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ABSTRACT Compact Polarimetry has gained significant importance in recent years among other earth
observation missions due to its low power consumption, simple architecture, and larger swath width. For
space-based SAR systems, these parameters are vital to monitor the earth surface continuously for various
applications. The main manifestations of Hybrid polarimetry from fully polarimetric systems is transmitting
a circular polarization and receiving in linear polarizations. In this paper, we assess the performance of
compact polarimetry (hybrid polarimetry) over dual-pol RISAT-1 data for land cover classification over
various ground targets using backscattered coefficient values, degree of polarization, and relative phase
values. In order to understand the scattering mechanism of the targets, Raney decomposition, Pseudo Three
Component decomposition, m-δ and m-χ decompositions were performed on the SAR datasets. The m-χ
decomposition has proven to be robust when transmitting component is not perfectly circularly polarized.
The support vector machine (SVM) classifier algorithm was used to classify the datasets. Three datasets
(viz. RISAT-1 hybrid-pol data, RISAT-1 dual-pol data, and Resourcesat-2 data) were evaluated with SVM
classifier and compared using three different kernel parameters, i.e. radial basis function (RBF), Polynomial
with degree ‘2’ and Linear. From this paper, it was observed that the SVM with RBF kernel parameter
gave highest Overall Accuracy (OA) of 92.34% for hybrid Pol RISAT-1 data. Similarly, the SVM with RBF
kernel parameter gave an overall accuracy (OA) of 76.83% for dual-pol RISAT-1 data. SVMhas classified the
datasets into four classes viz. Urban, Water, Vegetation, and Bare soil. The evaluation of classified datasets
were performed using confusion matrix for accuracy assessment. For validating the results, the classified
image is compared with the optical imagery of Resourcesat-2 (LISS IV) sensor, Google Earth, and In-situ
information that was collected synchronous to the satellite pass on July 5, 2016.

INDEX TERMS Compact polarimetry, m-delta, m-chi decomposition, hybrid polarimetry, land cover
classification, RISAT-1, SVM classifier.

I. INTRODUCTION
Indian Space Research Organization (ISRO) has launched
many Earth-Observing (EO) satellites, since 1979, begin-
ning with Bhaskara - I, as it was the first experimental
remote sensing satellite built by ISRO [1]. Indian Remote
Sensing Satellite (IRS-1A) was the first series of indige-
nous remote sensing satellite launched into the orbit on
March 15, 1988. As on today, ISRO has launched 30 (27 opti-
cal and 3 Radar) Earth Observation missions and also has
the largest constellation of remote sensing satellites in oper-
ation [2]–[4]. Earth-observing satellites are mainly used for
remote sensing purpose to monitor the Earth constantly.
Satellites with optical sensors were providing the data from
past three decades. Moreover, optical sensors may not sup-

port in all weather conditions and night acquisition is not
possible. Therefore, remote sensing using microwaves came
into existence to overcome the limitations of optical remote
sensing. Radar Imaging Satellite (RISAT-2) was the first
microwave (SAR) based remote sensing satellite launched
on April 20, 2009; which was built by IAI/MBT (Israel
Aerospace Industries Ltd.) and operates in X-band. RISAT-2
was a prelude to RISAT-1 [5]. ISRO launched Radar Imag-
ing Satellite (RISAT-1) on April 26, 2012. RISAT-1 was
the first indigenous SAR based Space-borne mission from
ISRO and was also the first (EO) space-borne mission with
Hybrid polarimetry [6]. Mini SAR (Mini Synthetic Aperture)
on Chandraayan-1 mission and Mini-RF (Miniature Radio
Frequency) instrument on Lunar Reconnaissance Orbiter
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mission were launched in 2008 and 2009 respectively. These
two missions were aimed for lunar and planetary studies
with hybrid polarimetry outside the earth orbit [7]–[8]. The
unique characteristics of C-band SAR with Hybrid polarime-
try enables wide application in the field of agriculture (Paddy
monitoring), ship detection, oil slick monitoring, forestry,
geology, soil moisture and in disaster management during the
time of flood and cyclone [9].

A. RADAR POLARIMETRY
Radar polarimetry is the science of acquiring, process-
ing and analyzing the polarization state of the electromag-
netic field and is concerned for the utility of polarimetry
for radar application. With recent advances in polarime-
try, many upcoming SAR based space-borne missions are
planned to overcome the trade-off such as polarimetry, res-
olution and swath width. From past two decades, the concept
polarimetric SAR and its application have been an active
field of research. Radar polarimetry can be performed on
two platforms, i.e., Space-borne and Airborne SAR sys-
tems by providing high-resolution data in single, dual and
quad-pol data for the radar community. In general, a sin-
gle pol system transmits and receives only one polariza-
tion viz. horizontal (H) or vertical (V). Similarly, a dual-pol
SAR transmits one polarization and receives the backscatter
in a pair of orthogonal polarization viz. transmit (H) and
receives (H, V) vice versa. In quad-pol SAR, two orthog-
onal polarizations H and V are coherently transmitted and
received. From quad-pol SAR, complete polarimetric scatter-
ing information can be obtained from the target, and hence
better analysis and classification can be performed [10].

