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ABSTRACT The patient with ischemic stroke can benefitmost from the earliest possible definitive diagnosis.
While a quantitative evaluation of the stroke lesions on the magnetic resonance images (MRIs) is effective in
clinical diagnosis, manually segmenting the stroke lesions is commonly used, which is, however, a tedious
and time-consuming task. Therefore, how to segment the stroke lesions in a fully automated manner
has recently extracted extensive attentions. Considering that the clinically acquired MRIs usually have
thick slices, we propose a 2D-slice-based segmentation method. In particular, we use multi-spectral MRIs,
i.e., diffusionweighted image, apparent diffusion coefficient, and T2-weighted image, as input, and propose a
residual-structured fully convolutional network (Res-FCN). The proposed Res-FCN is trained and evaluated
on a large data set with 212 clinically acquired MRIs, which achieves a mean dice coefficient of 0.645 with
a mean number of false negative lesions of 1.515 per subject. The proposed Res-FCN is further evaluated on
a public data set, i.e., ISLES2015-SISS, which presents a very competitive result among all 2D-slice-based
segmentation methods.

INDEX TERMS Deep learning, stroke lesion segmentation, residual network (ResNet), convolutional neural
network (CNN), fully convolutional network (FCN).

I. INTRODUCTION
Ischemic stroke is the most common cerebrovascular disease
and one of the most frequent causes of death and disability
worldwide [1]. A patient with ischemic stroke can benefit
most from the earliest possible definitive diagnosis, and imag-
ing plays an essential role in the assessment of patients [2].
Due to its excellent soft tissue contrast, the magnetic reso-
nance imaging (MRI) has become the modality of choice for
clinical evaluation of ischemic stroke lesions. For a quan-
titative analysis of stroke lesion in MRI images, the expert
manual segmentation still serves as a common approach to
compute the sizes, shapes and volumes of stroke lesions.
However, it is a tedious and time consuming task and is

non-reproducible. Therefore, the development of fully auto-
mated and accurate stroke lesion segmentation methods has
become an active research field [3].

Conventionally, the lesion segmentation was treated as
an abnormality detection problem, where a healthy atlas
is established, and the lesions are detected according to
the differences in tissue appearances [4]–[7]. The brain
appearance, however, differs from patient to patient, and
the lesions may also cause deformation in brain structure.
Moreover, the MRIs acquired from different machines suf-
fer from different levels of noise and deformations, which
leads to incorrect detection and segmentation. Therefore,
many machine-learning methods have been proposed, where
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the features are learnt from massive training data, and high
segmentation accuracy can be achieved. For instance,
random-forest-based methods have been used in the litera-
ture [8]–[11], which present good performance in brain tumor
segmentation by using hand-crafted features.

Note that the performance of the random-forests-based
methods heavily relies on the manually annotated features.
To achieve better performance, it is preferable to make the
machine find the features from the data by itself. Deep
learning is a machine-learning approach that uses artificial
neural network with many hidden layers to extract features
from data at progressively higher levels of abstraction [12].
In recent years, the deep-learning-based methods have been
widely used in object classification and semantic segmenta-
tion thanks to its recent breakthrough in convolutional neural
network (CNN).

The CNN was originally proposed for image classification
tasks and has achieved 2.3% top-5 error in the classification
of 1000 objects in Imagenet Large Scale Visual Recognition
Challenge (ILSVRC) 2017. Thanks to its great potential in
image analysis, great efforts have been made to apply the
deep learning methods in medical image analysis [13]–[16].
Different from the images included in the ImageNet dataset
which can be easily obtained from the Internet and annotated
by the ordinary people, the medical images are much more
difficult to be acquired, and many well-trained doctors are
further required to annotate labels. Therefore, the dataset used
in medical image analysis is usually much smaller than that
used in the ordinary image classification tasks. For instance,
the ImageNet dataset contains 1,431,167 images, while the
brain tumor segmentation (BraTS) challenge 2015 has only
274 patients in the training dataset and 110 patients in
the testing dataset [17]. In the sub-acute stroke lesion seg-
mentation task of the ischemic stroke lesion segmentation
(ISLES) 2015 challenge, the dataset is much smaller, with
28 patients in the training dataset and 36 patients in the
testing dataset [18]. The insufficient data limits the ability
to learn features from the training data, and the CNN may
also become over-fitted to the training data. Despite of this,
many deep-learning-based methods have been proposed for
brain tumor and ischemic stroke segmentation tasks in the
challenges [19]–[23], and presented good performance by
using data augmentation techniques on the original data to
enlarge the training dataset.

As the CNN is naturally a classifier, one of the most
popular methods is to convert the image segmentation to a
pixel-by-pixel classification task, and dedicated loss func-
tions have been designed to overcome the huge class imbal-
ance between the normal and abnormal tissue pixels [19],
[22], [23]. To correctly classify a pixel, one need to include
its surrounding area to provide sufficient contextual informa-
tion for the classification task, which significantly increases
the memory and computational costs. To perform semantic
segmentations efficiently, [24] proposed a fully convolutional
network (FCN) by replacing the fully-connected layers as
convolutional layers. The FCN structure enables to segment

the whole image at once, and the memory- and computa-
tional costs can be significantly reduced. Inspired by [24],
a 3D-Convolution-based FCN, known as DeepMedic, was
proposed and won the ISLES 2015 and BraTS 2015 chal-
lenges [20], [21]. In ISLES 2015 sub-acute ischemic stroke
lesion segmentation (SISS) dataset, it is able to detect sub-
acute ischemic stroke lesions from 34 out of 36 patients in
the testing dataset, and achieves a Dice coefficient of 0.59 on
the test dataset [21]. In BraTS 2015 challenge, it achieves a
Dice coefficient of 0.85 in segmenting the tumor tissues [20].
The promising results in ISLES and BraTS show the great
potential of deep learning in the brain tissue segmentation
tasks. Based on the high resolution data provided in the chal-
lenges, many deep-learning-based methods have been further
proposed [25]–[27]. Note that the MRIs provided in the chal-
lenges, such as BraTS 2015 and ISLES 2015, are acquired for
scientific usage with a high resolution of 1 × 1 × 1mm per
voxel, and the non-brain tissues, such as the skull, have been
removed from the images in advance. In clinical practice, as it
is very time-consuming to acquire the images with slices as
thin as 1 mm, the clinically acquired images are usually with
much thicker slices. For instance, the MRIs used in [28] has
a slice thickness of 5mm, and a slice spacing of 1.5mm. Due
to the thick slices, the 3D segmentation methods developed
for the high resolution images with thin slices can hardly be
applied directly on the clinically acquired images.

