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ABSTRACT Surveillance systems based on image analysis can automatically detect road accidents to ensure
a quick intervention by rescue teams. However, in some situations, the visual information is insufficiently
reliable, whereas the use of a sound detector can greatly improve the overall reliability of the surveillance
system. In this paper, we focus on detecting two classes of anomalous sounds for audio surveillance on
roads, i.e., tire skidding and car crash, whose occurrences are an evidently acoustic indication of road
accidents or disruptions. In the proposedmethod, we extract a feature of deep audio representation (DAR) and
then use a classifier of a bidirectional long short-term memory network to determine the class of the sound to
which each test audio segment belongs. We propose a framework based on multiple-stage deep autoencoder
network (DAN) to extract the DAR, which fuses complementary information from several input features
and thus can be more discriminative and robust than those input features. In the experiments, we discuss the
influences of the parameter settings of the DAN’s hidden layers on the performance of DAR and compare
the DAR with other features. Furthermore, the proposed method is compared to the state-of-the-art methods.
In evaluating the data with various signal-to-noise ratios, the results show that the DAR outperforms other
features, and the proposed method is superior to the state-of-the-art methods for detecting anomalous sounds
on roads.

INDEX TERMS Deep audio representation, bidirectional long short-term memory network, accident
detection, audio surveillance.

I. INTRODUCTION
With the high-speed development of the economies of devel-
oping countries such as China, the number of private cars
and public vehicles has been rapidly increasing on roads.
There is one death every four minutes due to road accidents in
developing countries [1]. People in these countries havemade
great efforts to ensure the security and safety of both people
and goods on roads. Currently, surveillance systems based
on image analysis have been widely adopted for monitoring
road traffic [2]–[4]. Road traffic surveillance mainly includes
the detection of accidents or road disruptions for quickly
ensuring the intervention of rescue teams [5].

It has been reported that decreasing the time between the
moment when an accident occurs and the moment when the
rescue team is dispatched significantly reduces the mortal-
ity rate (by approximately 6%) [6], [7]. Currently, cameras

are generally adopted to control the behavior of vehicles
through tracking the traces of vehicles [8]–[11] and thus
can monitor different traffic conditions on roads, such as
accidents and long queues [12], [13]. Nevertheless, in some
situations, the visual information is insufficient to reliably
infer the activities of vehicles or to discover possibly dan-
gerous conditions. For example, a tire skidding on the road is
definitely evidence of an accident or a dangerous condition
and has a quite distinctive acoustic indication, but it is hard
to identify from images. In addition, accidents can occur
out of the view scope of cameras (i.e., the blind area of
the camera) or occur when the light is quite dim. In these
situations, neither a human operator nor an image analysis-
based surveillance system can detect the accidents based
on the visual information only. In contrast, audio analysis-
based surveillance systems have no blind areas and are not

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

58043

https://orcid.org/0000-0003-4362-1125


Y. Li et al.: Anomalous Sound Detection Using Deep Audio Representation and a BLSTM Network

influenced by illumination variations and thus can normally
work during both day and night. Hence, the processing of
audio signals acquired by a microphone as a complementary
mode to image processing can definitely enhance the detec-
tion abilities of automatic surveillance systems [14], [15].
In addition, it is currently simple to deploy audio analysis-
based surveillance since IP cameras adopted for road surveil-
lance are generally equipped with embeddedmicrophones for
audio signal acquisition.

Although audio analysis is critical for detecting accidents
in some situations, the problem of anomalous sound detection
for audio surveillance on roads is challenging in open envi-
ronments. Currently, there are some difficulties in applying
anomalous sound detection to road surveillance. The first
difficulty is that anomalous sounds are generally superim-
posed on a high level of background noise and sometimes
occur at a great distance from the microphones. As a result,
the signal-to-noise ratio (SNR) is very low, and thus the
detection of such anomalous sounds becomes a complicated
problem. The second difficulty is that intraclass variations of
time-frequency characteristics for each class of anomalous
sounds are quite significant due to complex road conditions
and various types of vehicles. For example, the duration of
a tire skidding can range from less than one second to sev-
eral seconds, and the spectrogram of car crash has different
shapes because the crash can occur among various types
of vehicles, at different places, at different speeds, and so
on. Due to these aforementioned difficulties, audio analysis-
based intelligent surveillance systems are currently in the
research stage and not widely deployed for road surveillance.
Anomalous sound detection on roads is a key component of
the audio surveillance system and has received considerable
attention [16], [17]. In this study, we focus on effectively
detecting two classes of anomalous sounds, i.e., tire skidding
and car crash, for audio surveillance on roads. These two
classes of anomalous sounds frequently occur on roads and
are an obvious acoustic indication of road accidents or disrup-
tions. This work is motivated by a practical audio surveillance
application in which anomalous sounds (i.e., the sounds of
interest) generally occur on roads with various SNRs.

A. RELATED WORKS
Over the past decades, great efforts have been made for sound
detection or classification in the fields of both signal process-
ing [18]–[34] and intelligent transportation [16], [35]–[42].

