number of active
appliances in the CI during the optimization period, if the
temperature of these appliances can be maintained within
the consumers’ comfort zone then these appliances can be
assumed as active appliances. To address this issue, during
the DR event, if the room temperature and water temperature
of the house are within their comfort zone, then the controller
statuses (ScAC,i,t and S

c
WH ,i,t ) of these appliances are assumed

as 1, though the statuses of these appliances (SAC,i,t and
SWH ,i,t ) are 0. The relationship can be expressed as,

ScAC,i,t =

{
1, if TLow,i ≤ TRoom,i,t ≤ THigh,i
SAC,i,t , otherwise

(14)

ScWH ,i,t =

{
1, if TWH ,L,i≤ TWH ,i,t≤ TWH ,H ,i
SWH ,i,t , otherwise

(15)

According to the relationship, the controller status of the
AC and the controller status of the EWH output 1 if the room
temperature and water temperature are within the resident’s
comfort zone and output the same value as the status of
these appliances (SAC,i,t and SWH ,i,t ) for other temperature
conditions.

2) REWARD DESIGN
The relationship between CIi,t and the reward rates can be
designed with a hierarchical structure as,

RWRi,t=


R1, if CIi,t ≤ 1
R2, if CIi,t > 1 and compromisei = 1
R3, if CIi,t > 1 and compromisei = 0

(16)

The reward rate structure is adopted from [18]. The partic-
ipant needs to share information of the residential load pro-
files, comfort temperature setting for temperature-dependent
appliances, priority list of the appliances (if any), and whether
he/she is willing to compromise comfort by curtailing the
loads. The lowest and highest rewards are R1 and R3, respec-
tively. In the reward structure, the compromisei represents
if the resident is willing to compromise his/her comfort
level or not. The compromisei = 1 represents that the resident

is willing to compromise. If any resident is not willing to
compromise his/her comfort level (compromisei = 0), then
he/she will get a higher reward if the CEMS curtails any
load from him/her. Any resident may intentionally choose
compromisei = 0 to gain more financial benefits with the
expectation to receive the highest reward rate, R3. However,
the emergency cases may occur very rarely such that the
resident may not have much chance to receive R3 reward
while losing opportunities to receive R2 rate.
According to the reward structure, if the CIi,t value is less

than 1, the user will be rewarded at R1 rate. If the CIi,t value
is greater than 1 and compromisei = 1, then the user will
receive reward at R2 rate. And R3 reward is for the users
who do not want to compromise (compromisei = 0) and
whose CIi,t value is greater than 1. To be fair for all the
residents, the CEMS keeps a record of the DRR participation
history for every resident. If multiple residents have same
CI values, the CEMS will choose the resident with a lower
DRR contribution history to maintain a fair and equal oppor-
tunity for all the residents.
The reward rate structure can be written as [18], [40],

RWRi,t=R1vi,t+R2(1−vi,t )comi+R3(1−vi,t )(1−comi).

(17)

where, vi,t is a binary variable and comi is representing
compromisei.

3) OBJECTIVE FUNCTION
The objective is to minimize total reward cost for the utility
while maximizing the comfort level of the residents (thereby
minimizing comfort indictor). The objective function can be
expressed as,

yt = min
Pc,i,t ,vi,t

{ N∑
i=1

RWi,t + η

N∑
i=1

CIi,t

}
. (18)

subject to the constraints as,

N∑
i=1

(Ptotal,i,t − Pc,i,t ) ≥ DRR. (19)

PL,i − Pc,i,t ≤ M (1− vi,t ). (20)

PL,i − Pc,i,t > −Mvi,t . (21)

RWi,t = (Ptotal,i,t − Pc,i,t )RWRi,t . (22)