In clinical diagnosis, the diffusion weighted image (DWI)
is one of the most commonly used MRI sequence to identify
the ischemic stroke lesions, which measures the molecular
motion of water in the brain tissues. Due to the decreased
diffusion of the tissues with ischemia, the ischemic stroke
lesions display as hyperintensive regions on DWIs. Recently,
deep-learning-based methods have been applied to clinically
acquiredDWI data for acute ischemic stroke lesion segmenta-
tion. In [28], a network which consists of two Deconvolution
Network (DeconvNet) [29] is developed and trained on a
clinical dataset of 741 acute ischemic stroke patients. Amulti-
scale CNN is further developed to remove potential false
positives. The mean dice coefficient, mean number of false
positives and the mean number of false negatives achieved
in [28] are 0.67, 3.27 and 4.07, respectively. While the former
two are reasonable, the latter is relatively too large. When
evaluating the performance of a segmentation method in
clinical diagnosis, we should keep in mind that the false
negative (FN) is much severer than the false positive (FP).
It is very possible that the clinicians would pay much atten-
tion to the regions which are annotated as lesions by the
segmentation algorithm, and the FPs can be possibly filtered
by clinicians. The FNs, which are sometimes the lesions that
are too subtle to be identified on the images, can be possibly
ignored by clinicians, which may lead to severe misdiagnosis
accident, especially if the misclassified lesion is the only
lesion in the brain. This motivates us to study how to further
reduce the FNs to develop a practical deep-learning based
stroke lesion segmentation method for clinical diagnosis
usage.
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FIGURE 1. Challenge examples in ischemic stroke segmentation. The
columns from left to right shows the DWI, ADC and T2WI. In example 1,
the yellow arrow identifies the hyperintense that is a true acute ischemic
stroke lesion, and the red arrows identify hyperintense due to magnetic
susceptibility artifacts. In example 2, the red arrows identify hyperintense
due to T2 shine-through effect. Best view in color.

Note that only DWI is not sufficient for the diagnosis of
ischemic stroke. The hyperintensity on the DWI resulting
from the magnetic susceptibility artifact and the T2 shine-
through effect will be misclassified as stroke lesions if only
DWI is used. For stroke diagnosis by radiologist, images
with more acquisition parameters, such as apparent diffusion
coefficient (ADC) map and T2-weighted image (T2WI) [30],
are jointly considered. Fig. 1 presents two challenge examples
that would be misclassified as a stroke lesion if only DWI
is considered. In the first example, the hyperintensive region
at the pons on DWI, which is identified by a yellow arrow,
presents hypointensity on ADCmap, and should be classified
as an acute ischemia. On the other hand, the hyperintensive
regions at the base of the brain, which are identified by
the red arrows, present no abnormalities on ADC map and
T2WI. Such hyperintensities are actually artifacts that caused
by the magnetic field inhomogeneity due to the magnetic
susceptibility differences between the brain tissue and air-
containing areas of the skull, and should not be classified as
ischemic stroke lesions [31]. The second example in Fig. 1
presents the artifacts due to T2 shine-through effect [32].
The lesions in the bilateral brachium pontis, which are iden-
tified by red arrows, appear hyperintense on DWI, ADC
and T2WI. The hyperintensive regions on DWI are actually
due to an increase in the T2 signal, rather than a decrease
in diffusion, and should not be classified as stroke lesions.
The examples shown in Fig. 1 indicate that the artifacts that
appear hyperintense on DWI would probably be misclassi-
fied as stroke lesions. To correctly identify and segment the
stroke lesions, multi-spectral MRIs, including DWI, ADC,
and T2WI, should be jointly considered.

To further improve the performance of a CNN, a natural
thought is to build the network deeper and wider, such that
more features can be extracted by the convolution layers.
However, the performance will become worse if we simply
stackmany convolution layers, as theweights of the deep con-
volution layers cannot be updated due to the gradient vanish-
ing problem. Recently, a so-called residual network (ResNet)
was proposed to make the network much deeper [33].

FIGURE 2. The whole pipeline of ischemic stroke lesion segmentation.

Instead of simply stacking more convolution layers, many
skip connections are added between the layers. Such structure
allows the gradient to pass backward through the skip connec-
tions, and all the convolution layers are able to be updated to
extract features since the first training epoch. In this paper,
we propose a residual-structured fully convolutional network
(Res-FCN) for brain ischemic stroke lesion segmentation.
Specifically, we collected the clinical data of 212 ischemic
stroke patients from Nankai University affiliated Tianjin
Huanhu Hospital, where 115 of them are used for training,
and 97 of them for testing. By using mult-spectral MRI
images, i.e., DWI, ADC and T2WI, the proposed Res-FCN is
able to achieve a mean number of false negatives of 1.515 per
subject on the testing dataset. We further evaluated the pro-
posed method on a public dataset, i.e., ISLES2015-SISS,
where it achieves very competitive results over all 2D seg-
mentation methods.

II. METHOD
Fig. 2 shows the whole pipeline of our proposed residual-
structured fully convolutional network (Res-FCN). The DWI,
ADC and T2WI are concatenated and jointly used as input,
and the output is a binary segmentation of stroke lesions.
During the training process, the images and labels of patients
in the training dataset are used to tune the network parameters
of Res-FCN by using a gradient-based method, such that
the difference between the predictions and the ground truth
labels, which is measured by a loss function, is minimized.
The details of our proposed method will be introduced in
detail in the following subsections.

In the testing process, the images in the testing dataset,
which have never been seen before by the neural network,
are used to generate predictions. As the output for the i-th
pixel x̂i ∈ [0, 1] which can be interpreted as the probability
that the i-th pixel is classified as lesion tissue, a threshold δ is
used to generate the final binary segmentation, where the final
binary output x̃i = 1 if x̂i ≥ δ, and x̃i = 0 otherwise. The pre-
dicted binary segmentation patches are finally repositioned
to its corresponding position to generate the final output. The
performance is then evaluated by comparing the prediction
segmentations and the manually annotated ground truth.

A. PREPROCESSING AND PATCH EXTRACTION
In our method, each image slice is first normalized to zero
mean and unit variance, and the DWI, ADC and T2WI images
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FIGURE 3. The architecture of the proposed network. The bottleneck
block with downsampling, i.e., with convolution layers with stride 2,
is highlighted in yellow. GCN: Global Convolutional Network. BR:
Boundary Refinement. Conv: Convolutional layer. Deconv:
Deconvolutional layer.

are concatenated to a 3-channel image. Note that the volumes
of ischemic stroke lesions are typically much smaller than
that of the normal brain tissues. If we use the whole slice as
the input, the number of lesion tissue pixels would be much
smaller than the number of normal tissue pixels, leading to
a significant class imbalance. Therefore, we propose to use
image patches, instead of the whole slice, as the input to train
the network.