Some recent evaluation campaigns for sound detec-
tion or classification have been launched in the field
of signal processing, such as detection and classification
of acoustic scenes and events (DCASE) 2013 [18], and
DCASE 2016-2018 [19]–[23]. In addition to these cam-
paigns, some researchers have individually performed studies
on the detection or classification of sounds. For example,
Lee et al. [22] detected sound events via the feature of mel-
spectrogram and the ensemble of convolutional neural net-
works (CNN). Similarly, Xu et al. [23] classified audio events
using the feature of log-mel-spectrogram and the classifier

of gated CNN. McLoughlin et al. [24] used a deep neural
network (DNN) and a low-resolution overlapped spectrogram
as the classifier and input feature for robust sound classifica-
tion. Gencoglu et al. [25] adopted a DNN-based classifier fed
by the feature of MFCCs, mel-energy, or log-mel-energy, for
identifying isolated acoustic events. Rabaoui et al. [26] rec-
ognized environmental sounds using a hidden Markov model
(HMM)-based classifier with the input of various combina-
tions of time-frequency features, such as zero-crossing rate,
spectral centroid, MFCCs, and perceptual linear prediction
coefficient (PLPC). Phan et al. [27] used a regression forests
classifier fed by the feature of acoustic superframes to detect
sounds. Küçükbay and Sert [28] detected sounds by combin-
ing an MFCC feature with an SVM classifier. Lu et al. [29]
extracted a sparse feature representation based on the simi-
larity measurement of spectral exemplars and then built an
SVM classifier for sound detection. Tran and Li [30] studied
kernel techniques of the subband probabilistic distance under
the framework of SVM for sound event recognition. With
the input feature of MFCCs, their proposed SVM classifier
outperformed conventional SVM classifiers. For detecting
cheering and applause events in the audio stream of various
TV programs, Lu et al. [31] proposed a method based on
the SVM classifier and audio feature vectors, such as sub-
band energy, PLPC, and pitch. Zhang et al. [32] classified
sounds using the features of tensor-based sparse approxima-
tion with the classifier of a Gaussian mixture model (GMM).
Kumar et al. [33] detected sounds from acoustic unit occur-
rence patterns.

In addition to the works above, some research on sound
detection or classification have been reported in the field of
intelligent transportation. For example, the problem of sound
detection for audio surveillance was highlighted in [35].
In addition, some classes of sounds, such as gunshots, were
regarded as the detection targets for audio surveillance in
different locations [36]–[41]. Recently, Foggia et al. [16]
focused on detecting two classes of anomalous sounds on
roads for audio surveillance, i.e., tire skidding and car crash,
by using the classifiers of SVM and KNN that were fed by
the features of MFCC, energy ratios in bark sub-bands and
temporal-spectral features. The work of Foggia et al. is quite
similar to our work in this study and is used as one of the
baselines for performance comparisons.

As seen from the aforementioned discussions, the features
adopted in the previous works are hand-crafted features,
e.g., MFCCs, log-mel-spectrogram, sub-band energy, and
zero-crossing rate. Although these hand-crafted features per-
formed well in the previous works, they still have shortcom-
ings. For example, MFCC is the most popularly used feature,
but it is not suitable for discriminating sounds with nonsta-
tionary noise due to its poor robustness [43]. Gabor filter
bank is a biologically inspired spectro-temporal feature [44]
and can improve the performance in comparison with MFCC
under adverse noise conditions, but it cannot deeply char-
acterize the properties of complex sounds and has relatively
poor discriminability [43], [45]. In addition, they are shallow

58044 VOLUME 6, 2018



Y. Li et al.: Anomalous Sound Detection Using Deep Audio Representation and a BLSTM Network

features instead of deep transformed features, and thus they
cannot deeply represent the properties of sounds. To over-
come the shortcomings of the shallow features adopted in the
previous works, we propose a deep transformed feature that
is more discriminative and insensitive to noises.

B. OUR CONTRIBUTIONS
Inspired by the success of deep learning for feature repre-
sentation [46], we propose a framework based on multiple-
stage deep autoencoder networks (DAN) to extract a feature
to deeply represent different properties among various classes
of sounds and integrate the strongpoints of input features.
In the proposed framework, the hidden layers of each
DAN are trained to generate information relevant for discrim-
ination among sounds. The bottleneck layer is the narrowest
hidden layer in a DAN, whose activation signals can be used
as a compact representation of the original high-dimensional
inputs fed to the input layer of a DAN [47], [48]. Hence,
the output of the bottleneck layer of each DAN is adopted
as a new feature representation, and the output of the bot-
tleneck layer of the last DAN in the proposed framework is
called deep audio representation (DAR) here. To the best of
our knowledge, there are no other studies to extract DAR
by multiple-stage DANs for detecting anomalous sounds on
roads. The feature of DAR not only fuses complementary
information among different input features but also identifies
new potential information by nonlinear transformation and
dimensionality reduction realized by multiple-stage DANs.
Hence, it can perform better for anomalous sound detection
under different noisy conditions than state-of-the-art features
such as MFCC or Gabor filter bank.

In addition, considering the high contextual correlation
among sounds and the advantage of neural networks in cap-
turing sound-sequence information, we propose using a clas-
sifier of a bidirectional long short-term memory (BLSTM)
network instead of traditional classifiers, such as support vec-
tor machine (SVM) and K-nearest neighbor (KNN), adopted
in the previous works (e.g., [16]) to model sounds. In the
proposed method, the BLSTM network is fed by the feature
of DAR for realizing the task of anomalous sound detection
on roads.

The contributions of this study are as follows. First,
we propose a novel framework of feature extraction adopt-
ing a multiple-stage deep neural network based on DAN.
By unsupervised learning, the robust and discriminative fea-
ture, namely, DAR, is extracted by the proposed framework
to efficiently characterize the properties of various classes of
sounds for accurate detection of anomalous sounds. Second,
we propose a method for detecting two classes of anomalous
sounds on roads by combining the feature of DAR with a
classifier of a BLSTMnetwork. Third, we discuss the impacts
of the parameter settings of the DAN’s hidden layers on
the performance of the DAR and compare the DAR with
state-of-the-art features used in previous works. Addition-
ally, we compare the proposed method with state-of-the-art
methods adopted in previous works for detecting two classes

FIGURE 1. The diagram of the proposed method.

