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ABSTRACT Direction-of-Arrival (DoA) estimation with Coarray can resolve O(N 2) sources via only O(N )
physical sensor elements. When it comes to model errors, i.e., manual coupling, gain and/or phase errors,
and sensor location errors, whether Coarray is still effective for degree-of-freedom (DoF) enhancement has
not been proved yet. In addition, calibration of the Coarray is also an open problem, which deserves more
attentions. This paper formulates the error models of Coarray at first and then proves that the problem of
Coarray calibration can be reformulated into an equivalent one of imperfect uniform linear array correction;
meanwhile, DoF enhancement is promised. Based on these models, the problem of Coarray calibration,
more specifically, joint DoA and error coefficients estimation, can be solved via the existing state-of-the-art
array calibration schemes. An excellent scheme named sparse Bayesian array calibration is adopted as an
example to estimate DoA and error coefficients jointly in this paper. Simulation results illustrate that for
DoA estimation with imperfect Coarray, the calibrated estimator is effective for DoF enhancement and more
robust than uncalibrated subspace method.

INDEX TERMS Direction-of-arrival (DoA), model errors, coarray, sparse Bayesian learning (SBL).

I. INTRODUCTION
Direction-of-arrival (DoA) estimation is critical in radar,
sonar and wireless communication systems [1], [2]. The
state-of-the-art eigenstructure based algorithms can pro-
duce super-resolution and accurate estimations, such as
MUSIC [3] and ESPRIT [4]. However, the excellent perfor-
mance of these methods relies on the precise signal model of
the data collection system, composed of antennas and radio
frequency (RF) chains, and baseband processor. In applica-
tion of real system, the antennas will interact with each other
inevitably due to mutual coupling [5]. Meanwhile, there are
usually mismatch between gain and phase of RF chains as
well as sensor locations. All those effects mentioned above
are referred to as model errors, which will lead to degradation
of DoA estimators.

In order to make DoA estimators more robust against the
model errors, numerous self-calibrating algorithms have been
proposed in the past decades. Wiess et al. studied the array
correction schemes comprehensively in [6]–[8] correspond-
ing to mutual coupling, gain and/or phase errors, and position

mismatch calibration, respectively. The methods proposed
in [6]–[8] estimate DoA and unknown parameters jointly
by optimizing the objective function over direction and the
unknown parameters iteratively. The problem of these algo-
rithms is that the convergence of global minimal is not guar-
anteed. A maximal likelihood (ML) based position mismatch
correction scheme is proposed in [8] which estimates DoA
and unknown parameters successively, also, the convergence
relies heavily on the initialization. The studies [9]–[14] focus
on the calibration of mutual coupling. A closed-form solution
of DoA and mutual coupling matrix is derived in [9], which
is based on alternating minimization procedure, however,
it is only effective for ULA. With the application of sparse
Bayesian learning (SBL) in array processing, a great number
of joint DoA and mutual coupling coefficients estimation
algorithms are proposed under the framework of SBL in
recent years [10]–[13]. It has been widely accepted that the
SBL based array calibration methods are able to obtain excel-
lent results, especially in the scenario of low signal to noise
ratio (SNR) and lack of snapshots. The study [14] estimates
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DOA and mutual coupling coefficients for uniform rectan-
gular arrays (URAs) based on banded symmetric Toeplitz
matrices.

Coarray is proposed to raise the degree of freedom (DoF)
of DoA estimators from O(N ) to O(N 2) [15], [16]. Two
kinds of well-known Coarray have attracted lots of atten-
tion, i.e., nested array [15] and Co-Prime array [16]. Their
performances were analyzed in [17] and [18]. The study [19]
proposes the algorithm to estimates DoA in the scenario of
a mixture of circular and non-circular impinging signals for
Coarray. It is unavoidable that Coarrays also suffer from
mutual coupling, gain and phase errors, and sensor location
errors. The model errors bring challenge for real application
of Coarray, thus, the calibration of Coarray deserves more
attentions. Current literature focus on the study of mutual
coupling and gain and/or phase errors. A scheme of gain
and phase errors correction for the nested array is proposed
in [20], which employs the partial Toeplitz structure of the
covariance matrix and the sparse total least squares (STLS)
to calibrate gain and phase errors, respectively. Although
many mutual coupling reduction techniques for the nested
array exist in the literature [21]–[24], there is little work on
mutual coupling calibration for it. The basic idea of mutual
coupling reduction array design is to place elements as far
from each other as possible to reduce the mutual coupling.
A calibration strategy for mutual coupling of the nested
circular array was proposed in [25], however, the mutual
coupling matrix (MCM) was not acquired during online pro-
cessing, but by offline simulation via electromagnetic sim-
ulation software FEKO. The study [26] performs a detailed
performance analysis of Coarray-based MUSIC with sen-
sor location errors, e.g., Cramér-Rao bound (CRB), and
mean-squared error (MSE). However, the calibration of loca-
tion errors for Coarray is still missing in the literature.

Actually, when it comes to model errors, whether the Coar-
ray is still effective in DoF enchantment has not been studied
yet. Therefore, before calibrate on, we have to study the
model errors of Coarray first. In this paper, we focus on the
single type model error, in other word, treat mutual coupling,
gain and/or phase errors, and sensor location errors sepa-
rately. Based on these models, we find that imperfect Coarray
can be transformed into a larger virtual ULA with effective
mutual coupling, gain and phase errors, or sensor location
errors. This finding confirms that Coarray is still effective for
DoF enhancement in the presence of model errors. In addi-
tion, general model error calibration algorithms proposed
in [6]–[8] and [10]–[13] can be utilized to estimate DoA and
error coefficients based on these models. In this paper, sparse
Bayesian learning array calibration (SBAC) [27] is adopted
as an example to solve the problem we formulated.