Pc,i,t =
NAi,t∑
l=1

Pi,t . (23)

where, the constraint (19) represents the total load reduction
of the community at time t should be equal or higher than the
DRR. The constraints (20) and (21) represent the relationship
between the two variables Pc,i,t and vi,t , and PL,i and M are
known values. The equation for calculating rewards for each
house is presented in equation (22). Note, the reward function
in equation (22) is a piecewise linear function because the
reward rate RWRi,t in equation (17) is a discrete value and
the variable vi,t is a binary variable. If the reward rate RWRi,t
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is continuous then the reward function will also be a contin-
uous function. The equation (23) represents the total power
consumption of resident i in kW at time t , and the appliance
power consumption set can be expressed as,

Pi,t = {pAC,i,t , pWH ,i,t , pCD,i,t , pDW ,i,t , pEV ,i,t , pcri,i,t }.

(24)

The time frame of this optimization problem is set as
τ = {0,1t , 21t, . . . ,T}, where 1t = 5 minutes and
T represents the total time period.

IV. SOLUTION DESIGNS
The optimization problem is formulated with non-linear
objective function subject to the linear constraints. In this
section, two different optimization techniques are investi-
gated as the solution designs of the proposed optimization
scheme. First, the integration of the GA approach is demon-
strated to solve this non-linear optimization problem. Second,
the MIP technique is investigated as an alternative solution of
the proposed optimization scheme which requires the refor-
mulation of the problem statement. In this section, the con-
ventional optimization approaches are also demonstrated for
comparative study.

A. INTEGRATION OF GENETIC ALGORITHM IN CEMS
The GA optimizes based on a natural selection process that
mimics biological evolution where the algorithm repeatedly
modifies a population of individual solutions [41]. In recent
years, the GA is used for optimization in many applications
on smart grid [42]–[45]. The steps to minimize equation (18)
based on residents load profiles are summarized as follows,
• Step 1: The algorithm starts by initializing a random
population with K individuals. In the population, each
individual contains 2N variables and the power con-
sumptions of N houses consider as N variables (Pc,i,t ).
Another N individuals represent the binary variables
(vi,t ) for N houses where the binary variables are shaped
based on the constraints.

• Step 2: The value of fitness function (objective function
refer to equation (18)) for each individual of the current
population is calculated. Then, the relative fitness of
each individual is calculated as,

RF(k) =
yt (k)∑K
k=1 yt (k)

. (25)

An individual is selected, called elite, which has lowest
relative fitness then others (since minimization prob-
lem). Then, four highest relative fitness individuals are
selected and replaced by the elite individual.

• Step 3: In this step, rest of the individuals are used
for crossover and mutation. In every generation, four
individuals are selected by using linear bias function
for crossover. After crossover, the offsprings are used
for random mutation process. The mutation process is
used to find the global minima without getting trapped

into the local-minima. Then, the children are added to
the current population and the fitness of the children
are evaluated by using the fitness function. Later, four
individuals of the population with highest relative fitness
are eliminated and the remaining populations are sent to
the next generation (iteration).

• Step 4: The algorithm stops when the average change
in the fitness value is found less than the defined func-
tion tolerance value. When the algorithm meets the
stopping criteria, it generates the outputs of the power
consumption (Pc,i,t ) and the binary variable (vi,t ) for all
the houses. After getting the output values, the CEMS
schedules the appliances based on the user’s priority.

Finally, the proposed CEMS calculates the total financial
rewards aswell as the comfort level for each house and goes to
the next time step. The design parameters of GA are presented
in Section V.

B. ALTERNATIVE SOLUTION: MIXED INTEGER
PROGRAMMING
The MIP is a technique suitable for optimization problems
which involves both continuous and discrete variables [46].
The MIP method can be an alternative technique to solve
the proposed residential energy optimization problem. In this
paper, we used mixed integer linear programming (MILP)
technique as a MIP method. This method is applicable
because we have one continuous and one binary variables for
each house. For example, by substituting equations (17) and
(22) in equation (18), the objective function for house i can
be written as,

min
Pc,i,t ,vi,t

{
Ptotal,i,t {(R1 − R3)vi,t + R3} − Vnew,i,t (R1 − R3)