FIGURE 2. The diagram for extracting the feature of deep audio
representation (DAR), where BF stands for bottleneck feature.

of anomalous sounds on roads under different SNRs. These
contributions have not been addressed in previous works. The
ultimate goal of this study is to develop an audio surveillance
system on roads, and a module for anomalous sounds detec-
tion with high accuracy is the most critical component in the
system.

The rest of the paper is organized as follows. Section II
describes the proposed method. Section III presents exper-
iments and discussions, and finally, conclusions are drawn
in Section IV.

II. THE METHOD
The diagram of the proposed method is depicted in Fig. 1,
which consists of two modules: deep audio representation
extraction and BLSTM network classification.

A. DEEP AUDIO REPRESENTATION EXTRACTION
The motivation for designing the proposed feature of DAR is
based on two considerations. First, each class of sounds
generally possesses a unique time-frequency property, which
can be effectively represented by MFCC, Gabor filter
bank, or bark filter bank for sound detection [16], [17].
Second, deep learning techniques have a strong ability to
learn a compact representation from the high-dimensional
input data [46]. Additionally, each type of feature is
complementary to some extent and has its own advan-
tages, e.g., strong discriminability of MFCC and bark filter
bank [16], [17] or strong anti-noise robustness of a Gabor fil-
ter bank [44], [45]. Hence, we propose a framework based on
multiple-stage DANs to learn a feature by transforming and
fusing the input features, e.g., MFCC, Gabor filter bank and
bark filter bank, with the aim of integrating their advantages
and thus obtaining a better result.

As shown in Fig. 2, a framework based on two-stage DANs
with three input features is taken as an example to illustrate

VOLUME 6, 2018 58045



Y. Li et al.: Anomalous Sound Detection Using Deep Audio Representation and a BLSTM Network

FIGURE 3. The extraction procedure of MFCC.

the extraction of the DAR, which is a realization of the two
considerations above. Each audio file is first split into frames
for extracting three features, i.e., MFCC, Gabor filter bank
and bark filter bank, and then a framework based on two-stage
DANs is built for extracting the DAR. Three input features
are fed to DAN1, DAN2 and DAN3 in the first stage. Then,
the transformed features are output from the bottleneck layers
of DAN1, DAN2 and DAN3. The outputs of the bottleneck
layer in these three DANs in stage 1 are called bottleneck
features (BF) for the input features and marked as BF1,
BF2 and BF3. Then, the concatenation of BF1, BF2 and BF3,
i.e., [BF1 BF2 BF3], is fed to the DAN in the second stage,
i.e., DAN1 of stage 2, whose bottleneck layer output is the
feature of DAR. The DAR integrates complementary infor-
mation of all input features through multiple-stage DANs and
thus possesses the benefits of its input features, e.g., MFCC,
Gabor filter bank and bark filter bank in Fig. 2.

1) MFCC EXTRACTION
The feature of MFCC is widely used and has been proven to
be effective for sound detection [16], [17]. Hence, it is used
as an input feature of the proposed framework for enhancing
the discriminability of DAR. Fig. 3 shows the extraction
of MFCC, which consists of five parts: framing, Hamming
windowing, fast Fourier transform (FFT), mel-bank and log-
arithm, and discrete cosine transform (DCT).

The audio file is first divided into audio frames x(n) of
frame length Ns sampling points with half overlapping. Next,
a windowing operation is performed by a Hamming window
function w(n) which is defined by

w(n) = 0.54− 0.46 cos
(

2nπ
Ns − 1

)
, 0 ≤ n ≤ Ns − 1.

(1)

Thus, each windowed audio frame h(n) is obtained by multi-
plying x(n) byw(n). To analyze h(n) in the frequency domain,
one Ns-point FFT is then carried out for transforming h(n)
into the corresponding frequency elements. The value and the
magnitude of a frequency element are computed by

H (k) =
Ns−1∑
n=0

h (n) e−j
2nkπ
Ns , 0 ≤ k ≤ Ns − 1, (2)

|H (k)| =
√
(Re {H (k)})2 + (Im {H (k)})2, (3)

where Re{H (k)} and Im{H (k)} stand for the real and imag-
inary parts of H (k), respectively. The logarithmic power
spectrum on the mel-scale is computed by a filter bank with

Lf filters [49],

X (l) = log

 klu∑
k=kll

|H (k)|Wl(k)

 , (4)

where l = 0, 1, . . . ,Lf -1;Wl(k) is the l th mel-scale filter, and
kll and klu are the lower bound and the upper bound of the
l th filter, respectively. The lower bound and the upper bound
of a filter are determined by considering the relationship
between the frequency and the mel-scale [5]. The mel-scale
is perceptually motivated by the human auditory system [50].
It emphasizes the spectra in the low frequency. The mel-scale
frequency is computed by

Mel(f ) = 1125 ln
(
1+

f
700

)
, (5)

where f denotes the linear frequency in Hz. Finally, a DCT is
performed on X (l) to obtain the MFCC, i.e., MFCC(m):

MFCC(m) =
Lf∑
l=1

X (l) cos
(
m (l − 0.5) π

Lf

)
, (6)

where m = 1, . . . ,M , and M denotes the dimension
of MFCC.