B. COMPACT POLARIMETRY OVERVIEW
The functionality of fully quad-pol SAR systems is illustrated
in the Fig. 1. It shows the timing sequence of transmitted and
received signal for a quad-pol SAR. A pulse is first transmit-
ted on one polarization, and all orthogonally polarized signals
are received before the next signal is transmitted. Similarly,

FIGURE 1. Sequence of transmitted and received echo signal in fully
polarimetric systems.

SAR transmits two orthogonal polarized pulses alternatively
and receives backscattered signal simultaneously using two
orthogonally polarized antenna thus by capturing all polar-
ization information. This process doubles, pulse repletion
frequency (PRF) and halves the swath width which is the
limitation to the fully quad-pol SAR systems. These limita-
tions will have an adverse effect on the revisit time, which
is an important factor for earth observation missions [11].
The trade off’s between conventional single-pol linear sys-
tems and quad-pol systems is a dual-pol system, in which a
single polarization is transmitted and receives two orthogonal
polarizations, by overcoming the drawbacks of conventional
linear polarization systems. To achieve better swathwidth and
to reduce average peak power with simple architecture Com-
pact polarimetry (Dual Partial Polarimetric mode) has been
proposed [12]. The dual partial polarimetric mode was pro-
posed by Souyris and Mingot [13]. The information from the
compact-pol SAR is almost similar to that of fully polarimet-
ric SAR from the azimuthally symmetric scattering targets
and was proved by Souyris and Mingot [13]. Nord et al. [14]
drew a similar conclusion and also promoted the use of
Hybrid SAR for its simpler architecture in contrast to the
conventional SAR. Compact polarimetry is a techniquewhich
allows construction of pseudo quad-pol data from dual-pol
SAR. Recently Compact polarimetry has gained more impor-
tance than fully polarimetric SAR by its advantages such as
larger swath width, less power,and simple architecture. Com-
pact polarimetry has proven its potential in distinguishing
oil slicks, ship detection and in crop monitoring. Compact
polarimetry has three modes as shown in Table 1 and Fig. 2.

TABLE 1. Compact polarimetry modes.

FIGURE 2. Illustration of three modes of Compact Polarimetry.

1) (π/4) MODE
The (π /4) mode was one of the first partial polarimetric
concepts to appear in the radar imaging literature developed
by Souyris and Mingot [13]. In this mode, SAR transmits
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a linear polarized field at an angle of 45◦ concerning Hor-
izontal or vertical orientation and receives Horizontal and
vertical components [12], [13]. The covariance matrix is
obtained from the Eqn. 1, as shown at the bottom of this
page.

2) DUAL CIRCULAR POLARIMETRIC (DCP)
In this mode, right circular polarization is transmitted and
both left and right circular polarization are received. Stacy
and Preiss [14] demonstrated that dual circular polarization
could be implemented with slight modification from original
compact polarimetry algorithm. The covariance matrix was
obtained from the Eqn. 2, as shown at the bottom of this
page.

3) CIRCULAR TRANSMIT LINEAR RECEIVE (CTLR)
POLARIMETRY
CTLR is popularly known as Hybrid polarimetry. In Hybrid
polarimetry, only one polarization will be transmitted, and
other orthogonal polarization will be received along with
relative phase which is different from dual polarimetry sys-
tems. In this mode, Circular (right or left) component is
Transmitted and Linear component is Received (CTLR).
In dual polarimetry systems, relative phase information is
not available. Hybrid Polarimetry is the optimum architec-
ture for applications related to planetary explorations and
earth observations. SAR systems transmitting linear compo-
nent may not be able to excite target response from linear
structures as they are orthogonally oriented to the incident
electric field. Quad-pol SAR system is restricted in terms
of incidence angle. In this case, by transmitting a linear
component volume scattering is overestimated due to the
change in orientation angle shift during reception of the signal
from the target. Therefore illuminating circularly polarized
signal can overcome the limitation of linear transmitted sys-
tems. However, transmitting a circular component will not
be affected by ionospheric distortions (Faraday rotation) and
are free from the polarization orientation angle shift [11].
Hence, overestimation of volume scattering can be reduced

FIGURE 3. Hybrid polarimetry Architecture.

when compared to quad-pol SAR system and another advan-
tage of transmitting circular polarization is to reduce the
range ambiguities [15]. Among circular transmit systems,
Hybrid-pol is preferred over DCP because its performance
is limited to weaker cross-polarized links and it is affected by
additive noise and by crosstalk from stronger like polarized
signal [11]. From hybrid-pol data, an equivalent covariance
or coherencymatrix may be reconstructed to produce pseudo-
quad-pol data. From the Eqn. 3, as shown at the bottom of this
page, covariance matrix of hybrid-pol data was obtained.