The rest of this paper is organized as follows. Section II
introduces the signal model of Coarray especially for the
nested array and the Co-Prime array. Section III studies
the signal models of Coarray with mutual coupling, gain
and phase errors, and sensor location errors. Section IV
describes how to solve our proposed model via SBAC.

Section VI and VII show numerical simulation results and
conclusion, respectively. The notations used in this paper
are introduced as follows: �, ⊗, and � denote Hadamard
product, Kronecker product, and Khatri-Rao product (i.e.,
the column-wise Kronecker product) of matrices, respec-
tively. (·)∗, (·)T , and (·)H denote conjugate, transpose, and
conjugate transpose of matrix, respectively.X:,i,Xi,:, andXi,j
denote the ith column, the ith row, and the (i, j)th element of
matrix X. AD denotes the manifold matrix of an array whose
elements locations are given by the set D. diag(c) means
creating a diagonal matrix with the elements of vector c on the
diagonal.Matrix function vec(X) means stacking the columns
of X to form a vector.

II. SIGNAL MODEL OF COARRAY
Consider a nonuniform linear array whose elements are
placed on a nonuniform linear grid with di being the position
of the ith element. LetD = {d1, d2, · · · , dM } be the elements
position set. P uncorrelated narrow band sources impinging
upon the array from different directions. The received signals
can be written as

y(t) = ADx(t)+ n(t) (1)

where y(t), x(t), and n(t) denote the received signal vector,
incident signal vector, and noise vector, respectively. The
subscript ‘‘D’’ of matrix AD means that AD is the manifold
matrix of the array whose elements locations are given by
set D. (AD)m,p = ej

2π
λ
dm sin(θp) is the (m, p)th elements of

AD, and λ is carrier wavelength, θp is the direction of the pth
signal, and M is the number of elements of the array.
Assume that noise is uncorrelated temporally and spatially,

the covariance matrix of received signals can be expressed as

Ryy = E[y(t)y(t)H ] = ADRxxAH
D + σ

2I (2)

where Rxx is covariance matrix of incident signals.
We assume that the incident signals are uncorrelated spatially
so that Rxx is a diagonal matrix. Vectorizing Ryy as follows

z = vec(Ryy) = (A∗D � AD)p+ σ 21n (3)

where p is signal power vector consisting of the diagonal
elements of Rxx, and 1n is formulated by vectorizing of the
identical matrix I.A∗D�AD behaves like the manifold matrix
of a longer array whose sensor locations are given by the
values in the set S = {dm − dn|m, n = 1, 2, · · · ,M} where
dm denotes the position of themth sensor of the original array.
Let AS = A∗D � AD, (3) can be rewritten as

z = ASp+ σ 21n. (4)

It’s unavoidable that various pairs of dm and dn result in
identical value of difference dm−dn. The repeated difference
leads to a reduction of the cardinality of the set S, assuming
that the redundant elements have been removed from S. As
long as the elements locations set of the original array D are
designed specifically, the cardinality of set S will be much
larger than D, in other words, a larger virtual array is pro-
duced. Thus, performing DoA estimation via the model (4)
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will obtain higher DoF. Two typical kinds of such arrays
are the nested and Co-Prime arrays, which are defined as
follows.
Definition 1 (Nested Array): The K level nested array is

defined as one where the elements locations are given by the
set DNA as

DNA
=

K⋃
k=1

DNA
k

DNA
1 = {m1d,m = 1, 2, · · · ,N1}

DNA
k = {m1d ·

k−1∏
i=1

(Ni + 1),m = 1, 2, · · · ,Nk},

k = 2, 3, · · · ,K (5)

where K is the number of levels, and 1d is minimum
inter-element spacing usually chosen as 1d = λ/2.
Definition 2 (Co-Prime Array): The Co-Prime array is

defined as one where the elements locations are given by the
set DCoA as

DCoA
= {Mn ·1d, 0 ≤ n ≤ N − 1}

⋃
{Nm ·1d,

0 ≤ m ≤ 2M − 1} (6)

with M < N being prime integers.
If the locations set of the original array is given by DNA,

the cardinality of S can reach O(N 2) with N = N1 + N2 +

· · · + NK . In other words, the DoF of the nested array can be
raised toO(N 2) with onlyO(N ) physical elements. Similarly,
the DoF of the Co-Prime array will reach O(MN ) with only
O(M + N ) physical elements.