2) GABOR FILTER BANK EXTRACTION
It has been shown that the feature of Gabor filter bank can
improve the robustness of speech recognition and sound
detection under noisy conditions [43], [45], [51]. The usage of
Gabor filters [52] is motivated by their similarity to spectro-
temporal patterns of neurons in the auditory cortex of mam-
mals [53]. Therefore, a Gabor filter bank is used as an input
feature of the proposed framework for enhancing the anti-
noise robustness of the DAR. A Gabor filter is a product of
a two-dimensional Hanning-shaped envelope function with
a two-dimensional sinusoidal carrier. The Hanning-shaped
envelope function is defined by

hb(n) =

0.5− 0.5 cos
(
2πn
b

)
−
b
2
< n <

b
2

0 else,
(7)

where b stands for the width of the envelope, multiplied by a
sinusoidal carrier function with frequency ω

sω(n) = exp (jωn) . (8)

The Gabor filter can be expressed by the frequency index m
and frame index n, the central frequency channel m0 and the
central time frame n0, the spectral modulation frequency ωm
and temporal modulation frequency ωn, and the number of
semicycles under the envelope νm and νn, i.e.,

g(m0, n0, ωm, ωn,m, n, vm, vn)

= sωm (m− m0) · sωn (n− n0) · h
vm
2ωm

(m− m0)

· h vn
2ωn

(n− n0). (9)

The extraction procedure of the Gabor filter bank fea-
ture is as follows. The audio file is first divided into audio
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FIGURE 4. The extraction procedure of the bark filter bank.

frames x(n) of frame length of Ns sampling points with
half overlapping. Next, the windowed audio frame h(n) is
obtained through multiplying x(n) by a Hamming window
function w(n) and is then transformed to the frequency
domain by a discrete Fourier transformation (DFT). The
absolute value |Yn,k | of the resulting spectrogram is mel-
warped by triangular-shaped mel-filters Fk,m in a frequency
region between 64 Hz and 8 kHz and logarithmized, resulting
in a log-scaled mel-spectrogram with mel-bands m

Ỹn,m = log

(Ns−1∑
k=0

∣∣Yn,k ∣∣ · Fk,m) , 0 ≤ m ≤ M ′ − 1, (10)

where M ′ stands for the number of mel-filters. Finally, the
Gabor filter bank feature is obtained by filtering the log-
scaled mel-spectrogram Ỹn,m with the real part of the Gabor
filters defined by (9) that are sensitive to frequency changes
over time, i.e.,

Gn,m(m0, n0, ωm, ωn, vm, vn)

=

∑
u

∑
λ

Ỹn,m ·Re {g(m0, n0, ωm, ωn, u+m, λ+n, vm, vn)},

(11)

where Re{g(·)} denotes the real part of g(·).

3) BARK FILTER BANK EXTRACTION
The feature of the bark filter bank is also used as an input
feature for extracting the DAR since its extraction procedure
is different from that of MFCC and Gabor filter bank. Thus,
they have complementary information for representing the
property of sounds. As shown in Fig. 4, there are four compo-
nents for its extraction: framing, Hamming windowing, FFT,
and bark bank and logarithm.

The bark filter bank has similar preprocessing to MFCC,
i.e., framing, Hamming windowing and FFT. However,
instead of a mel-scale filter bank, a bark-scale filter bank
is used [50]. Bark-scale is also perceptually motivated by
human hearing. The bark-scale frequency is calculated by

Bark(f ) = 13 arctan (0.00076f )+3.5 arctan

((
f

7500

)2
)
,

(12)

where f denotes linear frequency in Hz.
The extraction procedure of the bark filter bank feature is as

follows. The audio file is first divided into audio frames x(n),
and then the operation of Hamming windowing is performed
to obtain windowed audio frame h(n). Next, one Ns-point
FFT is used to transform h(n) to the linear-frequency spec-
trumH (k). The logarithmic power spectrum on the bark-scale

FIGURE 5. (a) A neural network with three layers. (b) Unrolling the
network. The encoder and decoder are inside two different dashed
rectangles. (c) The network is initially built as a restricted Boltzmann
machine (RBM) and a Gaussian RBM (GRBM). NB, NH and NI are neuron
numbers of the bottleneck, hidden and input layers, respectively.

is finally computed by a filter bank with Lf filters [50],

BFB(l) = log

 klu∑
k=kll

|H (k)|Wl(k)

 , (13)

where l = 0, 1, . . . ,Lf -1; Wl(k) is the l th bark-scale filter;
and kll and klu are the lower and the upper bounds of the
l th filter, respectively. The lower and the upper bounds of a
filter are determined by considering the relationship between
the frequency and the bark-scale.

4) BOTTLENECK FEATURE EXTRACTION
The network for bottleneck feature extraction used in the
proposed framework is a DAN. The reason for using the DAN
to extract the bottleneck feature is that the DAN can be trained
without the training sample labels (i.e., in an unsupervised
way) with higher performance. As a result, it is very con-
venient to design the system of anomalous sound detection,
since the training sample labels are not always available in
practice, and data annotation is time-consuming.

In this study, the output of the bottleneck layer is used as
a compact representation of the input features. We extract a
feature representation from the neuron activations of the
bottleneck layer, called the bottleneck feature. In the DAN,
an adaptive and multilayer encoder network is adopted
to transform high-dimensional inputs to a low-dimensional
code, whereas a decoder network is used to recover the inputs
from the code [54]. Fig. 5 shows a DANwith one hidden layer
(in decoder and encoder networks), which is taken as one
example for demonstrating the extraction of the bottleneck
feature.