4) HYBRID POLARIMETRY SAR ARCHITECTURE
Hybrid Polarimetry architecture is shown in Fig. 3. The
hardware realization of hybrid polarimetry is in-complex as
compared to that of linear full polarimetric systems. Both
in active and passive case, the dual polarized antenna will
transmit circular polarization only if H and V components
are driven simultaneously. In this system, the same signal is
transmitted through horizontal and vertical antenna such that
phase 90◦ is maintained. Simultaneously during the recep-
tion, an additional pair of 90◦ hybrids in the receive paths is
required after the antenna or along each of receive chains.
Hybrid polarimetry architecture has numerous advantages
such as the generation of Stokes parameter from dual-pol
data, less risk of crosstalk, calibration, less flight hardware,
quad polarization transformation [16].
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II. DATASETS AND STUDY AREA
A. DATASETS
In this study, we have procured two RISAT-1 (Hybrid Pol
and Dual pol data) and one Optical Resourcesat-2 data from
the National Remote Sensing Center (NRSC), Hyderabad,
INDIA as shown in Table 2.

RISAT-1 was launched on 26th April 2012 by ISRO.
RISAT-1 is operated in 4 modes, viz. High-Resolution Spot-
light (HRS), Fine Resolution Stripmap (FRS-1, FRS-2),
Medium Resolution ScanSAR (MRS), Course Resolution
ScanSAR (CRS) mode as shown in Table 3. RISAT-1 prod-
ucts are available in four levels: i) level ‘0’ raw data, ii) level
1 ground range geo-tagged SLC data and, iii) level 2 is Terrain
corrected Geo-referenced data, iv) level 2A is an enhanced
Terrain corrected Geo-referenced data. The data acquired at
an altitude of 543.9 km with an incidence angle of 39.5◦ for
hybrid-pol data and an altitude of 544.4 km with an incidence
angle of 46.5◦ for dual-pol data in left look direction. FRS-
1 mode with 25 km swath width and 3-meter resolution were
opted for this study in ascending mode [17].

TABLE 2. Data sets.

TABLE 3. Imaging modes of RISAT-1.

Resourcesat-2 was the 18th Remote Sensing satellite
built by ISRO. Resourcesat-2 was launched on April 20,
2011, which was a successor mission of Resourcesat-1.
Resourcesat-2 carries three electro-optical cameras as its
payload viz. LISS-3, LISS-4, and AWIFS. LISS -4 is a
high-resolution multi-spectral camera with a 5.8-meter spa-
tial resolution [18].

B. STUDY AREA
The study area is located in the northern part of Telangana
State in the Ghanpur Village, district of Warangal, INDIA.
The Geo-coordinates of the study area Lat. 17◦69′7.96′′N
and Long. 79◦32′25.6′′E. The study area has a complex ter-
rain with mango gardens, paddy fields, cotton fields, water-
bodies, and hills.

C. GROUND TRUTH
Ground truth data was collected on 4th and 5th of July 2016.
Detailed information such as water level, crop yield progress,
weather conditions were also recorded. On 4th and 5th,
July the study area was covered with clouds and had rain-
fall, during the time of acquisition. For better classification
accuracy, ground coordinates for various target class were
recorded with the help of hand-held GPS of Trimble Com-
pany. With the help of ground coordinates, training sites
are given for supervised classification. Based on the ground
truth, we have identified four classes (Urban, Water Body,
Vegetation, Bare Soil).

III. METHODOLOGY
A. IMPORTING DATA
The hybrid-pol and dual-pol datasets of RISAT-1 and
Resourcesat-2 are imported into the respective processing
tools. Input RISAT-1 data format consists of Dual Polariza-
tion elements. The approach is shown in Fig. 4.

FIGURE 4. Flowchart for the proposed work.

B. DATA PREPROCESSING
The data pre-processing can be performed in two parts.
The first approach is to generate backscattering coefficient
value for the data; the second approach is polarimetric data
processing. In both approaches [C2] matrix generation and
speckle filter is a common procedure. The first approach
is to generate sigma naught values, then the data has to be
multi-looked (2x2) looks in range and azimuth direction and
has to undergo speckle filtering to reduce the speckle in the
data. In this study, refined lee filter with 7x7 window size

57984 VOLUME 6, 2018



K. Dasari, A. Lokam: Exploring the Capability of Compact Polarimetry (Hybrid Pol) C Band RISAT-1 Data

was opted. Later, radiometric calibration was carried out for
the generation of sigma naught using the Eqn. 4.