III. ERROR MODELS OF COARRAY
A. MUTUAL COUPLING OF THE NESTED ARRAY
The mutual coupling describes the electromagnetic interac-
tions of array elements. The placement of the sensors for
Coarray is not uniform any more. As a result, the mutual
coupling matrix of this kind of array is not a Toeplitz matrix,
but depends on the individual array structure instead. This
subsection focuses on the mutual coupling of the nested array.
From the Definition 1 we can find that the structure of the
nested array can be viewed as the placement of K different
ULAs (with different inter-element spacing) head-to-tail in a
line. The inter-element spacing of the first subarray is 1d ,
but is 1d ·

∏k−1
i=1 (Ni + 1) for the kth subarray. The effect

of mutual coupling decreases dramatically with the increase
of distance. Therefore, it is reasonable to just consider the
mutual coupling of the first subarray. With the effect of
mutual coupling, the array output can be represented as

y(t) = CADx(t)+ n(t) (7)

where

C =
[

BN1×N1 0N1×(N−N1)
0(N−N1)×N1 I(N−N1)×(N−N1)

]
(8)

is referred to as the MCM. Matrix BN1×N1 = Teoplitz(1, c1,
c2, · · · , cN1−1) represents the MCM of the first subarray, and

the rest mutual coupling coefficients are set to zeros. 0M×N is
M×N all-zeromatrix with all elements are zeros, IM×M is the
identical matrix. The covariance matrix of received signals is

Ryy = CADRxxAH
DC

H
+ σ 2I. (9)

Vectorizing (9), we get

z = vec(Ryy) = [(CAD)∗ � (CAD)] · p+ σ 21n. (10)

The model (10) denotes the signal model of the nested array,
where z is equivalent to received signal, and (CAD)∗�(CAD)
plays the role of array manifold matrix with the effect of
mutual coupling. One can check whether (CAD)∗ � (CAD)
can be constructed based on the virtual elements locations
set S or not. If the answer is yes, we can confirm that the
Coarray in the presence of mutual coupling can be trans-
formed into an imperfect ULA, therefore, it can be used for
DoF enhancement. This assumption can be expressed by the
following relationship

(CAD)∗ � (CAD) = C′AS (11)

where C′ behaves like the equal mutual coupling matrix and
can be represented analytically by C. AS = A∗D � AD is
equivalent to the manifold matrix of virtual array without
model errors. The relationship of (11) can be described and
proved by Theorem 1 (see Appendix A) [28].

It follows from Theorem 1 that the equivalent mutual
coupling matrix can be constructed as

C′ =
[

B′N1N×N1N
0N1N×(N 2−N1N )

0(N 2−N1N )×N1N C̄(N 2−N1N )×(N 2−N1N )

]
N 2
1×N

2
1

(12)

where

B′N1N×N1N = B∗N1×N1
⊗ CN×N (13a)

C̄(N 2−N1N )×(N 2−N1N ) = I(N−N1)×(N−N1) ⊗ CN×N (13b)

The effect of mutual coupling is contained in matrix
B′N1N×N1N

, where N1 and N are the number of elements of
the first subarray and total array, respectively.
As a result, (10) can be simplified into

z = C′ASp+ σ 21n (14)

where C′ and AS are MCM and steering matrix of virtual
array, specifically, a longer ULA, respectively. The effect
mutual coupling matrix C′ can be represented analytically
by C. Therefore, numerous state-of-the-art mutual coupling
calibration algorithms can be applied to estimate C′ and p
based on the model (14).

B. GAIN AND/OR PHASE ERRORS
Suppose that the gain errors vector of the sensors is η =
[η1, η2, · · · , ηM ]T , and the phase disturbance vector is φ =
[exp (jφ1), exp (jφ2), · · · , exp (jφM )]T . The array output with
gain and phase errors is

y(t) = (I+98)ADx(t)+ n(t) (15)
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where8 and9 represent phase and gain errors matrices with
8 = diag(exp (jφ1), exp (jφ2), · · · , exp (jφM )) and 9 =
diag(η1, η2, · · · , ηM ), respectively. For notational simplifica-
tion, let 4 = I+98 and (15) can be written as

y(t) = 4ADx(t)+ n(t). (16)

Calculating the covariance matrix of received signal and per-
forming vectorizing, we get

z = [(4AD)∗ � (4AD)] · p+ σ 21n. (17)

Similar to the mutual coupling case, the model (17) is
expected to be reformulated as

z = 4′ASp+ σ 21n (18)

where 4′ behaves like the gain and phase errors matrix
of the virtual array, which can be represented analytically
by 4. Lemma 1 provides the support of the transformation
from (17) to (18).
Lemma 1: For M × M diagonal matrix C = diag(c1,

c2, · · · , cM ) and M × P matrix A, the following relationship
holds:

(CA)∗ � (CA) = C′A′ (19)

where

C′ = diag(c1, c2, · · · , cM ) (20a)

ci = [c∗i c1, c
∗
i c2, · · · , c

∗
i cM ] (20b)

A′ = A∗ � A (20c)
Proof: It follows from Theorem 1 that

(CA)∗ � (CA) = C′ · (A∗ � A) (21)

Matrix C′ has the block form

C′ =


[C]1,1 [C]1,2 · · · [C]1,M
[C]2,1 [C]2,2 · · · [C]2,M

...

[C]M ,1 [C]M ,2 · · · [C]M ,M

 (22)

where

[C]m,n = c∗m,nC (23)

is the (m, n)th block of C′. In this case, C denotes the gain
and phase errors of original array (Coarray), and is a diagonal
matrix, therefore,

cm,n =

{
cm m = n
0 m 6= n

(24)

As a result,

C′ =


[C]1,1

[C]2,2
. . .

[C]M ,M

 (25)

is a blocking diagonal matrix. Actually, each block of C′ is
diagonal, therefore, C′ is a diagonal matrix as well

C′ = diag(c∗1c, c
∗

2c, · · · , c
∗
Mc). (26)

�

It follows from Lemma 1 that the matrix 4′ can be
constructed via 4. Therefore, the unknown matrix 4′ and
vector p in the model (18) can be estimated using exist
methods, such as the schemes proposed in [7] and [27].