−Pc,i,tR3 + ηCIi,t

}
. (26)

where we introduce a new variable Vnew,i,t , replacing the non-
linear term Pc,i,tvi,t . In this specific design, vi,t is a binary
variable, therefore, we can rewrite the objective function
withVnew,i,t and add two new constraints for this new variable
as [47],

0 ≤ Vnew,i,t ≤ vi,tPtotal,i,t (27)

−Ptotal,i,t (1− vi,t ) ≤ Pc,i,t − Vnew,i,t ≤ Ptotal,i,t (1− vi,t )

(28)

where both constraints are developed considering that
the new variable Vnew,i,t should be either equal to zero
(if vi,t = 0) or equal to Pc,i,t (if vi,t = 1). Note, the MILP is
not feasible to solve the objective function if the variable vi,t
is not a binary variable. That is to say, the objective function
in equation (18) will be a nonlinear function if RWRi,t is a
continuous function.

C. CONVENTIONAL SOLUTIONS
The first conventional solution is adopted from [25]. Accord-
ing to the conventional strategy, at each time step, if the total
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TABLE 1. Load profiles and personal preferences of the ten residential houses.

power consumption of the community is higher than the avail-
able power, then the system assigns the deviation 1 equally
among the N number of residents. Note, the deviation 1 is
the difference between the total power consumption and the
available power. According to this strategy, the power con-
sumptions of the residents are expected to reduce by 1/N .
Later, the system estimates financial rewards for each resi-
dent based on their participation in the event and sends the
information to the utility.

Another solution is from a most recent work [18]. In [18],
a CI for measuring thermal comfort level of the residents
is proposed and only air conditioner is used as a residential
appliance to validate their approach. The energy optimization
problem is solved by mixed integer quadratic programming
algorithm using BONMIN solver in general algebraic mod-
eling system.

V. SIMULATION SETUP AND RESULTS ANALYSIS
The simulation is conducted for 10-house and 100-house
residential communities. The case studies are compared with
existing approaches in terms of number of active appliances,
reward incentives and comfort levels.

A. SIMULATION SETUP FOR 10-HOUSE RESIDENTIAL
COMMUNITY
In the community of ten houses, each resident has different
personal preferences and load profiles. Six different appli-
ances are used where AC, EWH, CD, DW and EV are con-
sidered as controllable loads and CLs are treated as non-
controllable loads. The power ratings of the appliances are
generated randomly according to the ranges in [9], [18],
and [33]. In this paper, the power rating of the unavailable
appliances is defined as 0. The total power demand of the
community is calculated as 136.9 kW .
For each house, the CLs, AC and EWH are set as first, sec-

ond and third priority loads, respectively. These three loads
are considered as highest priority loads for all houses. The
load profiles and personal preferences of ten residents are
summarized in Table 1. The lower bound of power con-
sumption in each house is the sum of the power rating of
the highest priority loads and the user preferred controllable
loads (e.g., in house 1 of Table 1, CD is user preferred load).

The lower bound of power consumption in a house repre-
sents if the CEMS curtails any controllable loads from these
appliances, the utility has to pay higher rewards (R2 or R3) to
the consumer. In this paper, the priority numbers of the other
appliances (except highest priority loads and user preferred
loads) are defined randomly.

In the experiment, the time duration of each DRR is set to
five minutes. The advantage of using this time interval is to
prevent the discomfort caused by performing a single DRR
with a long time period. At the beginning of each short DRR,
the sensor of each house sends the feedbacks to the CEMS
which will help to optimize the system based on the resident’s
preferences.

For the 10-house residential community, the GA is imple-
mented with K = 50 populations where two-point crossover
is used with 10% mutation rate. The simulated binary
crossover technique is also investigated as an alternative
technique for the GA crossover [48], [49]. The strategy for
determining the reward rates can be varied case by case.
In this paper, the reward rates R1, R2 and R3 are assumed
as 20, 40, and 60 cents/ (kW.5min), respectively. For the
traditional approach [25], a reward of 40 cents/ (kW.5min) is
used which is the median value of the proposed reward rates.
Simulation results are presented in the rest of this section.