In Fig. 5 (a), an encoder network is used to transform the
original input features (e.g., Gabor filter bank) to a concise
representation (i.e., a bottleneck feature withNB dimensions).
It is assumed that F= {fi: fi ∈ RD×1}i=1,2,..,I ,W= {Wi}i=1,2
and b = {bi}i=1,2 stand for the sets of: input feature vector,
weight matrix and bias vector of the encoder network, respec-
tively. The encoder network defines a transformation 8(·):
RD×1 → RQ×1, which transforms an input feature vector f
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withD dimensions into aQ-dimensional representation8(f):

8(f ) = W2 · ψ(W1 · f + b1)+ b2, (14)

where ψ(· ) is an activation function: ψ(f) = 1/(1+ e−f ).
The encoder network in Fig. 5 (a) is unrolled, and then

a DAN with a decoder network is obtained as depicted
in Fig. 5 (b). The decoder network creates a transformation
8̂(·): RQ×1 → RD×1, which uses the transformed represen-
tation 8(f) to rebuild the original input feature vector f. The
reconstructed input is defined as

8̂(f ) = W1 · ψ(W2 ·8(f )+ b2)+ b1. (15)

After obtaining the reconstructed input, an objective
function Or is defined as

Or =
I∑
i=1

‖f i − 8̂(f i)‖
2, (16)

where || · || represents the Euclidean norm.
A gradient descent algorithm is adopted to learn the set

of weight matrices W = {Wi}i=1,2, and the backpropagation
algorithm is used to calculate the derivatives of the objective
function with respect to the weights [54]. The construction of
a DAN includes two steps: a pretraining process to initialize
the network’s parameters and a fine-tuning process. As shown
in Fig. 5 (c), the restricted Boltzmann machine (RBM) is one
basic unit for pretraining the DAN [54], which consists of a
visible layer and a hidden layer. Each neuron in the visible
layer is connected to every neuron in the hidden layer, and
the values of the neurons are binary. The energy function of
the RBM is defined by

E(v,h) = −vTW ijh− biv− bjh, (17)

where T stands for the transpose of a matrix (or vector); v and
h denote the neuron vectors of the visible and hidden layers,
respectively; Wij represents the weight matrix between the
visible and hidden layers; and bi and bj denote the bias vectors
of the visible and hidden layers, respectively.

To process the real-valued data, a Gaussian RBM (GRBM)
is used in the first layer of the DAN. The energy function of
the GRBM is defined as

E(v,h) =
∑
i

(vi − bi)2

2σ 2
i

−

∑
i

∑
j

vi
σi
W ijhj −

∑
j

bjhj,

(18)

where Wij, bi (bj), vi and hj stand for the weight matrices,
the bias vectors, the neuron vectors of the visible and hidden
layers of the GRBM, respectively; and σi is the stan-
dard deviation of the Gaussian noise for visible neuron i.
The joint probability distribution of the neurons is defined
by

P(v,h) =
1
Z
exp (−E(v,h)) , (19)

where Z is a normalization factor for scaling P (v, h) to
the range of [0 1]. The parameters of RBM are iteratively

updated by minimizing the negative log-likelihood -
∑

h log
P(v, h) by the stochastic gradient descent algorithm. The
contrastive divergence [55] is used for approximating the
intractable calculation of the gradients. During pretraining
the DAN, two adjacent layers are used as an RBM, and
the RBMs are trained bottom-up for obtaining better initial
parameters. As shown in Fig. 5 (c), the weight matrix W1
and bias vector b1 are trained by treating the bottom two
layers as a GRBM, and the weight matrix W2 and bias
vector b2 are trained in the same way by treating the next two
layers as an RBM. After the pretraining process, the param-
eters of the DAN are fine-tuned using the backpropagation
algorithm [54].

All DANs in the proposed framework (as shown in Fig. 2)
are individually generated using their corresponding input
features, i.e., MFCC, Gabor filter bank, bark filter bank,
[BF1 BF2 BF3]. Then, the DAR is extracted for each audio
file by the framework. To model the dynamic properties of
sounds, a context with T adjacent frames are generally taken
into account. Hence, the neuron number of the input layer of
each DAN is T × D, where D is the dimension of the input
feature. The parameter settings (i.e., layer number and neuron
number per layer) of the hidden layers have a direct influence
on the performance of the DAR, and thus, their settings will
be discussed in the experiments. The output of the DAN is the
reconstructed value of its original input, and thus, the neuron
number of the output layer is equal to that of the input
layer.

B. BLSTM NETWORK CLASSIFICATION
A recurrent neural network (RNN) possesses feedback con-
nections, and thus works flexibly and efficiently with time-
series signals, e.g., audio signals. Because of the problem
of the exploding and vanishing gradient, a simple RNN is
unable to address long-duration dependencies [56]. Hidden
units of the gated RNN are gate based. The LSTM network
is one ordinary class of gated RNNs and is widely applied.
The detailed introduction to the LSTM network is described
in [57].

The LSTM network is flexible for modeling sequential
data and is adept at utilizing and storing information for long
periods of time [57]. A basic LSTM block consists of three
gates (input gate in, output gate on, and forget gate fn), one
cell cn, block input In, and output activation function On,
three peephole connections (pi, pf , po) among cells and three
gates. The detailed diagram of the LSTM block is illustrated
in Fig. 6.