C. SENSOR LOCATION ERRORS
Suppose that the true position vector of the array is d =
[d1, d2, · · · , dM ]T , the position perturbation vector is 1d =
[1d1,1d2, · · · ,1dM ]T . The manifold matrix of the array
with sensor location errors is

ÃD =


ej2π/λ(d1+1d1) sin(θ1) · · · ej2π/λ(d1+1d1) sin(θP)

ej2π/λ(d2+1d2) sin(θ1) · · · ej2π/λ(d2+1d2) sin(θP)
...

ej2π/λ(dM+1dM ) sin(θ1) · · · ej2π/λ(dM+1dM ) sin(θP)

 .
(27)

Let AD and A1D represent true array manifold matrix and
perturbation matrix, respectively. The matrix ÃD can be
written as

ÃD = AD � A1D (28)

where

(AD)m,p = ej2π/λdm sin(θp) (29a)

(A1D)m,p = ej2π/λ1dm sin(θp) (29b)

1 ≤ m ≤ M , 1 ≤ p ≤ P. (29c)

The received signals of the array in the presence of sensor
location errors are

y(t) = (AD � A1D)s(t)+ n(t). (30)

By calculating the covariance matrix of received signal and
performing vectorizing, we have

z =
[
(AD � A1D)∗ � (AD � A1D)

]
· p+ σ 21n. (31)

The model (31) is expected to be reformulated as

z = (A1S � AS)p+ σ 21n (32)

with AS = A∗D � AD and A1S = A∗
1D � A1D. The

model (32) can be viewed as an imperfect ULA which can be
calibrated by further step. Actually, (32) shows that a Coarray
with locations errors shares the similar signal model with
an imperfect ULA. Lemma 2 provides the support of the
transformation from (31) to (32).
Lemma 2: For M × P matrix C and M × P matrix A,

the following relationship can be established:

(C� A)∗ � (C� A) = C′ � A′ (33)

where

C′ = C∗ � C (34a)

A′ = A∗ � A. (34b)
Proof: Let B = (C�A)∗� (C�A), from the definition

of Khatri-Rao product, we can get

B:,p = (C� A)∗:,p ⊗ (C� A):,p (35a)

= (C:,p � A:,p)∗ ⊗ (C:,p � A:,p). (35b)
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It follows from the definition of Hadamard and Kronecker
product, B:,p can be written as follows

B:,p =



c∗1,pa
∗

1,pC:,p � A:,p
...

c∗m,pa
∗
m,pC:,p � A:,p

...

c∗M ,pa
∗
M ,pC:,p � A:,p

← The mth Block (36a)

=



c∗1,pcp � a
∗

1,pap
...

c∗m,pcp � a
∗
m,pap

...

c∗M ,pcp � a
∗
M ,pap

← The mth Block (36b)

= (c∗p ⊗ cp)� (a∗p ⊗ ap) (36c)

where

cp = C:,p = [c1,p, c2,p, · · · , cM ,p]T (37a)

ap = A:,p = [a1,p, a2,p, · · · , aM ,p]T . (37b)

Based on (36), the matrix B = [B:,1,B:,2, · · · ,B:,P] can be
reconstructed as

B = [(c∗1 ⊗ c1)� (a∗1 ⊗ a1), · · · , (c∗P ⊗ cP)� (a∗P ⊗ aP)]

= [(c∗1 ⊗ c1), · · · , (c∗P ⊗ cP)]� [(a∗1 ⊗ a1), · · · ,

(a∗P ⊗ aP)]. (38a)

Obviously, we can get

B = (C∗ � C)� (A∗ � A). (39)

�
Following as the instruction of Lemma 2, matrix A1S can

be represented analytically, with

(A1S)(m−1)M+n,p = ej2π/λ1dm,n sin(θp) (40)

being the ((m − 1)M + n, p)th element. 1dm,n = 1dm −
1dn is the difference of the mth and nth elements in 1D.
In addition, it is also the ((m − 1)M + n)th element of set
1S. Actually, 1dm,n is tiny compared to the carrier wave-
length, and an approximation can be obtained according to
the first-order Taylor expansion that ej2π/λ1dm,n sin(θp) ≈ 1 +
j2π/λ1dm,n sin(θp). As a result, A1S can be approximated
by

A1S

=


1+ j2π/λ1d1 sin(θ1) · · · 1+ j2π/λ1d1 sin(θP)
1+ j2π/λ1d2 sin(θ1) · · · 1+ j2π/λ1d2 sin(θP)

...
1+ j2π/λ1dM sin(θ1) · · · 1+ j2π/λ1dM sin(θP)

 .
(41)

The change of A1S not only depends on the position per-
turbation 1dm but also on the induced signal direction θp.
Fortunately, that the row of A1S is only related to 1dm, and
each column is only related to the individual induced signal

direction θp. With the approximation of A1S, (32) can be
rewritten as

z = ASp+ (AS � A′1S)p+ σ
21n (42)

where, A′
1S = A1S −5 with 5 being the matrix where all

elements are 1. The first term of the right hand side of (42)
denotes the non-disturbed component, and the second term
describes the disturbed component related to the positionmis-
match. Considering the special structure of A′

1S, the impact
of the disturbed component in (42) can be expressed sepa-
rately by two diagonal matrix D and2, therefore,

z = ASp+ (DAS2)p+ σ 21n (43)

where

D = diag(1d1,1,1d1,2, · · · ,1dM ,M ) (44a)
2 = diag(j2π/λ sin(θ1), j2π/λ sin(θ2), · · · , j2π/λ sin(θP)).