σ ◦(dB) = 20log10(DNp)− KdB + 10log10

(
Sin(ip)

Sin(icentre)

)
(4)

Where σ0 is the radar backscattering coefficient, DNp is
the digital number, KdB is the calibration constant, ip is the
incidence angle for pixel position and ic is the incidence angle
at the Centre. The Calibration constant for RV channel is
67.400 and for RH channel is 70.319.

In polarimetric processing, the data is multi-looked and
extracted into covariance matrix [C2]. As the SAR data
consists of speckle, refined lee filter with 7x7 was opted to
remove speckle. Stokes vector and stokes child parameters
were derived from the covariance matrix.

C. STOKES PARAMETER GENERATION
When a signal is transmitted on a certain polarization, all
the backscattered signal information will be captured in the
form of Stokes vector. The set of values which describes
the polarization state of the electromagnetic signal is known
as Stokes parameter. The four Stokes parameters from the
backscattered signal are represented in the form of a matrix as

S1
S2
S3
S4

 =

〈
|ERH |2

〉
+
〈
|ERV |2

〉〈
|ERH |2

〉
−
〈
|ERV |2

〉
2 Re

〈
ERH .E∗RV

〉
−2 Im

〈
ERH .E∗RV

〉
 (5)

From the Eqn. 5, ERH represents voltage received by the
channel with right circular transmit and horizontal (linear)
receive. Correspondingly ERV represents voltage received by
the channel with right circular transmit and vertical receive,
and < . . . > denotes ensemble average. The other way of
describing the polarization of the wave in the case of partially
polarized waves is with the utility of Stokes parameters.
In hybrid polarimetry, to characterize the return signal Stokes
parameters are sufficient. From the Stokes vector, child
parameters such as the degree of depolarization, the degree
of linear and circular polarization ratio are derived [16].

1) THE DEGREE OF POLARIZATION (DoP)
The ratio of power in the polarized part of an electromagnetic
wave to the total power in the electromagnetic wave is known
as the degree of polarization. DoP refers to the property of
the scatterer within a radar resolution cell. DoP values range
from 0 to 1. An electromagnetic wave has a polarized and
non-polarized component. For a pure scatter the value will
be 1 and for a depolarizing scatterer, the value will be 0. The
convenient way of expressing the powers in two forms are

stokes parameters [19]. While
√
S22 + S

2
3 + S

2
4 gives the total

power in the polarized part, the degree of polarization in terms
of Stokes parameters can be expressed as

Dpol(m) =

√
S22 + S

2
3 + S

2
4

S1
(6)

2) RELATIVE PHASE (δ)
Relative Phase is defined as the ratio of the phase difference
between the two orthogonal components of the electric vec-
tor. The relative phase is most sensitive to polarimetric vari-
ation from the backscattered signal from the targets. Under
the condition of circularly polarized illumination, δ is the
prime indicator of double bounce scatter. The relative phase
indicates the type of scattering dominates in a resolution cell,
and it ranges between−180 to+180. It is evident fromEqn. 7
that δ includes the contribution of S3 and S4.

δ = arc tan
(
S4
S3

)
(7)

3) CIRCULAR POLARIZATION RATIO
Circular Polarization Ratio (CPR) directly relates to the sur-
face roughness, i.e. CPR increases with increase in surface
roughness. In case of double-bounce and volume scattering,
the CPR value is high due to higher value in the numerator
than in the denominator of the CPR and can be expressed in
the form as shown in Eqn. 8.

µc =
(S1 − S4)
(S1 + S4)

(8)

D. DECOMPOSITION
The scattering information from the backscatter signal is
recorded in the form of scattering matrix. The scattering
matrix allows the characterization of the given scatters for
a given frequency from the target. In reality, polarimetric
SAR data interpretation is very challenging due to com-
plexity of scattering process from various targets. Thus
Polarimetric decomposition appears to be a solution in inter-
preting the information provided by the scattering coherency,
and covariance matrices. Decomposition is a broad class
of strategies that have proven utility in classifying radar
backscatter through the associated covariance matrix. Com-
pact polarimetry has 2x2 covariancematrix and has twometh-
ods for decomposition. In the first method, a 3x3 covariance
matrix is required for decomposition, but the CP has an
only 2x2 matrix. Therefore from a 2x2 covariance matrix,
a 3x3 pseudo-quad-pol is generated with certain symmetry
assumptions that cannot meet in all situations. The disadvan-
tage of this approach is there is no theoretical justification
from 2x2 to 3x3 covariance matrix. In the second method,
an alternate decomposition for compact pol data [2x2] data is
by using four Stokes vector elements. m-delta (δ) and m-chi
(χ ) decompositions are examples of the alternate decompo-
sition using Stokes vector elements.