During the training process, we extract the patches by using
a sliding window scheme with the window size N × N ,
and a sliding step of N/8. To balance the number of the
normal and lesion pixels, we only include the patches with
lesions in the training dataset. With a relatively large N ,
a significant part of the normal tissue will also be included
on each patch, and the features of normal tissues can still
be learnt by the network. As each patient has a limited
number of lesions, there is only a small number of patches
available after patch extraction. To tune the massive num-
ber of network parameters, we perform data augmentation
by horizontally flipping and randomly rotating the extracted
patches.

In the testing process, as we have no prior information on
the stroke lesions, we simply normalize the intensities of each
image slice, and extract the patches using a sliding window
of size N × N with a sliding step of N/2. After processed
by the Res-FCN, for avoiding the zero padding influence,
the predicted segmentation is cropped to N/2 × N/2, and
repositioned to its original position to generate the final seg-
mentation result of the whole image.

B. ARCHITECTURE OF Res-FCN
The proposed network architecture is presented in Fig. 3.
In the feature extraction stage, we propose to use the ResNet-
50 structure as the base network. The input patches are
initially processed by a stack of three atrous convolutional
layers with dilation rates 1, 2 and 4, respectively. Then four
Res-blocks are used to extract more features, where the Res-
blocks are composed of 3,4,6 and 3 bottleneck blocks with the
filters n = 64, 128, 256 and 512, respectively, as suggested
in [33].

At the score map reconstruction stage, we use deconvolu-
tional layers with kernel size 3 × 3 and stride 2 to upsample
the feature maps. Inspired by U-NET [34], we propose to use
the high resolution feature maps to assist reconstructing the
score map. Global convolutional network (GCN) blocks and
boundary refinement (BR) blocks [35] are used to refine the
feature maps. The detailed structures and the effects of the
essential parts in the proposed Res-FCN will be introduced
in the following subsections.

1) CONVOLUTIONAL LAYERS
The basic building block to construct a CNN is the convolu-
tional layer. Several layers can be stacked on top of each other.
Each convolutional layer can be understood as extracting
features from the preceding layer, and produces the feature
maps as output.

Each feature map Os is associated with one kernel. The
feature map Os is computed as

Os =
∑
r

Ws ∗ Xr + bs, (1)

where Ws is the kernel and bs is the bias term. ∗ is the
convolution operator. Xr is the r-th channel of the input. For
instance, for the first convolutional layer, the input is the
stack of DWI, ADC and T2WI patches with a matrix size
N ×N ×3, and Xr represents the r-th channel of the original
multi-spectral MRI, for r = 1, 2, 3. For the subsequent
convolutional layers whose input is a M ×M × R, Xr is the
output of the r-th feature map of the preceding layer whose
size is M × M , for r = 1, 2, · · · ,R, where R is the number
of feature maps of the preceding convolution layer.

During the training process, each convolutional layer is
able to learn the features at different levels via the gradient-
based method, such as the stochastic gradient descent, on a
dedicated loss function related to the misclassification error,
and the gradient for each layer can be computed by using the
back-propagation (BP) algorithm [12].

Note that the field-of-view (FOV) of filters at a convo-
lution layer is limited by the spatially small convolution
kernels (typically 3×3), making it difficult to extract features
from sufficiently large scale of spatial contextual informa-
tion. If we use larger convolution kernels, the number of
parameters to be tuned will grow exponentially, leading to
prohibitively high computational complexity and memory
cost. More importantly, a much larger number of training
data will be required if we have more parameters, which is
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FIGURE 4. Illustration the details of (A) bottleneck block without
downsampling, (B) bottleneck block with downsampling, (C) global
convolution network (GCN) block, and (D) boundary refinement (BR)
block.

FIGURE 5. Graphic illustration of convolution operation. (A) Conventional
convolution. (B) Atrous convolution with dilation rate d = 2.

impossible in biomedical image segmentation tasks, as the
dataset is usually small. Therefore, we propose to use two
methods to compensate such shortcoming.

First, inspired by DeepLab method [36], we propose to
use a stack of atrous convolution (also known as dilated
convolution) to extract multi-scale features from the inputs.
The atrous convolution is operated as

O[i, j]=
bS/2c∑

s=−dS/2e

bT/2c∑
t=−dT/2e

Xr [i+d · s, j+d · t]W [s, t], (2)

whereO[i, j],X [i, j] andW [i, j] denote the (i, j)-th entry in the
output feature map, input image, and the r-th convolutional
kernel, respectively. d is the dilation rate. With d = 1,
the atrous convolution converges to the conventional convo-
lution operation in (1). Fig. 5 plots an visualized example of
dilated convolution. Aswe can see, the atrous convolution can
be interpreted as conventional convolution with a ‘‘hole’’ of
size d−1 on each kernel, which enlarges the receptive field of
a kernel without increasing the kernel size and the number of
parameters. In our work, we propose to adopt a stack of atrous
convolution layers with rate 1, 2 and 4 to extract multi-scale
features from the original images.

Second, we adopt the GCN and BR blocks proposed in [35]
to extract more contextual information. Instead of directly
using larger kernel, the GCN block employs a combination
of 1 × k + k × 1 and k × 1 + 1 × k subsequently to
extract the features with receptive field of k × k . Compared
to the k × k kernel, the GCN structure reduces the number
of parameters by a factor of 2

k , which enables the probability
to extract more features with considerably small number of
parameters. Reference [35] justifies that the GCN structure
shown in Fig. 4C is able to achieve better performance over
that with a k × k kernel and that with a stack of small size
kernels.

2) BOTTLENECK BLOCK
The bottleneck block is the basic block in a ResNet with more
than 34 convolutional layers,1 which are depicted in Fig. 4A
and Fig. 4B. Specifically, we first use a 1 × 1 convolutional
layer with n kernels as a bottleneck layer to reduce dimension-
ality of the features. Then we use a 3× 3 convolutional layer
with n kernels, and finally another 1× 1 convolutional layer
with 4n kernels to restore the depth. A skip connection with a
1×1 convolution with 4n kernels is used so that the input and
output have the same size. Finally, the input of the block and
the output of the final convolutional layer are added, and an
activation is used after the summation. The number of filters
are doubled every residual block, and at the same time their
height and width are halved by using a convolutional layer
with stride 2. A batch normalization (BN) layer is used after
each convolution layer.