(44b)

The unknown matrix D and vector p in model (44) can be
estimated easily using the methods proposed in [8] and [27].

IV. MODEL ERROR CORRECTION VIA SBAC
So far, models of Coarray with unknown errors, (i.e.,
the mutual coupling, gain and/or phase errors, and sen-
sor location errors) have been established and studied in
Section III. It has been proved that Coarray, such as the nested
array and Co-Prime array, with single type of model error
still can be utilized to estimate DoA with higher DoF as
long as proper calibration is performed. Actually, the signal
model of Coarray with model errors has the same form as
imperfect ULA. Therefore, numerous state-of-the-art on-line
array calibration algorithms can be utilized to estimate the
unknown error coefficients and DoA based on these models.

Weiss et al. have studied the problem of array correction
and proposed three estimators of DoA and error parameters
in [6]–[8] corresponding to three different kinds of model
errors. An unified framework of array calibration based on
SBL has been proposed in [27], which is called SBAC. It can
correct all three kinds of model errors mentioned in this
paper, therefore, is adopted to solve the problems proposed
in Section III. This section introduces the joint DoA and
unknown error coefficients estimation via SBAC based on the
models formulated in Section III.

The model (14) (18) (44) can be written into the form of
free-disturb component plus disturb component [27]

z = Ap+Qυ + σ 21n (45)

where the first term of the right hand side of (45) represents
disturbance-free component, and the second term denotes
disturbance component caused by model error Qυ = (A′ −
A)p. All three kinds of error models can be described by the
model (45), the only difference of three error models is the
construction of υ and Q.

1) Mutual coupling

υ = c∗ ⊗ c (46a)
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Q:,p = Gp8(θ )p (46b)
Gp = ∂C′/∂υp (46c)

where 8(θ ) = A(θ ). Matrix C′ is constructed
using (12), vector c is the mutual coupling coefficients
of the original array (Coarray), and υ is equivalent
coefficients for expanded array (ULA) whose elements
locations are given by S.

2) Gain and/or phase errors

υ = κ∗ ⊗ κ (47a)
Q:,p = Gp8(θ )p (47b)
Gp = ∂(diag(υ))/∂υp (47c)

where 8(θ ) = A(θ ). Vector κ plays a comprehensive
role in the effect of gain and phase errors with κm =
ηm · φm − 1, and υ is the equivalent gain and phase
errors coefficients vector of expanded ULA.

3) Locations errors

υ = 1d	1d (48a)
Q:,p = Gp8(θ )p (48b)
Gp = ∂(diag(υ))/∂υp (48c)

where 8(θ ) = A(θ )2(θ ). Vector 1d is the position
error vector, 	 is an operator similar to the Kronecker
product which replaces the multiplication by minus. υ
is the equivalent elements locations errors of expanded
ULA, and2 is the direction related error matrix caused
by position mismatch.

In the model (45), parameters p, υ, and σ 2 can be esti-
mated jointly under the framework of SBL. In order to
implement SBL, (45) should be expanded to over-complete
form by sampling the potential space into discretely set
� = [θ1, θ2, · · · , θN ]. In addition, the signal power vector p
should be zeros-padded to the length of N , which describes
the power of candidate signals from the set�. The non-zeros
elements indexes of vector p indicate the directions of inci-
dent signals. Suppose that noise is zero-mean Gaussian dis-
tribution with σ 2 being the variance, and the sparse vector p
is also a zeros-mean Gaussian vector

p ∼ N (0, 0) (49)

where 0 = diag(γ1, γ2, · · · , γN ) with γn being the
hyper-parameter of the variance of pn. The likelihood func-
tion is

p(z|p;υ, σ 2, γ )

= |πσ 2I|−1 exp
(
−σ−2||z− Ap−Qυ||2

)
(50a)

= |πσ 2I|−1 exp
(
−σ−2||z− A′p||2

)
. (50b)

The probability density of z with respect to the unknown
parameters is

p(z;υ, σ 2, γ ) =
∫
p(z|p;υ, σ 2)× p(p; γ )dp (51a)

= |π6z|
−1 exp

(
−tr

(
6−1z Rp

))
(51b)

where 6z = σ 2I + A′0(A′)H , Rp = ppH . The estimation
of γ ,υ, σ 2 can be obtained by maximizing (51) via the EM
algorithm. The detailed iteration strategies of parameters γ ,
υ, and σ 2 are shown in Appendix B, and the implementation
of SBAC is summarized in Algorithm 1

Algorithm 1 Coarray Calibration via SBAC
Input: z, A
Output: p,υ, σ 2

Initialization: µ = AH (AAH )−1z, σ 2
= ||z||2/M2, γ i =

||µi,:||2
C = Toeplitz[1, 0, · · · , 0] for mutual coupling;
C = diag[1, 1, · · · , 1] for gain and phase errors;
D = diag[0, 0, · · · , 0] for position error;
Define: maxIteration, errorThreshold;
while n < maxIteration or error > errorThreshold; do

Updating υ(n) via (68a), (69a) and (70)
where Q is calculating via (46b) for mutual coupling;

Q is calculating via (47b) for gain and phase errors;
Q is calculating via (48b) for position error;

Reconstruct of A′ with
A′ = C′(υ(n)) · A for mutual coupling, C′(υ(n))

is constructed via (12);
A′ = diag(υ(n)) · A for gain and phase errors;
A′ = diag(υ(n)) · A ·2+ A for position error;

Updating (σ 2)(n) via (68b), (69b) and (70);
Updating γ (n) via (68c), (69c) and (70);
error = ||γ (n−1)

− γ (n)
||2/||γ

(n−1)
||2;

n = n+ 1;

The parameters γ , υ, and σ 2 can be obtained after the
convergence of iteration described in Algorithm 1. Searching
the peaks of the sparse vector p will obtain the estimates of
DoAs.

