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ABSTRACT Recently, we proposed a quantum solution to the problem of private set intersection cardinality
(PSI-CA) (Information Sciences 370-371 (2016) 147-158). Compared to classical solutions, the proposed
quantum PSI-CA protocol achieves an exponential reduction in communication complexity, since it only
needs O(1) communication cost. However, this protocol requires two additional assumptions about the
cardinalities of the sets, which may limit its wider applications. In this paper, we successfully discard these
assumptions and present a stronger quantum PSI-CA protocol without any limitation. The new protocol
ensures the parties’ private security, i.e., unconditionally secure server privacy and statistically secure client
privacy, and it achieves the constant computation and communication complexities, which are independent
of the size of the sets. Therefore, it is more suitable for practical applications with big data sets.

INDEX TERMS Quantum computation, quantum communication, secure multi-party computation, private
set intersection cardinality.

I. INTRODUCTION
Secure Multi-party Computation (SMC) allows a number
of mutually distrustful parties to compute a joint function
of their inputs without leaking any information about their
respective private inputs [1], [2]. Due to its important military
and business values, SMC has raised widespread concerns
and has been extensively researched in the cryptographic
community, since it was first introduced by Yao [3].

Private Set Intersection Cardinality (PSI-CA) is a primitive
of SMC that enables two parties, each with a private set,
to jointly compute the cardinality of their intersection with-
out disclosing any private information about their respective
sets [4]. There are many important and practical applications
of PSI-CA in privacy-preserving and information-sharing
settings [5]. For instance, PSI-CA can be used in anony-
mous authentication [4], authenticating a remote user without
revealing his/her identity, e.g., when a remote user requests
the server to authenticate his/her legality, the server asks
the user to jointly execute a PSI-CA protocol and further
verifies whether the intersection cardinality of their respec-
tive private sets is equal to a constant, which is assigned
by a trusted third party in advance. Moreover, PSI-CA is
useful in social networks [6], e.g., when two parties want
to privately determine the number of common connections
in order to decide whether it exceeds a threshold value and

further decide whether or not to become friends, it only needs
to jointly run a PSI-CA protocol, where each element of their
respective private sets represents a connection. In addition,
as an important block, PSI-CA can also be utilized to privately
compute the length of the longest common subsequence of
two physically separate parties, where the longest common
subsequence is the longest common part of two sequences
by deleting zero or more characters from two sequences. For
example, how to privately determine the similarity of two
DNA sequences. Other applications of PSI-CA still include
privacy-preserving data mining [7], location sharing [8], the
Hamming distance [9], etc.

Due to its important and wide applications, there appeared
many PSI-CA protocols [9]–[16] in classical settings. In
these existing protocols, the most efficient PSI-CA protocol
requires the linear communication complexity [9]. Obviously
it is infeasible for new applications involved in Big Data (e.g.,
DNA sequences). In addition, the security of most existing
PSI-CA protocols is based on the computational complexity
assumptions, which are strongly challenged by the increasing
capability of computation or algorithms. Especially, most
computational assumptions are vulnerable to attack by the
quantum computer. Therefore, the researchers for PSI-CA
still focus on two important factors: the higher security and
the lower communication complexity.
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In order to improve the security and reduce the com-
munication complexity, we first tried to solve the PSI-CA
problem by using a quantum approach in [4]. Compared
to classical solutions, the proposed quantum PSI-CA pro-
tocol achieves an exponential reduction in communication
complexity, since it only needs O(1) communication cost.
However, the proposed quantum PSI-CA protocol requires
two additional assumptions about the cardinality of the sets,
which limit its wider applications.

In this paper, we further focus on quantum solution to
PSI-CA and present an improved quantum protocol for PSI-
CA without any assumption, which is suitable for practical
applications with big data sets.