1) RANEY DECOMPOSITION
This decomposition was proposed by Raney. From Raney
decomposition, six Raney derived parameters were obtained,
i.e. i) Raney odd bounce, ii) Raney double bounce, iii) Raney
random, iv) Raney-m, v) Raney-delta, vi) Raney-chi. Raney
decomposition utilizes first three parameters to construct a
RGB composite image. From these derived parameters along
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with first Stokes parameter (S1), m-delta (δ) and m-chi (χ)
decomposition were performed. Whereas m-chi decompo-
sition utilizes ‘m’ and chi parameters from Raney derived
parameters and (S1) from the first Stokes parameter. Simi-
larly, m-delta decomposition utilizes ‘m’ and delta parame-
ters from Raney derived parameters.

2) PSEUDO THREE COMPONENT DECOMPOSITION
This decomposition was developed by S. R. Cloude.
In [9, eq. (7)], a three- component compact decomposition
was proposed, PV is the volume component, PS is the surface
component and PD is the dihedral component. Using the
geometrical factor single component is split into two com-
ponents i.e. dihedral and surface component. The split can
be represented in the form of decomposition parameters as
shown in Eqn. 9. A pseudo three component decomposition
using a geometrical factor is shown in Eqn. 10. Where (S1) is
the first stokes vector [20].

tan δ =
S4
S3
=

cos2αs
sin2αssinφ

=
1

tan2αssinφ
(9)PDPV

PS

 =
 1

2S1m (1− cos(2αs))
S1 (1− m)

1
2S1m (1+ cos(2αs))

 (10)

3) m-DELTA (δ) DECOMPOSITION
m-delta is one of the child parameters derived from Stokes
vector and was also found to be an important tool for polari-
metric analysis. This technique was proposed and developed
by Raney [16] using the principle of relative phase difference
between horizontal and vertical polarized backscatter signal.
In this technique, total intensity is segmented into polarized
and unpolarized using a degree of polarization (m). Polarized
part is subdivided into the even bounce and odd bounce by
using the relative phase information. The unpolarized part
is considered as volume component. In this decomposition,
red represents single bounce, green represents volume com-
ponent, and blue represents the double bounce as shown
in Fig. 7(b) and Eqn.11.

R =

√
S1m

1− sinδ
2

G =
√
S1(1− m)

B =

√
S1m

1+ sinδ
2

(11)

4) m-CHI (χ) DECOMPOSITION
The m-chi decomposition was proposed by Raney [16] and it
can be calculated using the Stokes parameters, (S1) and (S4),
and the degree of polarization ‘m’ as shown in Eqn. 12. Gen-
eral decomposition techniques which are used for quad-pol
data are not applicable to hybrid polarimetric and dual-pol
data because compact-pol data and dual-pol data consist of
the 2x2 covariance matrix. The degree of polarization’ is a
natural choice for the first decomposition variable for hybrid
dual-pol data. The Poincare ellipticity parameter χ is the best

choice for second decomposition variable. m-chi decomposi-
tion was tested on lunar orbiter mission, and this method was
proven to be an excellent tool for hybrid polarimetric data.
In hybrid polarimetry for every scattering, the electric field
loses its circularity and hence it is a principle of this technique
as shown in Eqn. 13. The unpolarized part is considered as
volume component, and polarized part is categorized into
odd and even bounce using χ . Blue color indicates single
bounce (Bragg scatters), red indicates double bounce and
green indicates randomly polarized constitute [21] as shown
in Fig. 7(c).

Sin(2χ) = −
S4
m
∗ S1 (12)

m-chi decomposition can be expressed in a color-coded
image where

B =

√
S1m

1− sinχ
2

G =
√
S1(1− m)

R =

√
S1m

1+ sinχ
2

(13)

E. SUPPORT VECTOR MACHINE (SVM) CLASSIFIER
Classification is the task of assigning a given set of data (pix-
els) to a given class such that the cost of assigning is mini-
mum [22]. The major steps involved in image classification
includes feature extraction, selection of training samples and
finally classifying the data using suitable classifier. There
are two types of classification techniques: parametric and
non-parametric. Furthermore, parametric classification can
be performed in two approaches, i.e., supervised and unsuper-
vised classification. In unsupervised approach, image is clas-
sified automatically by finding the clusters based on certain
criterion. In supervised approach, the analyst has to identify
location and land cover type using field data (ground truth).
Further, the analyst has to locate these areas on the remote
sensing data and these areas are known as training sites.
In supervised technique, selection of training sets without
ground truth data makes the analyst difficult and leads to poor
classification. The classification procedure usually involves
separating the data into training sets and testing sets. Each
instance in the training set contains a class label and several
features. The goal of SVM is to produce a model based on
training data that can predict target values of the test data.