The equivalent mutual coupling coefficients are formed
by υ = c∗ ⊗ c, the first element is corrected in general
application, therefore, c1 = 1. The rest of themutual coupling
coefficients can be obtained via

c̄m = [υ]m./[υ]1 (52)

where [υ]m = cm ∗ c denotes the mth block of υ, and [./]
is an operator that performing element-by-element divider
between two vectors. Vector c̄m is the estimate vector of
the mth mutual coupling coefficient, which contains several
estimates of c̄m. We adopt the mean value of these elements
as the estimates of the mth coefficient

c̄m = mean(c̄m) (53)

where mean(·) denotes taking mean value of a vector.
The original mutual coupling coefficients can be recovered
via (52) and (53), the estimates of gain and phase error can
be obtained in the same way.

However, the equivalent locations errors are formed by
υ = 1d	1d, which can be written into matrix form

3 ·1d = υ (54)
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where

3 =



[3]1
...

[3]m
...

[3]M

← The mth Block. (55)

[3]m is a M × M matrix where the mth column is all 1 and
the rest of columns contain only one nonzero element −1.

[3]m =



0 · · · 0 1 −1 · · · 0 0
0 · · · 0 1 0 −1 · · · 0
...

...
...

...
...

...

0 · · · 0 1 0 · · · 0 −1
...

...
...

...
...

...

0 · · · −1 1 0 · · · 0 0


.

(56)

This is an over determined linear equations, and we can get
the estimates of 1d via the least square (LS) method. As a
result, the position disturbance can be obtained by

1d = (33H )−13Hυ. (57)

So far, both DoA and error coefficients are obtained.

V. THE CRAMÉR-RAO BOUND
In this section, we derive the Cramér-Rao bound (CRB),
the lower bound of the minimum variance of an unbiased
estimator, for the Coarray in the presence of model errors.
The model errors are assumed to be unknown but determin-
istic parameters. The unknown parameters are DoAs, source
powers, noise powers, and model error parameters, i.e., the
mutual coupling efficients, the gain errors, the phase errors,
and sensor location errors. Assume that the sources are spa-
tially and temporally uncorrelated, meanwhile, the additive
noise is spatially and temporally uncorrelated white Gaussian
and uncorrelated with the sources. With these assumptions,
the fisher information matrix (FIM) can be expressed as [17]:

J = NMH (RT
⊗ R)−1M. (58)

The study [26] provides the CRB of DoAs estimations when
in the presence of sensor location errors. In this section,
we develop the CRB of DoAs estimates in the presence of
mutual coupling and gain and phase error. Denote the DoAs,
source powers, noise powers, and the model error coefficients
are denoted by θ , p, σ 2, and υ, respectively. ThematrixM can
be expressed as [26]:

M =
[
∂z

∂θT
∂z
∂pT

∂z
∂υT

∂z
∂σ 2

]
. (59)

Different kinds of model errors result in different M.
We focus on the mutual coupling and gain and phase errors,
each parts of matrix M can be written as:

∂z

∂θT
= A∗θ � A+ A∗ � Aθ (60a)

∂z
∂pT
= A∗ � A (60b)

∂z
∂υT

= Q (60c)

∂z
∂σ 2 = vec(IM ) (60d)

where,

Aθ =
[
∂a(θ1)
∂θ1

,
∂a(θ2)
∂θ2

, · · · ,
∂a(θP)
∂θP

]
(61a)

Q =
[
G1|G2| · · · |Gp

]
· A(θ )p (61b)

with

Gp =
∂C′

∂υp
. (62)

The partial derivate of vector z to θ , p, and σ 2 have been
developed in study [26]. We only provide the proof of partial
derivate to υ, i.e., ∂z

∂υT
.

Proof: According to the previous discussion, the vec-
tor z can be written as the sum of free-disturb component and
disturbance component

z = Ap+Qυ + σ 21n. (63)

Only the second part, i.e., Qυ is the function of vector υ,
the rest parts is constant for υ. As the definition, the partial
derivate of vector z to υ can be written as

∂z
∂υT

=
∂(Qυ)
∂υT

(64a)

= Q. (64b)

Matrix Q is defined in (61b), for mutual coupling, the
matrix C′ is given by (12), while, for gain and phase errors,
the matrix C′ is defined by (26). Once, we obtain the
FIM, the CRB of DoA estimates can be obtained by invert-
ing the FIM. �

VI. SIMULATION
In this section, we show the robustness of our model when
there exist mutual coupling, gain and phase errors, and ele-
ments locations errors. However, we only provide simulations
for these three kinds of model errors separately. Meanwhile,
the uncorrected method, e.g., spatial smoothing MUSIC
(SS-MUSIC) [15], [16], and SBL based method [29] are
included as references, where SS-MUSIC is used for spec-
trum comparison, and SBL based method is used for statisti-
cal performance comparison. Both nested array andCo-Prime
array are examined by simulations. The locations set of the
nested array is given by D = [1, 2, 3, 4, 8, 12] · 1d with
1d = λ/2, and the locations set of the Co-Prime array is
given by D = [0, 2, 3, 4, 6, 9] · 1d . The spatial scope is
sampled from−90◦ to 90◦ with 1◦ being sample interval. The
root mean square error (RMSE) is used as the performance
metric which is defined as