As shown in Fig. 4A, with the residual structure, the con-
volutional layer of each bottleneck block learns the residual
part h(X) = f (X) − X, where X and f (X) denote the input
and output feature maps, respectively. Thanks to the skip
connections in the bottleneck blocks, the ResNet is able to
efficiently update the deepest convolutional layers, i.e., the
first convolution block shown in Fig. 3, from the beginning,
and solves gradient vanishing problem in a dedicated way.

3) LOSS FUNCTION
The loss function is used to measure the error. It is also
the function to be minimized during training. In this paper,
we propose to use negative Dice coefficient as the loss func-
tion, which is defined as

f (p) = −
2

∑
i∈patch pigi + ε∑

i∈patch pi +
∑

i∈patch gi + ε
, (3)

where pi and gi denote the segmentation results of the i-th
pixel in the predicted probability map and the ground truth,
respectively. gi = 1 if the i-th pixel is labeled as stroke lesion,
and gi = 0 otherwise. pi ∈ [0, 1] can be interpreted as the
probability of the i-th pixel being labeled as lesion. ε > 0 is
a small positive constant to avoid singularity of (3).

1In ResNet-34 or ResNet-18, a simple block is used [33]. In our method,
we propose to build the network based on ResNet-50, and therefore a
bottleneck block is used in this paper.
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TABLE 1. Parameters used in MRI acquisition.

The reason we use (3) instead of categorical cross-entropy
as loss function is that the numbers of normal and lesion
pixels are significantly imbalanced even if we only extract
the patches with lesions. With imbalanced classes, the cross-
entropy loss function tends to category all pixels into the
major class, i.e., the normal class in this paper, to minimize
the loss function. The loss function in (3), however, tends
to maximize the overlapping area and minimize the non-
overlapping area, such that the class imbalance problem can
be mitigated.

C. EVALUATIONS
We aim to study an automated ischemic lesion segmentation
method towards clinical diagnosis. The dice coefficient (DC)
is a commonly used measurement in image segmentation
accuracy, which is defined as

DC =
2|G

⋂
P|

|G| + |P|
, (4)

where G and P denote the ground truth and the predicted
segmentation, respectively. | · | denotes the area of lesion
segmentations.

In clinical diagnosis, the segmentation of large and small
stroke lesions are equally important. Therefore, we introduce
the lesion-wise metrics to evaluate the performance. Specifi-
cally, we count the numbers of the false negative lesions and
the false positive lesions at each image slice, and calculate
the number of false negative and false positive lesions of each
subject. The mean number of false negative lesions (m#FN)
and the mean number of false positive lesions (m#FP) per
subject are then calculated. These metrics are obtained using
connected component analysis. A false positive lesion is
defined as a 2D connected region in the predicted segmen-
tation that has no overlap with the ground truth, while a
false negative lesion is defined as a 2D connected region
in the ground truth that has no overlap with the predicted
segmentation.

III. EXPERIMENT RESULTS
A. DATA
In this study, 212 patients with ischemic stroke lesions were
collected from Nankai University affiliated Tianjin Huanhu
Hospital, where 62% of them are male, and the mean age is

56.21. All clinical images were collected from a retrospective
database and anonymized prior to use. Ethical approval was
granted by Tianjin Huanhu Hospital Medical Ethics Commit-
tee. MRI measurements were acquired from three MR scan-
ners, with two 3T MR scanners (Skyra, Siemens and Trio,
Siemens) and one 1.5TMR scanner (Avanto, Siemens). T2WI
images were acquired using a fast spin-echo sequence. DWI
images were acquired using a spin-echo type echo-planar
(SE-EPI) sequence with b values of 0 and 1000 s/mm2. The
parameters are summarized in Tab. 1. Following acquisition,
ADC maps were calculated from the diffusion scan raw data
in a pixel-by-pixel manner as

ADC =
ln S1 − ln S0
b1 − b0

, (5)

where b characterizes the diffusion-sensitizing gradient
pulses, with b1 = 1000 s/mm2 and b0 = 0 s/mm2 in
our data. S1 is the diffusion-weighted signal intensity with
b = 1000s/mm2. S0 is the signal with no diffusion gradient
applied, i.e., with b = 0 s/mm2.
The T2WI, DWI and ADC images were copy referenced

to ensure the same slice position so as to allow optimal image
evaluation andmeasurement. The ischemic lesionswereman-
ually annotated by two experienced experts from Nankai
University Affiliated Tianjin Huanhu Hospital. We randomly
spit the whole dataset into a training set with 115 subjects,
and a testing set with 97 subjects. The training set is used for
training the network weights and tuning the hyperparameters,
and the testing set is used for evaluating the performance only.

B. PREPROCESSING
As the images were acquired on three different machines,
the matrix sizes varies. Therefore, we first resample all
images to a pixel size of 1.77×1.77mm using linear interpo-
lation, and crop the matrices to a uniform size of 128× 128.
Then we register the T2WI and ADC images according to
the corresponding DWI images. The pixel intensity of each
image slice is normalized into that of zero mean and unit
variance. The patches are extracted as described in Sec. II,
and the valueN is set to be 64, which means that we extracted
patches with size of 64× 64, and the sliding window step to
sample the patches is 8 pixels per step. The extracted patches
are splitted into training set and validation set before data
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TABLE 2. Network setting.

augmentation, and a proportion of 0.1 patches with lesions
are used for validation. The patches in the training set are
augmented using the method described in Sec. II, and no data
augmentation is performed for validation set.

C. SETUP
The hyperparameters of the proposed Res-FCN are shown
in Tab. 2. All the parameters are initialized in the way as
suggested in [33]. An `2 norm of the network parameters is
added to the loss function with a kernel regularization factor
10−4. We use the Adammethod [37] with initial learning rate
of 0.001, β1 = 0.9, β2 = 0.999 as optimizer, and the learning
rate is scaled down in a factor of

√
0.1 if no progress is made

for 5 epochs in validation data. Without specifications, in this
section, the threshold δ to generate binary segmentation is set
to be 0.5.

D. RESULTS
The trained network is evaluated on the test dataset with
97 subjects. Fig. 6 plots some examples of segmentations
where the lesions are located at cerebellum, cerebral hemi-
sphere and basal ganglia. The fourth row shows an example
with a small lesion at the cerebellar vermis. As Fig. 6 shows,
our proposed method is sensitive to both large and small
lesions. Tab. 3 summarizes the results on the training and
testing dataset. For comparison, we also evaluate the results
of U-Net [34] and EDD-Net [28] using the same data. Note
that compared to the results reported in [28], the EDD-Net
achieves worse results in DC and m#FP as we simply use a
threshold δ = 0.5, instead of a well-tuned value. As we will
show in the following section, a higher DC can be achieved
by adjusting the threshold δ.