B. DRR1: APPROXIMATELY 40% DEMAND REDUCTION
In this experiment, the utility sent 55 kW DRR to the CEMS
for 20minutes which is approximately 40% of the total power
demand of the community. The results of the residents’ com-
fort levels and the reward distributions are shown in Table 2.
The comfort percentage (%) represents the percentage of
time when the power consumption was within the residents’
comfortable ranges.

The results show that all the residents were within their
comfortable power consumption ranges, and, the comfort
percentage is 100% for all houses with reward R1 rate. House
8 received the most financial rewards due to their broad
comfortable power range. Note power range refers to the
difference between the total power rating (kW ) and the lower
bound (kW ). In the community, a participant who has a higher
comfortable power range, has higher chance for high rewards.
Here, the higher comfortable power range represents that the
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TABLE 2. DRR1 results for ten houses.

FIGURE 2. The figures (a) and (b) represent the result comparisons in
terms of number of active appliances for DRR1 and DRR2, respectively.

resident gives freedom to the utility to curtail a higher amount
of loads.

Figures 2(a) and 2(b) show the comparison of the num-
ber of active appliances between the proposed approach and
existing approach in [18]. In each time step, the proposed
approach outperformed the existing optimal framework. The
results show that the proposed approach is distributed the
available energy to the residential appliances more efficiently
than the existing framework. The total power consumption of
each house over the time interval for DRR1 is also presented
in Figure 3. According to the Figure 3, all the residents are
using their appliances before the DR event at time 0. When
the DRR1 is applied, the CEMS curtails the loads from the
houses according to minimize the reward costs of the utility
and maximize the overall comfort level of the community.
During the DR event, specially between five minutes and
twenty minutes, the power fluctuations are observed due to
the comfort level adjustment of the houses. For the comfort
level adjustment, sometimes the CEMS curtails loads from
one house and allocates that energy to another house to
maximize the comfort level of the community. From Figure 3,
it is also observed that the power consumption curve for house
4 remains flat during the DR event. For house 4, their number
of controllable appliances is comparatively lower than others.
They also have a large temperature comfort margin for AC
and EWH than others. Because of this reason, during the

FIGURE 3. Total power consumption of each house over the time interval
for DRR1.

FIGURE 4. Result comparison in terms of total financial rewards and
average comfortableness. The figures (a) and (b) represent the result
comparison for DRR1 in terms of total financial rewards and average
comfortableness, respectively. The figures (c) and (d) illustrate the result
comparison for DRR2 in terms of total financial rewards and average
comfortableness, respectively.

DR event, the CEMS maintain their comfort level by allo-
cating energy to their DW and critical loads.

The result comparisons in terms of total financial rewards
and average comfortableness are presented in Figures 4(a)
and 4(b). In [18], during the optimization period, the frame-
work dedicates energy to the thermostatically controllable
loads though the temperatures are in residents’ comfort zone.
Due to this reason, sometimes the framework violated the
comfort margin of the residents and the utility had to pay
reward to the residents. Sometimes, the framework curtails
the task-based user preferred loads because other appliances
are not considered in the CI, which costs higher rewards for
the utility. In [25], the proposed technique assigns the energy
deviation equally among all the residents of the commu-
nity. Sometimes the existing technique curtails user preferred
loads which hurts the residents’ comfort levels. According
to the results, for 40% of load curtailment, the proposed
approach outperformed the existing approaches [18], [25].

Furthermore, we also compare the optimization results
between GA and MILP. Both approaches achieve the same
optimization results ($45.34 for the total rewards) and 100%
average comfortableness. MILP seems to have a faster com-
putation time than GA in this case. Note, MILP is only
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TABLE 3. DRR2 results for ten houses.

feasible when equation (22) is a piecewise linear function
(i.e., the reward function is a discrete-value function). If the
reward function is a continuous function, then equation (18)
will be a nonlinear objective function and so MILP will not
be feasible.