RMSE =

√√√√ 1
NcP

P∑
i=1

Nc∑
n=1

(θ̂i,n − θi,n)2 (65)
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FIGURE 1. Spectra of SS-MUSIC and our method via imperfect 6 elements nested array. The columns (a), (b), and (c) show spectra obtained via
SS-MUSIC, corrected estimator based on SBAC (Corrected1), and eigenstructure based estimator(Corrected2), respectively. From top to bottom of
each column corresponds to the spectra obtained in the presence of mutual coupling, gain and phase errors, and elements locations error.
(a) SS-MUSIC. (b) Corrected1. (c) Corrected2.

whereNc is the number ofMonte Carlo trials, P is the number
of sources, θ̂i,n and θi,n are the estimates and the true values,
respectively.

Fig. 1 shows the spectra obtained via the data collected
by the nested array by means of reference method and our
methods, where the group (a)-(c) corresponding to the spectra
obtained via SS-MUSIC, corrected estimator based on SBAC,
and eigenstructure (or ML) based estimator, respectively.
The eigenstructure (or ML) based estimator means that the
error coefficients and DoAs are estimated jointly based on
the models (14), (18), and (43), by means of eigenstruc-
ture based gain phase and mutual coupling calibration meth-
ods proposed in [6], and ML based sensor location errors
correction method proposed in [30]. The results of SBAC
based methods are marked by ‘‘Corrected1’’, and the result
of eigenstructure (or ML) based corrected estimators are
marked by ‘‘Corrected2’’. From top to bottom, each group
corresponds to the spectra in the presence of mutual coupling,
gain and phase errors, and sensor location errors, respectively.
The SNR and number of snapshots are set as 10 dB and
300 separately. Six uncorrelated signals impinge from direc-
tions θ = [−70◦,−30◦, 0◦, 20◦, 38◦, 45◦], and a 6-element
nested array is adopted. The model error coefficients are
set as
• Mutual coupling coefficients
c = [1, 0.21+ 0.17i, 0.10+ 0.06i]

• Gain errors η = [0, 0.075,−0.15, 0.1, 0.125,−0.1]
Phase errors φ = [0◦,−4◦,−6◦,−8◦, 7◦, 5◦]

• Locations errors
1d = [0,−0.04, 0.06, 0.08, 0.02,−0.06] · λ/2

We can find that SS-MUSIC fails to resolve these sources
when there exist model errors. Actually, the model errors
destroy the orthogonality between noise subspace and the
signal subspace. The SBAC based corrected estimator corre-
sponding to the group (b) can separate these sources success-
fully with only 6 sensors. The spectrum lines in group (b)
confirm that the SBAC based corrected estimators keep the
ability of DoF enhancement. The group (c) shows the spec-
tra obtained by means of the eigenstructure (or ML) based
corrected estimators. The eigenstructure (for mutual coupling
and gain and phase errors), and ML (for sensor location
errors) based corrected estimators outperform SS-MUSIC,
however, have worse performances than SBAC based cor-
rected estimators. The estimates of error coefficients can be
obtained via (52), (53), and (57). As an example of error
coefficients estimation result, Table 1 shows the true values
and estimates of gains and phases of RF chains and locations.
It can be concluded from Table 1 that the gains and phases
perturbations and the locations are calibrated effectively,
the same trend of mutual coupling coefficients are shown
in Table 2

The RMSEs of the DoA estimates versus SNR in the
presence of mutual coupling, gain and phase errors, and
sensor location errors are shown in the next three paraphrases,
respectively. In the simulations, the number of snapshots is
fixed to 90. The SNR increases form -20 dB to 13 dB with a
step of 3 dB, and 1000 trials are carried out for each value.
Two narrow-band uncorrelated sources induce from direc-
tions of 38◦ and 45◦. The results and the error coefficients
setting are same as above.
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TABLE 1. Gain and phase and locations estimation result.

TABLE 2. Mutual coupling estimation result.

FIGURE 2. RMSE of DoA estimates via nested array versus SNR in the
presence of mutual coupling. ‘‘Corrected1’’ corresponds to the result
obtained via SBAC based estimator, ‘‘Corrected2’’ denotes to the result
obtained via eigenstructure based estimator.

Fig. 2 shows RMSEs of the DoA estimates versus SNR
obtained via the nested array in the presence of mutual
coupling. A 6-element nested array is adopted. The uncor-
rected SBL based DoA estimator [29] is adopted as reference.
Two kinds of corrected estimators, i.e., the SBAC based
estimator and eigenstructure based estimator are examined
in this simulation. The dotted line represents the CRB of
DoA estimates in presence of mutual coupling. We can find
that the SBAC based estimator outperforms uncorrected SBL
estimator as well as eigenstructure based corrected estimator.
Meanwhile, with the increase of SNR, RMSE of the DoA
estimation becomes closer to the CRB. The eigenstructure
based corrected estimator also outperforms uncorrected SBL
based estimator when SNR is higher than −5 dB.

FIGURE 3. RMSE of DoA estimates versus SNR in the presence of gain
and phase errors. (a) Nested array, (b) Co-prime array. ‘‘Corrected1’’
corresponds to the result obtained via SBAC based estimator,
‘‘Corrected2’’ denotes to the result obtained via eigenstructure based
estimator.