Despite that our network is much deeper than U-Net and
EDD-Net, the Res-FCN achieves the best results on the test-
ing dataset thanks to the residual structure of the bottleneck
block. As we can see from Tab. 3, the Res-FCN is able to
achieve a mean number of FNs of 1.515.

E. IMPLEMENTATION AND RUNNING TIME
The experiments are performed on an Alienware Aurora
R6 workstation with an Intel Core i7-7700K CPU, 48GB

TABLE 3. Performance of our proposed Res-FCN with GCN kernel size
k = 9, U-NET [34] and EDD Net [28]. The threshold δ is set to be 0.5. The
bold number indicates the most significant performance.

FIGURE 6. Examples of lesion segmentation. The first three columns
show the original DWI, ADC, T2WI images, respectively. The fourth and
the fifth columns show the manually annotated lesions and the
segmentation results of Res-FCN, respectively. The segmentations are
depicted on the DWI, and highlighted in red. Best view in color.

RAM and Nvidia GeForce 1080Ti GPU with 11GB mem-
ory. The workstation operates on Linux (Ubuntu 14.4) with
CUDA 8.0. The network is implemented on Keras2 with
Tensorflow3 backend. The MR image files are stored as
Neuroimaging Informatics Technology Initiative (NIfTI) for-
mat, and processed using Simple Insight Toolkit (Sim-
pleITK) [38]. The visualized results are presented by using
ITK-SNAP [39].

During prediction, our method contains three stages: patch
extraction, patch segmentation, and patch restoration. The
number of parameters and the average running time of each
stage are reported in Tab. 4. For the sake of comparison,
we also present the numbers of parameters and the average
running time of U-Net and EDD-Net. Despite that our pro-
posed Res-FCN cost the most running time during prediction,
it is able to finish segmentation in less than 1 second, which
is sufficiently fast for diagnostic use.

2https://keras.io/
3https://www.tensorflow.org/
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TABLE 4. Number of parameters and average running time of our
proposed pipeline. The running time of U-Net and EDD-Net are also
presented for comparison.

TABLE 5. Performance of Res-FCN with a stack of three atrous
convolution layers with kernel sizes 3× 3 and dilation rate 1, 2 and 4,
denoted as ‘‘atrous’’, and that with a stack of three conventional
convolution layers with kernel size 3× 3, denoted as ‘‘conv’’. The size of
GCN kernels are 5, 7 and 9.

IV. DISCUSSIONS
A. EFFECTS OF ATROUS CONVOLUTIONS AND GCN
In our proposed network, we use the atrous convolution
layer stack instead of conventional convolution as the first
convolutional layers. The proposed pyramid atrous convo-
lution shows of paramount importance in extracting multi-
scale spatial contextual information from the original images.
To illustrate this, we compare the performance with atrous
convolutions and conventional convolutions on our dataset,
which are summarized in Tab. 5. The use of atrous con-
volution layer stack significantly increases the DC, and the
m#FP and m#FN are greatly reduced, due to the fact that
the atrous convolution has a larger field-of-view (FOV) of
filters. In particular, with atrous convolutions, the FOVs are
3×3, 5×5 and 7×7, while with conventional convolutions,
the FOVs of the three convolutional layers are all 3×3.With a
larger FOV, the network is able to learn with more contextual
information without increasing the kernel size.

Tab. 5 also summarizes the results with different GCN
kernel sizes, i.e., k = 5, 7 and 9. The DC can be significantly
improved by using larger GCN kernel, which is in accordance
with the observation in [35]. Moreover, the mean number of
FPs and FNs both decrease as the kernel size k increases, indi-
cating that more contextual information is extremely helpful
in improving the performance of lesion segmentation.

B. TRADEOFF BETWEEN FNs AND FPs
Note that the output of a CNN indicates the probability that
a pixel should be labeled as lesion tissue, and a threshold δ
is required to convert the probability score map to a binary

TABLE 6. Performance of Res-FCN, EDD-Net and U-Net on the testing
dataset with the threshold δ = 1 for U-Net and Res-FCN, and δ = 0.9 for
EDD-Net.

FIGURE 7. Mean number of false negatives versus mean number of false
positives on the test dataset.

segmentation. The segmentation results presented previously
are obtained by setting the threshold δ = 0.5. In fact,
the choice of the threshold can be interpreted as a tradeoff
between FNs and FPs. Intuitively, as the threshold δ increases,
fewer pixels will be classified as stroke lesion tissues, leading
to an increasing m#FN and decreasing m#FP.

Fig. 7 plots the dependence between m#FN and m#FP of
Res-FCN with GCN kernel size k = 9 on the test dataset.
Each dot of the curve is plotted by using different values
of the threshold δ, ranging from 0.5 to 1. The tradeoffs of
EDD-Net and U-Net are also plotted for comparison. As the
threshold δ increases, the m#FP reduces at the expense of
a higher m#FN. As we can see from Fig. 7, the proposed
Res-FCN presents the best FN-FP-tradeoff. In particular, for
given value of m#FN, the Res-FCN has about 2 FPs less than
EDD-Net, which highlights the outstanding performance of
Res-FCN in clinical diagnosis.

Fig. 8 further plots the dependence between m#FN and
the DC with different values of the threshold δ. As we can
see from Fig. 8, the Res-FCN presents the best DC perfor-
mance over EDD-Net and U-Net. The DCs of both U-Net
and Res-FCN increases monotonically with the threshold δ.
With δ = 1, the Res-FCN achieves the highest DC of 0.658,
at the expense that m#FN increases to 1.866. With EDD-
Net, the DC is maximized at δ = 0.9 according to our
experiment, where the DC is 0.644 and them#FN increases to
2.217. Compared to EDD-Net, our proposed Res-FCN is able
to achieve higher segmentation accuracy with much fewer
misclassifications.

Tab. 6 summarizes the performance on the testing dataset
where the threshold δ is set to be the value that maximizes
the DC. As we can see from Tab. 6, our proposed Res-FCN

VOLUME 6, 2018 57013



Z. Liu et al.: Towards Clinical Diagnosis: Automated Stroke Lesion Segmentation on Multi-Spectral MR Image

TABLE 7. Performances on 2-fold cross validation of U-Net, EDD-Net and Res-FCN. 212 subjects are divided into two subset with 106 subjects
each. In experiment 1, the networks are trained on Set 1 and tested on Set 2. In experiment 2, we exchange the roles of Set 1 and Set 2.