C. DRR2: APPROXIMATELY 55% DEMAND REDUCTION
In this case, the utility sent 75.30 kW DRR to the CEMS for
20 minutes which is approximately 55% of the total power
demand of the community. The results of residents’ comfort
levels and the reward distributions are shown in Table 3.

According to the results, during the 20 minutes, the CI val-
ues for houses 2 and 5were higher than 1 in two different five-
minute time intervals, respectively. The proposed approach
allocated R2 rate to them, because both of them are agreed
to compromise. The result comparison in terms of number of
active appliances are presented in Figures 2(a). Like DRR1,
the number of active appliances using the proposed approach
is higher than the existing optimal framework. According to
the results, the proposed approach can still allocate residential
energy efficiently at high DRR request.

The results obtained from the proposed approach are
also compared with the existing approaches in terms of
the total financial rewards in dollars and the average com-
fortableness in percentages. The results are illustrated in
Figures 4(c) and 4(d). The increase in DRR may lead to a
dramatic rise in terms of reward costs. Because, for a large
amount of load curtailment, the CEMS has no way without
violating some residents’ comfort levels to reduce enough
demand. The affected residents will be rewarded at R2 or R3
rate. According to the results, the proposed approach showed
better performance for both cases compared to the existing
approaches at 55% of load curtailment.

D. RESULTS COMPARISON FOR DIFFERENT DRRs WITH
DIFFERENT TIME LENGTHS
The proposed approach is also tested for different DRRs with
different time lengths using the ten residents system and com-
pared with the existing approach in [18]. The three dimen-
sional results of the proposed and the existing approaches are
illustrated in terms of total financial rewards and the average
comfortableness in Figures 5 and 6, respectively.

According to Figure 5, for both approaches, with the
increasing of time lengths and the DRR, the total reward
costs rise sharply. The results show that up to 40% of
load curtailment, the existing approach showed competitive

FIGURE 5. Total financial rewards for different DRR with different time
length using the proposed approach (left) and the existing approach
(right). Here, TFR, DRR, and TL represent total financial rewards,
demand reduction rate and time length, respectively.

FIGURE 6. Average comfortableness for different DRR with different time
length using the proposed approach (left) and the existing approach
(right). Here, AvC , DRR, and TL represent average comfortableness,
demand reduction rate and time length, respectively.

TABLE 4. Power rating ranges of each appliances.

performance with the proposed approach. With high DRR,
the proposed approach showed better performance than the
existing approach. For example, the maximum financial
rewards of the proposed and existing approaches are found
as $246.16 and $346.44, respectively. In Figure 6, the results
show that, at up to 20% of demand reduction rate, both
approaches performed same in terms of average comfortable-
ness. With the increasing load curtailments and time lengths,
the comfort level of the residents dramatically fall for both
approaches. For example, the minimum average comfortable-
ness of the proposed and existing approaches for 60% of load
curtailment are observed as 86.67% and 55%, respectively.

E. SIMULATION STUDY OF A 100-HOUSE RESIDENTIAL
COMMUNITY
The proposed approach is also tested for 100 residents.
The power ratings of the appliances are randomly generated
according to the ranges in [5], [9], [18], [39], and [50].
The power rating ranges for the appliances are summarized
in Table 4.
In this case, the simulation is conducted for 100 runs.