The input and output gates control whether the input sig-
nals have an impact on the cell and whether the cell can
influence other neurons. The forget gate controls whether
the state should be remembered or not, while the peephole
connections scale the state of the three gates with the cell
state. The output of the LSTM block is recurrently connected
back to the block input and all gates. The forward pass of the
LSTM layer, including the block input In, input gate in, forget
gate fn, memory cells cn, output gate on, and block outputOn,
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FIGURE 6. The diagram of the LSTM block [58].

are defined by

In = h (W I xn + RIOn−1 + bI )
in = σ

(
W ixn + RiOn−1 + pi � cn−1 + bi

)
fn = σ

(
W f xn + RfOn−1 + pf � cn−1 + bf

)
cn = in � In + fn � cn−1
on = σ

(
Woxn + Royn−1 + po � cn + bo

)
On = on � h (cn) ,

(20)

where n and xn stand for the order number of the sequential
data and the input feature, respectively. W, R, and b are the
weight matrix, the recurrent weight matrix, and the bias vec-
tor, respectively. p, σ , h, and� represent the peephole weight
vector, the logistic sigmoid activation function, the hyper-
bolic tangent activation function, and the pointwise product
with the gate value, respectively. Finally, the subscripts I , i, f ,
and o stand for the block input, input gate, forget gate,
and output gate, respectively. Similarly, the corresponding
backward pass that is required in the training stage is given
in [58].

Though the LSTM network can utilize context for long
periods of time, it can gain information from the previous
context only and does not have access to information from
the future context. As far as the task of anomalous sound
detection is concerned, it is needed to utilize information
in both directions. Bidirectional RNN (BRNN) realizes this
objective through processing the sequential data with two
separate hidden layers in both forward and backward direc-
tions [59]. The BLSTM network is a combination of the
LSTMnetwork and BRNN [60]. Hence, it not only has access
to the context for long periods of time but can also utilize
the context in both forward and backward directions with two
separate hidden layers that are connected to the same output
layer [61], as shown in Fig. 7.

FIGURE 7. The diagram of the BLSTM network.

The BLSTM network can be realized by
EOn = 0

(
W EI xn +W EOOn−1 + b EO

)
←

On = 0
(
W←

I
xn +W←

O
On+1 + b←

O

)
yn = W Ey EOn +W←y

←

On + by,

(21)

where EOn is the forward hidden sequence,
←

On is the backward
hidden sequence, and 0 is a sigmoid function.

Considering the advantage of the BLSTM network in cap-
turing sequence information, we propose its use as the classi-
fier for anomalous sound detection in this study and compare
it with other classifiers adopted in the previous works. The
parameter settings of the BLSTM network will be given
in Section III as shown in Table 2.

III. EXPERIMENTS AND DISCUSSIONS
This section begins to introduce experimental data, and then
presents experimental setups including the definitions of two
evaluation metrics (i.e., Accuracy, F1 score), the parameter
settings for extracting features and for building classifiers.
Next, the impacts of the parameter settings of the DAN’s
hidden layers on the performance of DAR are discussed.
Finally, the performance comparison of different features,
classifiers and methods for anomalous sound detection is
evaluated on the data with different SNRs.

A. EXPERIMENTAL DATA
The experimental data adopted in this study is a public dataset
created by Foggia et al. [16], which is publicly available
at http://mivia.unisa.it. The dataset contains two classes of
hazardous road events: tire skidding and car crash. The audio
clips are saved as WAV files with a sampling frequency
of 32 kHz and 16-bit quantization. An audio-based surveil-
lance system needs to detect anomalous sounds in different
kinds of background sounds. Hence, the anomalous sounds
are not isolated but superimposed to different typical back-
ground sounds of roads and traffic jams to consider the occur-
rence of such abnormal events in real-world conditions.

As similarly done in [16], we adopt a procedure to combine
the anomalous sounds with background noises for obtaining
different SNRs. The audio file s(n) is first normalized so that
they have the same overall energy:

s̄(n) =
s(n)
sr (n)

, (22)
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TABLE 1. The details of the experimental data.

where sr (n) is the value of the root mean square of the
audio file s(n). A background noise file b(n) is randomly
chosen from the typical traffic background noises. Then,
Na foreground sounds were randomly selected and superim-
posed on the background noises for simulating the occurrence
of sounds in a real-world condition. The selected sounds were
mixed with the background noises as defined by:

s
′

j(n) =
Na∑
i=1

{
bj(n)⊕[spi,epi] (A · s̄i(n))

}
, (23)

where ⊕[spi,epi] is an operation that combines sound s̄i(n)
with background noise bj(n) in the interval ranging from start
point spi to end point epi of the sound. The end point epi is
separated from the start point of the next sound s̄i+1(n) by
several seconds in which only background noise is present.
The value of coefficient A is tuned for obtaining different
SNRs in the experiments.

The final experimental dataset consists of 57 audio files
with a duration of approximately one minute. Each of the
files has a sequence of anomalous sounds. Two-hundred
samples per class in total are distributed in these audio files.
In the experiments, the audio files are randomly divided into
training, validation and test data as 80%, 10% and 10%,
respectively. Ten-fold cross-validation is performed, and the
final result is the averaged scores of all 10 folds. The details
of the experimental data are presented in Table 1.

B. EXPERIMENTAL SETUP
The experiments are implemented on a computer with an
Intel(R) Core(TM) i7-6700, 3.10 GHz CPU, 48 GB RAM,
and aNVIDIA 1080 TIGPU. Both theAccuracy andF1 score
are used here to evaluate the overall performance of different
methods since they have been popularly adopted as perfor-
mance metrics for sound detection or classification [20], [21],
[62]. The higher their values are, the better the performance
of the method is. Accuracy is defined by

Accuracy =
TP+ TN

TP+ FP+ TN + FN
, (24)

where TP, FP, TN and FN stand for true positive, false
positive, true negative and false negative, respectively. For
calculating TP, FP, TN and FN, the samples of one class of
sound are regarded as positive while the samples of the other
classes of sounds are considered negative, and they are alter-
nated in turn. If the outcome from a prediction for one sample
is positive and the actual value is also positive, then it is called
a TP; however, if the actual value is negative, then it is called
an FP. Conversely, a TN occurs when both the prediction

TABLE 2. The parameters for extracting DAR and training the BLSTM
network.

outcome and the actual value are negative for one sample,
and FN is when the prediction outcome is negative while the
actual value is positive.