FIGURE 8. Mean number of false negatives versus mean dice coefficient
on the test dataset.

presents the highest DC and the lowest misdiagnosis. Com-
pared to the results presented in [28], much lower numbers
of false negatives and false positives are presented by using
EDD-Net on our clinical dataset, due to the fact that we use
mult-spectral images, i.e., DWI, ADC and T2WI, instead
of single-spectral image, i.e., DWI, as input. Through the
mutual corroboration of the different sequence, the detection
of the stroke is more accurate, and the artifact can be avoided
effectively. It highlights the importance to include mult-
spectral MRI images in designing stroke lesion segmentation
algorithms.

C. 2-FOLD CROSS VALIDATION
As our dataset is smaller compared to that commonly used for
image segmentation, such as PASCALVOC 2012, we apply a
2-fold cross-validation to evaluate its performance. In partic-
ular, we randomly split the whole dataset with 212 subjects
into two complementary subsets, with 106 subjects in each
set. We train the network on one subset and evaluate the per-
formance on the other. In particular, in experiment 1, the net-
work is trained on the subjects in Set 1, and evaluated on
Set 2. In experiment 2, the roles of the two sets are exchanged.
The performances on the test dataset of U-Net, EDD-Net, and
the proposed Res-FCN are summarized in Tab. 7. As we can
see, the proposed Res-FCN achieves the best performance,
which highlights the importance in utilizing residual structure
in lesion segmentation.

D. EVALUATION ON PUBLIC DATASET
To further demonstrate the performance of the proposed
segmentation method, we evaluated Res-FCN on a public

TABLE 8. Evaluation results on ISLES2015-SSIS Testing Dataset on
July 15, 2018.

dataset, i.e., ISLES2015-SISS. The ISLES2015-SISS dataset
contains 28 subjects for training and 36 for testing. Each sub-
ject has four co-registered MRI sequences, i.e., T1 weighted
image (T1WI), fluid attenuation inversion recovery (Flair),
T2WI and DWI, which are skull-stripped and resampled
to a resolution of 1 × 1 × 1mm per voxel. The ground
truth segmentations of the testing dataset are not released,
and the evaluation results are automatically calculated after
uploading the segmentations to the website.4 The evaluation
metrics of ISLES2015-SISS are average symmetric surface
distance (ASSD), hausdorf distance (HD), dice coefficient
(DC), precision and recall.

Since the data specification of SISS is much different from
our dataset, we performed some adjustments to our method.
First, the patches are extracted from three different views,
i.e., axial, coronal, and sagittal views, so that the advantages
of the thin slices can be utilized. Second, the patch size is set
to be 128 × 128, and the patches are extracted by a sliding
window with a sliding step of 16 in the training process.
Third, we set the GCN kernel size as 11, and set the dilation
rate of the first three convolution layers as 1, 4 and 8 to
extract features from a larger receptive field. During training,
only the patches with lesions are used, and the patches are
randomly flipped along two axes. The model was trained for
500 epochs using Adam method with the same parameter
as described in Sec. III-B. During the prediction process,
the patches are extracted from axial, coronal, and sagittal
views, and the probability score map is generated by taking
average over the prediction results from three views. The
binary segmentation results are finally generated by using a
threshold δ = 0.5.

Tab. 8 summarizes the top 5 ranking results on ISLES2015-
SISS testing leaderboard on July 15, 2018. Our result is
among the best result in terms of DC. We would like to

4https://www.virtualskeleton.ch/ISLES/Start2015
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mention that the top ranking methods kamnk1 [20] and
zhanr6 [27] use 3D patches to segment the lesions, which
are more memory- and time-consuming. The method of
fengc1, used conventional image analysis technique with
hand-crafted features, instead of a deep-learningmethod [18].
From the evaluation results, we can then conclude that our
proposed method achieves very competitive results over all
2D-patch-based deep-learning methods in ISLES2015-SISS
dataset.

V. CONCLUSION
In this paper, we present a fully automated ischemia lesion
segmentation method based on fully convolutional neural
network. The DWI, ADC and T2WI are used as input, and
a very deep CNN is built and efficiently trained thanks to the
residual structure. The proposed Res-FCN network presents a
high segmentation accuracy on the clinical MRI images with
a dice coefficient of 0.645. More importantly, it presents very
low false negatives, with a mean number of 1.515 per subject,
which is of paramount importance in avoiding misdiagnosis
in clinical scenario.

Note that there are several limitations in the present
study. First, mult-spectral images have been demonstrated to
provide helpful information for determining stroke ages in
ischemic stroke [40]. Although our data includes both acute
and subacute ischemic stroke lesions, we have not made a dis-
tinction between them. Second, our research did not include
detection of hemorrhagic transformation, which is a com-
plication of ischemic stroke. MRI-derived information about
localization, timing and pathophysiology could improve deci-
sions regarding acute management and secondary prevention.
In the future, more MR images should be collected, including
all types of stroke. The classification of stroke should be
perfected, in order to guide the clinical treatment.

REFERENCES
[1] Cause-Specific Mortality-Estimates for 2000–2012, World Health Org.,

Geneva, Switzerland, 2012.
[2] S. L. Crichton, B. D. Bray, C. McKevitt, A. G. Rudd, and C. D. Wolfe,

‘‘Patient outcomes up to 15 years after stroke: Survival, disability, quality
of life, cognition and mental health,’’ J. Neurol., Neurosurgery Psychiatry,
vol. 87, no. 10, pp. 1091–1098, 2016.

[3] E. A. Ashton, C. Takahashi, M. J. Berg, A. Goodman, S. Totterman, and
S. Ekholm, ‘‘Accuracy and reproducibility of manual and semiautomated
quantification of MS lesions by MRI,’’ J. Magn. Reson. Imag., vol. 17,
no. 3, pp. 300–308, 2003.

[4] S. Doyle, F. Vasseur,M. Dojat, and F. Forbes, ‘‘Fully automatic brain tumor
segmentation from multiple mr sequences using hidden Markov fields and
variational EM,’’ in Proc. NCI-MICCAI BRATS, vol. 1, 2013, pp. 18–22.

[5] A. Gooya, K. M. Pohl, M. Bilello, G. Biros, and C. Davatzikos, ‘‘Joint
segmentation and deformable registration of brain scans guided by a tumor
growth model,’’ in Medical Image Computing and Computer-Assisted
Intervention—MICCAI, G. Fichtinger, A. Martel, and T. Peters, Eds.
Berlin, Germany: Springer, 2011, pp. 532–540.

[6] P. Schmidt et al., ‘‘An automated tool for detection of FLAIR-hyperintense
white-matter lesions in multiple sclerosis,’’ NeuroImage, vol. 59, no. 4,
pp. 3774–3783, 2012.