SVM is a supervised non-parametric classification
approach derived from statistical learning theory that often
yields good classification results from the complex and noisy
data [23]–[26]. As SVM classifier fall under non-parametric
classification, estimation of statistical parameters is not
involved before classification and therefore they are more
appropriate for classifying Remote Sensing data [27]. The
advantage of non-parametric approach is that they do not
require one specific statistical distribution model, hence they
are versatile enough to be implemented in various datasets
with minimal training sets. [28]. The main objective of SVM
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is to produce a model based on the training sets which can
predict target values of the test sets. As SVM classifier is
well suited to handle linear non-separable cases using Kernel
theory, therefore SVM classifier was used effectively to
hyperspectral remote sensing data and on SAR data. [29]

A brief discussion regarding the SVM classifier can be
found in [30], [31]. SVM can be performed using either of the
three approaches; 1) linear case, 2) Non-linear case 3) Multi-
class case. SAR images can be classified in two stages, firstly
extraction of appropriate features and secondly labeling the
features based on a set of decision rules.

1) LINEAR CASE
Let us consider a two-class classification with N-vectors
of training set from ‘d’-dimensional feature-space for sepa-
rating two classes. From the Fig. 5a, two classes (vectors)
are represented in red and blue color, the green color line
which separates the two classes is called hyperplane [32].
The vectors which are close to the hyperplane are called as
support vectors. The distance between support vectors and
the hyperplane is called margin. The objective of SVM is to
compute optimum hyperplane by maximum margin and by
finding minimum 1/(ω). The optimization is performed using
Eqn. 15. Each sample is described as xi ∈ <d (i = 1, 2, · · ·N )
and the target Yi ∈ −1,+1 is associated with every sample xi.
The optimum hyperplane is defined by

f (xi) = ωxi + b

sgn[f (xi)] = Yi
Yi(ωxi + b) > 0 (14)

The membership decision rule is based on the function
sgn[f (xi)].
In finding optimum hyperplane, we have to estimate Yi

where Yi(ωxi + b) > 0
The optimization is performed using Lagrangian formalism

f (x) =
N∑
i=1

Yiαi(xxi)+ b (15)

Where αi denotes Lagrange multiplier. SVM classifies the
data into different classes by determining the set of support
vectors that summarizes a hyperplane. SVM has a robust fea-
ture which ignores the outliners and finds the best hyperplane
with maximum margin.

2) NON-LINEAR CASE
From Fig. 5b, two classes (vectors) are represented in red
and blue color, the green color line which separates the two
classes are called hyperplane. In this case, the first step is to
make a soft margin that adapts noisy data. The second step
is the utility of kernel. Kernel is a function that simulates
the projection of initial data in a feature space with higher
dimensions φ = K n

→ H as shown in Fig. 5(b). In this new
space the data is considered as linearly separable by replacing
the dot product

〈
Xi,Xj

〉
with 〈φ(x), φ(xi)〉.

FIGURE 5. SVM classifier scheme. (a) Linear case. (b) Non-linear case.

The new function to classify the data are

f (x) = sign

( Ns∑
i=0

yiαiK
〈
Xi,Xj

〉
+ b

)
(16)

Generally, three kernel are used in this approach i) polyno-
mial kernel, 2) sigmoid kernel, 3) RBF kernel. The polyno-
mial kernel is represented as

K (X ,Xi) = (〈X .Xi〉 + 1)p (17)

The sigmoid kernel is represented as

K (X ,Xi) = tanh (〈X .Xi〉 + 1) (18)

The RBF Kernel is represented as

K (X ,Xi) = exp−
|X−Xi|

2

2σ2 (19)

3) MULTI CLASS CASE
SVM classifier was designed for binary classification.
To handle more than two problems or multi problems there
are different algorithms such as One against All (OAA) [29]
and One Against One (OAO). OAA algorithm constructs K
number of hyperplanes for K classes and separates k and
k−1 classes. OAO algorithms constructs k(k−1)

2 hyperplanes
to separate each pair of classes.
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FIGURE 6. Images of Optical and Raney derived parameters of the Area of Interest. (a) Google Earths image. (b) Resourcesat-2 LISS- IV image.
(c) Raney derived RGB image on hybrid pol data. (d) Raney derived RGB image on dual pol data.

IV. RESULTS AND DISCUSSION
To evaluate the results of SVM classifier, m-delta and m-chi
decomposed images of RISAT-1, Resourcesat-2 and Google
Earth images were used. The confusion matrix is used to
assess the performance of the SVM classifier.

Fig. 6(a), is the Google Earth image, green color indicates
vegetation, White Color indicates settlements, green color
indicates water-bodies and brown color indicates bare soil.
Fig 6(b), is the FCC image of LISS-IV data, where red color
indicates paddy fields, black color indicates water body, green
color indicates vegetation, and white color indicates bare soil.
Fig 6(c), is the Raney derived RGB image on Hybrid pol
data, where red color indicates urban settlements, black color
indicates water body, green color indicates vegetation, and
white color indicates bare soil. Fig 6(d), is the Raney derived
RGB image on Dual pol data, where green color indicates
vegetation, black color indicates water bodies and red color
indicates urban settlements and paddy fields.