Fig. 3 shows RMSEs of the DoA estimates via two sparse
arrays, i.e., nested array and Co-Prime array, in the presence
of gain and phase errors. The gain and phase errors coef-
ficients are given by vectors η and φ, which are shown in
paragraph 2 of this section. For gain and phase errors calibra-
tion, Han et al. [20] proposed a method named STLS. In this
simulation, STLS together with uncorrected SBL basedmeth-
ods are adopted as references, marked as diamond and aster-
isk, receptively. Similarly, the SBAC based method which is
described in Section IV together with eigenstructure based
method [6] are examined. The RMSE curves of these two
methods are marked by square and circle respectively.We can
find from Fig. 3 (a) that SBAC based corrected method has
the lowest RMSE curve. Moreover, it becomes closer to
CRB with the increase of SNR. The RMSE of eigenstructure
based corrected method is higher than SBAC based method,
while lower than uncorrected SBL based method and STLS.
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FIGURE 4. RMSE of DoA estimates versus SNR in the presence of
locations errors. (a) Nested array, (b) Co-prime array. ‘‘Corrected1’’
corresponds to the result obtained via SBAC based estimator,
‘‘Corrected2’’ denotes to the result obtained via ML based estimator.

Fig. 3 (b) shows the RMSE curves of these methods based on
Co-prime array. The RMSE curves of Co-prime array show
the similar trend as the nested array, the difference is that each
curve of Co-prime array is slightly higher than corresponding
curve of nested array. Because, the virtual ULA of 6 elements
nested array is larger than 6-element Co-prime array.

Fig. 4 shows RMSEs of the DoA estimates versus SNR via
nested array and Co-prime array with locations errors. The
locations errors are given by the vector 1d, which is shown
in paragraph 2 of this section. The SBAC based corrected
method and ML based corrected method [8] are examined
in this simulation, meanwhile, the uncorrected SBL based
methods is adopt as reference. The RMSE curve of SBAC
based method is marked by circle, and ML based corrected
method is marked by asterisk. We can find from Fig. 4(a)
that the RMSE of SBAC based method outperforms uncor-
rected SBL based method when the SNR larger than −5 dB.
Meanwhile, the ML based corrected estimator outperforms

the uncorrected SBL based method. Fig. 4(b) shows the
RMSE of DoA estimates based on the Co-prime array. In this
case, SBAC based corrected estimator outperformsML based
estimator when the SNR is higher than 0 dB.

VII. CONCLUSION
This paper studied the problem of DoA estimation via Coar-
ray in the presence of model errors, i.e., mutual coupling,
gain and/or phase errors, and sensor location errors. The
models of the single type error have been established. It is
shown that the imperfect Coarray still has the ability of DoF
enhancement. The problem of Coarray calibration has been
transformed into that of imperfect virtual ULA correction.
The effect error matrices of virtual ULA, such as MCM, gain
and phase errors matrix, and errors matrix caused by locations
perturbation can be expressed analytically by corresponding
error coefficients of the Coarray. Therefore, state-of-the-art
error correction algorithms can be applied to estimate the
unknown error coefficients and DoA based on these models.
SBAC is adopted as an example of these methods to estimate
DoA and error coefficients jointly in this paper. Simulation
results illustrate the effectiveness of our methods for single
kind of model error, and the problem of mixed model errors
calibration will be studied in future work.

APPENDIX A
STATEMENT OF LEMMA 1
Theorem 1: For M × M matrix C and M × P matrix A,

the following relationship holds [28]:

(CA)∗ � (CA) = C′A′ (66)

where

C′ = C∗ ⊗ C

A′ = A∗ � A

APPENDIX B
ITERATION STEPS OF SBAC
It’s hardly achievable to perform straightforward maximiza-
tion of the density function (51) due to its high nonlinearity.
However, Expectation-Maximization(EM) algorithm is very
popular to develop an iterative solution for similar problems.
Each iteration of the EM algorithm consists of an E-step
and an M-step. In the E-step, calculating the expectation
of the complete probability p(z|p;υ, σ 2, γ ). In the M-step,
maximizing the expectation calculated in E-step over the
parameters p, υ, and σ , by setting the partial derivative for
each variable to zeros, we get [27]

υ =
〈
QHQ

〉−1 〈
QH (z− Ap)

〉
(68a)

σ 2
=

1
M

〈
||z− A′p||22

〉
(68b)

γ l =
〈
||pl ||22

〉
(68c)

where 〈·〉 is conditional expectation under the provability
density of p(p|z;υ, σ 2, γ ). All three update equations obtain
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the conditional expectation, which can be obtained further
via [27]〈

QHQ
〉
p1,p2
= tr

[
GH
p1Gp28(µµH +6p)

]
(69a)〈

QHz
〉
p
= tr

[
GH
p zµ

H8
]

(69b)〈
QHAp

〉
p
= tr

[
GH
p A(µµ

H
+6p)8

]
(69c)〈

||z− A′p||22
〉
= v||z− A′µ||22 + tr

[
A′6p(A′)H

]
(69d)

where

µ = 0(A′)H6−1p z (70a)

6p = 0 − 0(A′)H6−1z pA′0 (70b)

6z = σ
2IM + A′0(A′)H (70c)

The final updating equation can obtained by substituting (69)
and (70) into (68). After the convergence of iteration, the esti-
mation of p will be given by p̂ = µ.
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