For each run, the power rating of the appliances is gener-
ated randomly within the defined ranges for 100 houses,
and the total financial rewards and the average
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FIGURE 7. Total financial rewards for different DRR with different time
length using the proposed approach (top-left) and the existing approach
(top-right) [18] for 100-house residential community; Average
comfortableness for different DRR with different time length using the
proposed approach (down-left) and the existing approach (down-
right) [18] for 100-house residential community. Here, TFR, AvC , DRR, and
TL represent total financial rewards, average comfortableness, demand
reduction rate and time length, respectively.

comfortableness are calculated using the proposed technique.
After 100 runs, the statistical estimated value of the total
financial rewards and average comfortableness are obtained
by Monte Carlo simulation technique in [51]. According to
Figure 7 (top row), the total financial rewards of the system
increase sharply as the time length and the DRR increases.
For all cases, the reward cost value of the proposed approach
is less than the existing approach [18]. The maximum value
of the reward costs for 60% of load curtailment using the
proposed approach and the existing approach are obtained
as $2637.4 and $3748.7, respectively. In terms of average
comfortableness, no effect is observed up to 40% of load
curtailment with different time lengths for the proposed
approach, while the average comfortableness of the exist-
ing approach is decreasing after 20% of load curtailment.
The minimum value of the average comfortableness for
60% of load curtailment using the proposed approach and
the existing approach are obtained as 92.83% and 58.48%,
respectively. According to the results, the proposed approach
outperformed the existing framework in terms of both average
comfortableness and total financial rewards of the system.

In addition, we conduct the simulations by varying the
number of houses. For this case study, we consider the
DRR 50% of the total power demand of the community with
20 minutes of time period. For the total financial savings,
we calculate the cost of the community demand before
and after the optimization scheme considering 60 cents/
(kW.5min) as the base price of the electricity for each run.
Then we calculate the average financial savings by subtract-
ing the total financial cost before and after the optimization
scheme at the end of 100 runs. The result in terms of total
financial savings is presented in the first subplot of Figure 8.
The results show that the total financial savings increase with

FIGURE 8. Total financial savings and average comfortableness of the
community for different number of houses.

the addition of number of houses. For the average comfort-
ableness of the community, we present a box plot over the
100 runs to analyze the comfort level of the community from
a statistical viewpoint. The results in terms of average com-
fortableness are illustrated in the second subplot of Figure 8.
In the figure, on each box, the red color central mark indicates
the median, the top and bottom edges of the box indicate
the 75th and 25th percentiles, respectively. The outliers are
represented individually by+ symbol. For example, for a 40-
house resident system, the box plot shows that the median
average comfortableness for 100 runs is approximately 98%
where the minimum value is approximately 94%, and the
maximum value is about 100%. The results also show that the
proposed optimization scheme can schedule the appliances
efficiently with the addition of number of houses and main-
tain the average comfort level of the community above 92%.
According to the results it can be concluded that the utility can
earn more benefit using the proposed optimization scheme
and maintain satisfactory comfort level of the community
with the addition of number of houses.

VI. CONCLUSION
A new residential community energy optimization scheme
is proposed to distribute DRRs efficiently while considering
consumers’ comfort levels and rewarding the participating
consumers with financial incentives. A multilevel reward
structure is designed to show the trade-off between con-
sumers’ comfort levels and reward incentives. A new CI is
designed to measure the comfort level of the residents where
both thermal and other major residential electric appliances
are taken under consideration. Both GA andMIP formulation
is investigated to solve the optimization problem and the
performance of the approaches are reported in terms of total
reward the utility, average comfortableness and computa-
tion time. The GA approach is used as a general approach
to solve the proposed optimization problem. The MIP
approach is used as an alternative solution of the residential
energy optimization problem for the case when the objective
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function is piecewise linear. The performance of the proposed
optimization scheme was validated using different DRRs
with different time lengths, and the simulations were studied
under both 10-houses and 100-houses benchmark systems.
The results were compared with two existing approaches. The
proposed approach outperformed them in terms of number of
active appliances, total reward cost of the utility, and average
comfortableness of the residents in the community.

In the future, we will investigate the performance of the
proposed optimization scheme for a large scale residential
community and design the CI for the residential consumers
considering different weather conditions. We also analyze the
performance of the proposed optimization scheme for real-
time residential load profiles and continuous reward functions
over 24-hour time period.
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