Fig. 7(a), is the Pseudo compact decomposition performed
on Hybrid-pol data. From this decomposition, we obtain
volume scattering, double bounce scattering and surface
scattering. Where green color corresponds to the volume
scattering from thick vegetation, red color corresponds to
the surface scattering from crop fields and water bodies,
blue color corresponds to the double bounce scattering from

urban settlements. Fig. 7(b) and 7(c) are the m-delta and
m-chi decomposed images, respectively. From m-delta and
m-chi decompositions, yellow color corresponds to the dou-
ble bounce from urban structures, i.e., buildings, green color
corresponds to the volume scattering from vegetations. The
magenta color corresponds to the surface scattering from
crop fields, bare soil and dark blue corresponds to water
bodies. It was observed visually that m-delta and m-chi
decomposition results were almost similar. Fig. 7(d) and 7(e)
are the SVM classified images on Hybrid-pol RISAT-1 data
and Dual-pol RISAT-1 data, where red color corresponds to
urban, green color corresponds to water body, blue color
corresponds to vegetation and yellow color corresponds to
bares soil. Fig. 7(e) is the SVM classified image on optical
LISS-IV data, where blue color corresponds to water body,
green color corresponds to vegetation, red color corresponds
to bare soil, yellow color corresponds to urban.

The Table 4 represents the performance of kernel param-
eters for Land cover classification using SVM classifier.
In this study, we have compared all kernel parameters
(linear, polynomial, RBF) on the test data. In this paper,
the method of SVM is implemented by using the library
LIBSVM on Polsarpro tool. In this study, OAO approach
has been retained with RBF kernel. The kernel parameters
Cost Parameter (C) and kernel parameter (Gamma) are tuned
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FIGURE 7. Results of Pseudo three component, m-delta, m-chi decompositions, SVM classification on RISAT-1 Hybrid pol data, dual pol data and
optical LISS-IV data. (a) Psuedo compact decomposition. (b) m-Delta. (c) m-Chi. (d) SVM classified image on hybrid pol RISAT-1 data. (e) SVM classified
image on dual pol RISAT-1 data. (f) SVM classification on LISS IV data.

in the range of C = (8,16,32,64,128,256) and gamma =
(0.03,0.06,0.12,0.25,0.5,1,2). The cost parameter C and ker-
nel parameter gamma were optimized using cross-validation
for obtaining best possible classification accuracy [26]. From
five-fold cross validation, we have obtained the values of C=
64, gamma= 0.5 with an accuracy 93.55% using grid search
within a given set. While tuning the kernel parameters we
have observed, as the values of C and gamma increases the
accuracy also increases as shown in Fig. 9.With a large values
of C and gamma, there is a tendency for the SVM to over-fit to

the training data. The cross-validation procedure prevents the
over-fitting problem. From the Table 4, we can conclude that
RBF kernel parameter shows better Overall Accuracy (OA)
of 92.36% when compared to Linear parameter 89.79 % and
Polynomial parameter with degree ‘2’ 88.44 %. The same
number of training and test samples were applied to the
individual classes for performing accuracy assessment for all
kernel parameters. We also observe that urban class was bet-
ter classified by RBF parameter than linear and polynomial
parameters. The water body class, was well equally classified
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TABLE 4. Accuracy assessment for various kernel parameters using confusion matrix for hybrid-pol RISAT-1 data.

TABLE 5. Confusion matrix for RISAT-1 (Hybrid-pol and Dual-pol) and optical LISS-IV data using SVM RBF kernel.

by all parameters. The vegetation class was better classified
by polynomial parameter than linear and RBF parameters.
The bare soil class was almost equally classified by all three
parameters.The results of classification algorithm are evalu-
ated using the ProducerAccuracy (PA) and theUserAccuracy
(UA). The producer accuracy is defined as the ratio of pixels
correctly classified to the number of pixels in that class. Sim-
ilarly, UA is defined as the ratio of pixels correctly classified
to the pixels labeled as this class. The Producer Accuracy
of the classes urban, water-bodies, vegetation and bare soil
are 0.98, 0.99, 0.60, 0.73 for RISAT-1 hybrid pol using RBF
kernel. Similarly, the User Accuracy of the classes urban,
water-bodies, vegetation and bare soil are 0.89, 0.97, 0.73,
0.95 for RISAT-1 hybrid pol using RBF kernel. The omission
error of the classes urban, water-bodies, vegetation and bare
soil are 10.39, 2.21, 26.03, 4.57. Similarly, the commission
error of the classes urban, water-bodies, vegetation and bare
soil are 1.14, 0.37, 39.69, 26.86.