The F1 score is defined by

F1 =
2× PR× RR
PR+ RR

, (25)

where PR and RR denote the precision rate and recall rate,
respectively. PR and RR are defined by

PR =
TP

TP+ FP
, (26)

RR =
TP

TP+ FN
. (27)

The main parameter configurations for the DAR extraction
and BLSTM network building are given in Table 2. Based
on the experimental setup above, the training of BLSTM
network is usually finished within 1000 iterations and the
corresponding learning time ranges from three to four hours.
The initial loss value is set to ln(N ), where N is the type
number of anomalous sound, i.e.,N = 2 here. Hence, the loss
values change from 0.693 to approximately 0.060 during net-
work learning. Because the parameter settings of the DANs’
hidden layers in the proposed framework have direct impacts
on the performance of DAR and the key novelty of this study
is to propose a feature of DAR, the parameter settings of the
DANs’ hidden layers will be discussed in subsection III.C for
obtaining better results.

C. HIDDEN LAYERS SETTINGS OF DANS
In this subsection, we discuss the parameter settings of the
DANs’ hidden layers in the proposed framework for extract-
ing DAR. We tune the parameters of the hidden layers. The
results of anomalous sound detection under the conditions
of different settings of hidden layers are listed in Table 3,
in which the digit 50 denotes the number of neurons in the
bottleneck layer, and both 100 and 200 stand for the numbers
of neurons in the other hidden layers. For example, [50, 100]
represents that the DAN has 2 hidden layers (including the
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TABLE 3. Impacts of hidden layer’s settings on the performance of the
DAR (in %).

bottleneck layer), and the bottleneck layer and another hid-
den layer have 50 and 100 neurons, respectively. As shown
in Table 3, the proposedmethod achieves 92.75%ofAccuracy
and 91.86% of F1 score, i.e., the highest values of both the
Accuracy and F1 score, when the parameters of the hidden
layer of the DANs are set to [200, 100, 50, 100, 200]. This
parameter setting of the hidden layer is fixed and adopted for
the proposed method in the following subsections.

D. COMPARISON OF DIFFERENT FEATURES
Three state-of-the-art features (i.e., MFCCs [16], [17], [28],
bark filter bank (BFB) [28], [51], and Gabor filter bank
(GFB) [43], [45], [51]) are first extracted from each audio
file according to the settings in Table 2. To compare the
performance of different features under the same condition,
the back-end classifier is the BLSTM network (the same)
for all features in this experiment. The results obtained by
different features with various SNRs are listed in Table 4.

As shown in Table 4, under the same SNRs, the values
of both the Accuracy and F1 score achieved by DAR are
constantly higher than that obtained by MFCCs, bark filter
bank, Gabor filter bank, any transformed bottleneck feature
of one input feature and any combination of the transformed
bottleneck features. These results highlight the noise-robust
discriminative abilities of the proposed feature of DAR.
As far as three individual input features are concerned, the
Gabor filter bank outperforms other two features, whereas the
bark filter bank is the worst one in terms of both Accuracy
and F1 score under different SNRs. Similar results can be
observed for their corresponding transformed bottleneck fea-
tures, i.e., GFBT, MFCCT and BFBT. For the combinations of
two transformed bottleneck features, the feature ofMFCCT+

GFBT outperforms other combinations of two features in
all SNRs conditions. In addition, the lower the SNRs are,
the larger the improvements obtained by the Gabor filter bank
(or GFBT) are. For example, when SNR is −10 dB, Gabor
filter bank achieves the largest improvement of (Accuracy,
F1 score) by (6.03%, 4.02%) and (9.46%, 9.59%) compared
to MFCC and the bark filter bank, respectively. Evaluated
on clean data (highest SNR), the performance of MFCC
approximates that of the Gabor filter bank.

In conclusion, DAR can integrate the advantages of the
input features and outperforms other features in terms of
Accuracy and F1 score under all SNRs conditions. Hence,

TABLE 4. Results obtained by different features under various
SNRs (in %).

the proposed framework based on two-stage DANs is proven
to be effective for feature transformation and fusion.

E. COMPARISON OF DIFFERENT CLASSIFIERS
To compare different classifiers under the same conditions,
the front-end feature is the DAR (the same) for all classifiers
in this experiment. The parameter settings of the BLSTM net-
work are given in Table 2. The parameter settings of HMM,
GMM, SVM, KNN, DNN and LSTM network are optimally
determined, and their main parameters are experimentally set
as follows. HMM: 3 states with 64 Gaussian components
per state; GMM: 64 Gaussian components; SVM: radial
basis kernel function, one-vs-one multiclass training; KNN:
K = 5, Euclidean distance for distance calculation; DNN:
3 hidden layers, 100 neurons per hidden layer; and LSTM
network: 400 cells. The results obtained by different classi-
fiers on the data under various SNR conditions are presented
in Table 5.

The classifier of the BLSTM network adopted in this
study achieves (Accuracy, F1 score) of (92.15%, 91.32%),
(92.02%, 91.15%), (90.76%, 89.52%), (89.62%, 88.03%) and
(88.11%, 86.52%) when evaluated on the data with no added
noise (i.e., clean), SNR of 20 dB, SNR of 10 dB, SNR of 0 dB,
and SNR of−10 dB, respectively. As shown in Table 5, under
the same SNRs, the values ofAccuracy andF1 score obtained
by the BLSTM network are always higher than those yielded
by HMM, GMM, SVM, KNN, DNN and LSTM network that
were used in the previous works. These results highlight the
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TABLE 5. Results of different classifiers under various SNRs (in %).

strong ability of the BLSTM network to capture sequence
information for anomalous sound detection.