[7] X. Liu, M. Niethammer, R. Kwitt, M. McCormick, and S. Aylward,
‘‘Low-rank to the rescue—Atlas-based analyses in the presence of patholo-
gies,’’ inMedical Image Computing and Computer-Assisted Intervention—
MICCAI, P. Golland, N. Hata, C. Barillot, J. Hornegger, and R. Howe, Eds.
Cham, Switzerland: Springer, 2014, pp. 97–104.

[8] A. Ellwaa et al., ‘‘Brain tumor segmantation using random forest trained on
iteratively selected patients,’’ in Brainlesion: Glioma, Multiple Sclerosis,
Stroke and Traumatic Brain Injuries, A. Crimi, B. Menze, O. Maier,
M. Reyes, S. Winzeck, and H. Handels, Eds. Cham, Switzerland: Springer,
2016, pp. 129–137.

[9] L. Le Folgoc, A. V. Nori, S. Ancha, and A. Criminisi, ‘‘Lifted auto-context
forests for brain tumour segmentation,’’ in Brainlesion: Glioma, Multi-
ple Sclerosis, Stroke and Traumatic Brain Injuries, A. Crimi, B. Menze,
O. Maier, M. Reyes, S. Winzeck, and H. Handels, Eds. Cham, Switzerland:
Springer, 2016, pp. 171–183.

[10] L. Lefkovits, S. Lefkovits, and L. Szilágyi, ‘‘Brain tumor segmentation
with optimized random forest,’’ inBrainlesion: Glioma,Multiple Sclerosis,
Stroke and Traumatic Brain Injuries, A. Crimi, B. Menze, O. Maier,
M. Reyes, S. Winzeck, and H. Handels, Eds. Cham, Switzerland: Springer,
2016, pp. 88–99.

[11] B. Song, C.-R. Chou, X. Chen, A. Huang, and M.-C. Liu, ‘‘Anatomy-
guided brain tumor segmentation and classification,’’ in Brainlesion:
Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, A. Crimi,
B. Menze, O. Maier, M. Reyes, S. Winzeck, and H. Handels, Eds. Cham,
Switzerland: Springer, 2016, pp. 162–170.

[12] Y. LeCun, Y. Bengio, and G. Hinton, ‘‘Deep learning,’’ Nature, vol. 521,
pp. 436–444, May 2015.

[13] H.-C. Shin et al., ‘‘Deep convolutional neural networks for computer-aided
detection: CNN architectures, dataset characteristics and transfer learn-
ing,’’ IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1285–1298, May 2016.

[14] D. B. Larson, M. C. Chen, M. P. Lungren, S. S. Halabi, N. V. Stence, and
C. P. Langlotz, ‘‘Performance of a deep-learning neural network model
in assessing skeletal maturity on pediatric hand radiographs,’’ Radiology,
vol. 287, no. 1, pp. 313–322, 2018.

[15] D. S. Kermany et al., ‘‘Identifyingmedical diagnoses and treatable diseases
by image-based deep learning,’’ Cell, vol. 172, no. 5, pp. 1122–1131,
Feb. 2018.

[16] E.-J. Lee, Y.-H. Kim, N. Kim, and D.-W. Kang, ‘‘Deep into the brain:
Artificial intelligence in stroke imaging,’’ J. Stroke, vol. 19, no. 3,
pp. 277–285, 2017.

[17] B. H. Menze et al., ‘‘The multimodal brain tumor image segmenta-
tion benchmark (BRATS),’’ IEEE Trans. Med. Imag., vol. 34, no. 10,
pp. 1993–2024, Oct. 2015.

[18] O. Maier et al., ‘‘ISLES 2015—A public evaluation benchmark for
ischemic stroke lesion segmentation frommultispectralMRI,’’Med. Image
Anal., vol. 35, pp. 250–269, Jan. 2017.

[19] M. Havaei et al., ‘‘Brain tumor segmentation with deep neural networks,’’
Med. Image Anal., vol. 35, pp. 18–31, Jan. 2017.

[20] K. Kamnitsas et al., ‘‘DeepMedic for brain tumor segmentation,’’ in
Brainlesion: Glioma, Multiple Sclerosis, Stroke Traumatic Brain Injuries,
A. Crimi, B. Menze, O. Maier, M. Reyes, S. Winzeck, and H. Handels,
Eds. Cham, Switzerland: Springer, 2016, pp. 138–149.

[21] K. Kamnitsas et al., ‘‘Efficient multi-scale 3D CNN with fully connected
CRF for accurate brain lesion segmentation,’’ Med. Image Anal., vol. 36,
pp. 61–78, Feb. 2017.

[22] S. Pereira, A. Pinto, V. Alves, and C. A. Silva, ‘‘Brain tumor segmentation
using convolutional neural networks in MRI images,’’ IEEE Trans. Med.
Imag., vol. 35, no. 5, pp. 1240–1251, May 2016.

[23] R. S. Randhawa, A. Modi, P. Jain, and P. Warier, ‘‘Improving boundary
classification for brain tumor segmentation and longitudinal disease pro-
gression,’’ in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Trau-
matic Brain Injuries, A. Crimi, B.Menze, O.Maier, M. Reyes, S.Winzeck,
and H. Handels, Eds. Cham, Switzerland: Springer, 2016, pp. 65–74.

[24] J. Long, E. Shelhamer, and T. Darrell, ‘‘Fully convolutional networks
for semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3431–3440.

[25] H. Chen, Q. Dou, L. Yu, J. Qin, and P. A. Heng, ‘‘VoxResNet: Deep
voxelwise residual networks for brain segmentation from 3DMR images,’’
NeuroImage, vol. 170, pp. 446–455, Apr. 2017.

[26] S. Valverde et al., ‘‘Improving automated multiple sclerosis lesion seg-
mentation with a cascaded 3D convolutional neural network approach,’’
NeuroImage, vol. 155, pp. 159–168, Jul. 2017.

[27] R. Zhang et al., ‘‘Automatic segmentation of acute ischemic stroke from
DWI using 3-D fully convolutional densenets,’’ IEEE Trans. Med. Imag.,
vol. 37, no. 9, pp. 2149–2160, Sep. 2018.

[28] L. Chen, P. Bentley, and D. Rueckert, ‘‘Fully automatic acute ischemic
lesion segmentation in DWI using convolutional neural networks,’’ Neu-
roImage, Clin., vol. 15, pp. 633–643, Jun. 2017.

VOLUME 6, 2018 57015



Z. Liu et al.: Towards Clinical Diagnosis: Automated Stroke Lesion Segmentation on Multi-Spectral MR Image

[29] H. Noh, S. Hong, and B. Han, ‘‘Learning deconvolution network for
semantic segmentation,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Dec. 2015, pp. 1520–1528.