The Table 5 represents the confusion matrix obtained
for RISAT-1 Hybrid pol data, RISAT-1 Dual pol data and
LISS-IV data using SVM classifier with RBF kernel parame-
ter. We observe that (OA) 92.36% for Hybrid pol data is more
when compared to Dual pol data 76.83%. We also observe
that RISAT-1, Hybrid-pol data results and Optical LISS-IV
results are almost similar.

From Table 6, it represents the training samples and test
samples of the RISAT-1 hybrid pol data based on the inclusion
of Ground Truth survey points. There was no overlap between
the training and test data.

Fig. 8, shows the ground truth images of the given AOI
on the date of acquisition with four classes. Fig. 8(a) shows
buildings (urban) class, Fig. 8(b) shows water body class,
Fig. 8(c) shows vegetation class, Fig. 8(d) shows the bare soil

TABLE 6. Training and test samples used for RISAT-1 Hybrid-Pol data
classification.

class. Backscatter response from the urban area is considered
as double-bounce scattering. Similarly, the response from
water bodies and bare soil is considered as odd bounce scat-
tering, and response from vegetation is considered as volume
scattering. Fig. 8(e) shows the mango tree plantation which
corresponds to the volume scattering. In order to understand
the crop pattern, we need to take inputs from the local farmers
regarding seasonal crop, duration of the crop, stages of the
crop as shown in Fig. 8(f)-(h), respectively. It maybe observed
that Fig. 8(e)-(h) corresponds to the vegetation class of vari-
ous stages.

Table 7 shows the sigma naught values (RH, HH, RV, HV),
degree of polarization values and relative phase values (in
radians) for hybrid-pol and dual-pol datasets across various
classes. From the Table 7, it has been observed that the sigma
naught values for urban and vegetation are high due to double
bounce and volume scattering and appears to be brighter
due to strong returns. On the contrary, the sigma naught
values for waterbodies and bare soil achieved are less due
to specular reflection which is desirable. It is also observed
that the DoP for urban is almost equal to 1 since it a pure
target, whereas the other three target have less DoP values
due to depolarization effect. Similarly, it can be observed that
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FIGURE 8. Ground truth of various targets. (a) Urban. (b) Water body. (c) Vegetation. (d) Bare soil. (e) Mango plantation. (f) Paddy field (Stage-1).
(g) Paddy field (Stage-2). (h) Paddy field (Stage-3).

FIGURE 9. Parametrization of cost parameter.

TABLE 7. Sigma naught, DOP and relative phase values of dual and
Hybrid pol RISAT-1 data.

the relative phase values for urban and vegetation are low
and high for waterbodies and bare soil. The values from the
Table 7 are the mean values taken from ten different locations
of each class.

Fig. 10 shows the scattering distribution of the targets over
AOI. It has been observed that the double bounce effect is
predominant in urban class, whereas the volume scattering is

FIGURE 10. Scattering distribution of the targets over AOI.

low and the odd bounce is negligible. Moreover, the volume
scattering is more dominant than double and odd bounce in
vegetation class. The odd bounce effect is more dominant in
water body, whereas the double bounce and volume scattering
are negligible.

V. CONCLUSION
In hybrid polarimetry, to characterize the return signal, Stokes
parameters are sufficient. Hybrid-pol (compact polarimetry)
SAR is a new SAR mode, with a combination of wider swath
along with coherent dual polarization with relative phase
information. Therefore, Hybrid-pol (compact polarimetry)
SAR is always the best choice when transmitted power
and swath width are the main constraints. From this study,
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using m-delta, m-chi decomposition, Raney decomposition
and Pseudo Three Component decomposition techniques,
we have characterized and classified various ground tar-
get classes in the data very well. The m-chi decomposi-
tion approach has been proven to be robust even though
the transmitting signal is not perfectly circular polarized.
This paper investigated the capability of m-delta and m-chi
decomposition on various ground targets to understand their
scattering response. SVM classifier has classified the dataset
very well, and the results are very satisfactory. Few stud-
ies exclusively on Compact pol data are reported only to
(80-85)% Overall Accuracy (OA) [33]–[36]. In this study,
we have obtained (OA) of 92.36% for hybrid Pol RISAT-1
data using OAO algorithmwith kernel parameters C= 64 and
gamma = 0.5. Similarly, SVM with RBF kernel parame-
ter gave an Overall Accuracy (OA) of 76.83% for dual-pol
RISAT-1. Achieving good OA on Hybrid pol data is because
of the sound knowledge of the Ground Truth data and also
in giving training sites to the classifier. We have observed
in SVM classification that a polynomial kernel takes longer
time when compare to RBF kernel. Thus from this study,
we can conclude that Hybrid pol data is always preferred
over Dual pol data with respective to information content.
The preprocessing and classification were performed using
PolSARpro, Envi SARscape, and SARc view. The results are
verified with optical imagery of Resourcesat-2, LISS IV data,
Google Earth and In-situ data.
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