F. COMPARISON OF DIFFERENT METHODS
In this subsection, we compare the proposed method
(i.e., DAR-BLSTM as shown in Table 6) to some representa-
tive methods in the previous works. The methods proposed
by Foggia et al. [16] are the newest and most relevant
concerning the problem of anomalous sounds detection on
roads, in which MFCC was proven to be the most effective
feature by combining with the classifiers of SVM and KNN.
Hence, the methods in [16] are used as two baselines and
marked asMFCC-SVM andMFCC-KNN as listed in Table 6.
In other representative works, MFCC was also used as one
of the predominant features together with the classifiers of
HMM [26], GMM [19], [32] and DNN [20], [24], [25]. These
methods are also used as baselines and marked as
MFCC-HMM, MFCC-GMM and MFCC-DNN as given
in Table 6. The method recommended by the
DCASE 2018 [21] uses log-mel-spectrogram (LMS) and a
CNN as the input feature and classifier, respectively, which
is also adopted as a baseline and marked as LMS-CNN.
The parameters of these state-of-the-art methods are set

TABLE 6. Results of different methods under various SNRs (in %).

according to the suggestions in the corresponding references
and optimally tuned on the experimental data.

Table 6 shows that the proposed method outperforms
other methods under all SNR conditions. The lower the
SNRs are, the larger the improvements obtained by the pro-
posed method are. For example, when the SNR is equal
to −10 dB, the improvement of (Accuracy, F1 score) attain
the highest values, i.e., (29.28%, 29.05%), (33.69%, 31.37%),
(39.86%, 38.09%), (41.31%, 38.38%), (24.19%, 23.66%) and
(6.95%, 6.30%), compared to the methods of MFCC-HMM,
MFCC-GMM, MFCC-SVM, MFCC-KNN, MFCC-DNN
and LMS-CNN, respectively. In other words, the pro-
posed method is insensitive to background noises, since
the decreases of both the Accuracy and F1 score are quite
small (maximum decreases in Accuracy: 4.04% = 92.15%
- 88.11%, and F1: 4.80% = 91.32% - 86.52%) with the
decrease of SNRs. Conversely, other methods are not robust
for background noises because the differences of both the
Accuracy and F1 score for these methods are signifi-
cant when SNRs change. For example, for the method of
MFCC-KNN, the maximum decrease in Accuracy and
F1 score are: 29.96%= 76.76% - 46.80%, andF1: 29.64%=
77.78% - 48.14%, respectively.
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TABLE 7. Confusion matrix for the proposed method evaluated on the
data with no added noise (in %).

TABLE 8. Confusion matrix for the proposed method evaluated on the
data with SNR of 20 dB (in %).

TABLE 9. Confusion matrix for the proposed method evaluated on the
data with SNR of 10 dB (in %).

TABLE 10. Confusion matrix for the proposed method evaluated on the
data with SNR of 0 dB (in %).

TABLE 11. Confusion matrix for the proposed method evaluated on the
data with SNR of −10 dB (in %).

To identify the confusion details among different sounds
obtained by the proposed method, Tables 7 to 11 present the
confusionmatrices when the proposedmethod is evaluated on
the data with no added noise (i.e., clean), with SNRs of 20 dB,
10 dB, 0 dB and−10 dB. The confusion matrix [63] contains
information about actual and predicted detection obtained by
a method and is often used to describe the performance of
a method. As shown in Tables 7 to 11, the sound with the
best detection result is Car crash. In contrast, the sound with
the worst detection result is Background, since it has larger
intraclass varieties in terms of acoustic properties.

IV. CONCLUSIONS
In this work, we have addressed the detection problem of two
classes of anomalous sounds on roads. Because our work is
motivated by a practical audio surveillance application, it is
essential to be able to detect anomalous sounds under heavy
noise degradation situations. Thus, it is demonstrated that by

extracting a feature of DAR using the proposed framework
based on multiple-stage DANs and then combining the fea-
ture of DAR with the classifier of a BLSTM network, a better
performance of anomalous sounds detection is achieved, even
under quite low SNRs.

Based on the details of the proposed method and results,
these following conclusions are evident.

1) In terms of both Accuracy and F1 score, the proposed
method greatly outperforms state-of-the-art methods
adopted in the previous works. Additionally, it still
performs quite well with the decrease of SNRs. Thus,
it is suitable for deployment for audio surveillance on
roads where the SNR is very low.

2) The proposed framework for extracting the feature of
DAR can integrate complementary information con-
tained in several input features by deep nonlinear trans-
formation of multiple-stage DANs. The proposed DAR
captures the properties of various classes of sounds and
can be used as an effective feature for sound detection.
Additionally, in terms of the Accuracy and F1 score,
it is superior to state-of-the-art features such as MFCC,
bark filter bank, Gabor filter bank.

Future work will include: 1) considering other kinds of net-
works (e.g., denoising autoencoder networks) and increasing
the numbers of both input features and stages of networks
for extracting DAR; 2) exploring more effective features and
classifiers to improve the performance of the methods for
sound detection under noisy conditions, especially heavy,
noisy situations on roads; 3) extending the class of anomalous
sounds from 2 to more, with the aim of providing more
effective cues for intelligent audio surveillance on roads.
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