[30] D. Graham, P. Cloke, and M. Vosper, Principles and Applications of Radi-
ological Physics, 6th ed. Amsterdam, The Netherlands: Elsevier, 2011.

[31] J. Lu et al., ‘‘Detectability and reproducibility of the olfactory fMRI signal
under the influence of magnetic susceptibility artifacts in the primary
olfactory cortex,’’ NeuroImage, vol. 178, pp. 613–621, Sep. 2018.

[32] P. W. Schaefer, P. E. Grant, and R. G. Gonzalez, ‘‘Diffusion-weighted MR
imaging of the brain,’’ Radiology, vol. 217, no. 2, pp. 331–345, 2000.

[33] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[34] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-net: Convolutional net-
works for biomedical image segmentation,’’ inMedical Image Computing
and Computer-Assisted Intervention—MICCAI, N. Navab, J. Hornegger,
W. Wells, and A. F. Frangi, Eds. Cham, Switzerland: Springer, 2015,
pp. 234–241.

[35] C. Peng, X. Zhang, G. Yu, G. Luo, and J. Sun, ‘‘Large kernel matters—
Improve semantic segmentation by global convolutional network,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 1743–1751.

[36] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille.
(Jun. 2016). ‘‘DeepLab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected CRFs.’’ [Online].
Available: https://arxiv.org/abs/1606.00915

[37] D. P. Kingma and J. Ba. (Dec. 2014). ‘‘Adam: A method for stochastic
optimization.’’ [Online]. Available: https://arxiv.org/abs/1412.6980

[38] B. C. Lowekamp, D. T. Chen, L. Ibáñez, and D. Blezek, ‘‘The design of
SimpleITK,’’ Frontiers Neuroinform., vol. 7, p. 45, Dec. 2013.

[39] P. A. Yushkevich et al., ‘‘User-guided 3D active contour segmentation of
anatomical structures: Significantly improved efficiency and reliability,’’
NeuroImage, vol. 31, no. 3, pp. 1116–1128, Jul. 2006.

[40] R. G. Gonzalez, J. A. Hirsch, M. H. Lev, P. W. Schaefer, and
L. H. Schwamm, Eds., Acute Ischemic Stroke: Imaging and Intervention.
Berlin, Germany: Springer-Verlag, 2011.

ZHIYANG LIU (S’13–M’15) received the bache-
lor’s degree in communication engineering from
Tianjin University, Tianjin, China, in 2010, and the
Ph.D. degree in electronic engineering from City
University of Hong Kong, Hong Kong, in 2014.
Since 2014, he has been with Nankai University,
where he is currently a Lecturer. His research
interest includeswireless communication and deep
learning.

CHEN CAO received the bachelor’s and master’s
degrees in clinical medicine (medical imaging)
from Tianjin Medical University, Tianjin, China,
in 2011 and 2013, respectively. Since 2013, he has
been with Tianjin HuanhuHospital, Tianjin, where
he is currently a Physician. His research interest
includes medical image analysis.

SHUXUE DING (M’04) received theM.Sc. degree
in physics from the Dalian University of Technol-
ogy, Dalian, China, in 1988, and the Ph.D. degree
in physics from the Tokyo Institute of Technology,
Tokyo, Japan, in 1996. From 1989 to 1991 and
from 1991 to 1992, respectively, he was an Assis-
tant Professor and also anAssociate Professor with
the DalianUniversity of Technology. From 1996 to
1998, hewaswith Fujisoft-ABC Inc., Japan, where
he was involved in algorithm design for telecom-

munication systems. From 1998 to 2003, hewaswith Clarion Co., Ltd, Japan,
where hewas engaged in researches in communication and signal processing,
especially in speech recognition. From 2003 to 2005, hewas a visiting faculty
with the University of Aizu, Japan. He is currently a Professor with the
School of Computer Science and Engineering, The University of Aizu. Since
2015, he has been with Nankai University, where he is a currently a Lecture
Professor. He has been engaged in research in a wide range of areas of
mathematical and physical engineering, such as statistical signal processing,
optimization, neural computation, bio electromagnetism, and information
sciences.

In particular, he has devoted himself to blind source separation and inde-
pendent component analysis, and their applications in acoustic signals and
vital signs. Recently, he is also conducting research in brain-style informa-
tion processing, pattern recognition, compressive sensing, and sparse rep-
resentation. He is also interested in speech and image processing, quantum
computation, quantum and information, and the physics of information. He
is a member of ASA, ACM, and IEICE.

ZHIANG LIU is currently pursuing the bachelor’s
degree with the School of Electrical Engineer-
ing and Automation, Harbin Institute of Technol-
ogy, Harbin, China. His research interests include
machine learning, signal processing, and elec-
tronic system design.

TONG HAN received the master’s and M.D.
degrees in medical imaging from Tianjin Medi-
cal University, Tianjin, China, in 2003 and 2011,
respectively. Since 1995, he has been with the
Tianjin Huanhu Hospital, Tianjin. He is currently
a Chief Physician with the Department of Medical
Imaging, Tianjin Huanhu Hospital. Since 2014,
he has been a Master Tutor with the School of
Medical Imaging, Tianjin Medical University. His
research interest includes the application of MRI

in stroke diagnosis and treatment.

SHENG LIU received the master’s degree in
biomedical engineering and the Ph.D. degree in
physiology from Milan University, Milan, Italy,
in 2009 and 2013, respectively. Since 2013, he has
been with the School of Basic Medical Sciences,
Tianjin Medical University, Tianjin, China, where
he is currently a Lecturer. His research interest
includes medical image analysis and cardiovascu-
lar disease.

57016 VOLUME 6, 2018


	INTRODUCTION
	METHOD
	PREPROCESSING AND PATCH EXTRACTION
	ARCHITECTURE OF Res-FCN
	CONVOLUTIONAL LAYERS
	BOTTLENECK BLOCK
	LOSS FUNCTION

	EVALUATIONS

	EXPERIMENT RESULTS
	DATA
	PREPROCESSING
	SETUP
	RESULTS
	IMPLEMENTATION AND RUNNING TIME

	DISCUSSIONS
	EFFECTS OF ATROUS CONVOLUTIONS AND GCN
	TRADEOFF BETWEEN FNs AND FPs
	2-FOLD CROSS VALIDATION
	EVALUATION ON PUBLIC DATASET

	CONCLUSION
	REFERENCES
	Biographies
	ZHIYANG LIU
	CHEN CAO
	SHUXUE DING
	ZHIANG LIU
	TONG HAN
	SHENG LIU