II. PRELIMINARIES
A. RELATED WORKS
In 2004, Freedman et al. [10] first considered several two-
party set-intersection problems and presented private set
intersection (PSI) protocols by using homomorphic encryp-
tion to evaluate a secret polynomial. In addition, they also
first extended the proposed PSI protocols to the corre-
sponding PSI-CA protocols. Subsequently, there appeared
many PSI-CA protocols [11]–[16]. Furthermore, in 2012,
Cristofaro et al. [9] presented a novel PSI-CA protocol with
linear computation and communication complexity, which
was the most efficient PSI-CA protocol in previously
proposed PSI-CA protocols. Cristofaro et al. [9] subtly
introduced Diffie-Hellman key exchange to blind the private
information and further built an efficient PSI-CA protocol
based on the difficulty assumption of the discrete logarithm
problem, which indeed achieved linear complexities in the
size of input sets. However, for some applications with big
data sets, even the most efficient PSI-CA protocols are still
not efficient enough due to their communication costs, which
linearly increase with the size of data sets. Furthermore,
the security of these existing PSI-CA protocols is based on
unproven difficulty assumptions, which are vulnerable to
attack by the quantum computer.

With the advent of fast quantum algorithms [17], [18], clas-
sical cryptosystems, including symmetric and asymmetric
(i.e., public key) cryptosystems, are facing enormous threat-
ens and challenges. On the other hand, quantum cryptography
opens a new era. The security of quantum cryptography is
based on the physical principles of quantum mechanics, so it
can provide the unconditional security in theory. Since Ben-
nett and Brassard presented the first quantum key distribution
protocol [19], quantum cryptography has been widely studied
and rapidly developed. Nowadays, a lot of results have been
gained, such as quantum teleportation [20], quantum secret
sharing [21], quantum secure direct communication [22],
quantum signature [23], and so on.

At the same time, SMC was also studied extensively in
quantum fields [24]–[26]. However, unfortunately, Lo [27],
Colbeck [28] and Buhrman et al. [29] pointed out that
unconditionally secure two-party quantum computations

are impossible. But the existing achievements show that
although there is not a perfectly secure two-party quantum
computation, quantum protocols can still provide a reason-
able security improvement over classical related protocols,
such as quantum bit commitment [30] and quantum coin
tossing [19].

Recently, we presented a probabilistic two-party quantum
protocol computing PSI-CA [4], which can output a good
estimator of the intersection cardinality with high probability
and small error. Compared with the classical relevant pro-
tocols, our proposed quantum PSI-CA protocol has at least
two good advantages: higher security and lower communi-
cation complexity. Especially, it achieves the communication
complexity of O(1), which is fully independent of the size
of data sets. However, this protocol requires two additional
assumptions: (1) |C| + |S| < N

2 ; (2)|C| and |S| are public,
where C and S are the sets of the client and the server,
respectively, and all elements of their respective sets belong
to ZN = {0, 1, 2, . . . ,N − 1}. Obviously, these additional
assumptions will certainly limit its wider applications. In this
paper, we try to discard any unnecessary assumption to build
a stronger quantum PSI-CA protocol without losing any good
feature of the original protocol [4].

B. PRIVATE SET INTERSECTION CARDINALITY
Definition 1: Private Set Intersection Cardinality (PSI-

CA) - There are two parties, a client and a server. The client
inputs a private set C and the server inputs a private set
S. After running a PSI-CA protocol, the server outputs the
cardinality of their intersection, i.e., |C ∩ S|, but the client
gets nothing. In addition, PSI-CA should meet the following
privacy requirements:
Server Privacy. The client cannot get any private informa-

tion about the server’s set.
Client Privacy. The server cannot get any private informa-

tion about the client’s set.
The above definition gives the stronger privacy require-

ments than the original definition of [4], because there is no
requirement or limitation about |S| and |C|.

C. QUANTUM COUNTING
In later proposed quantum PSI-CA protocol, we will follow
some ideas from quantum counting. So here we first review
quantum counting. In [31], the counting problem is formu-
lated mathematically: given an oracle function

f : {1, 2, 3, . . . ,N } → {0, 1}, (1)

where N ∈ N, find t , the number of x ∈ {1, 2, 3, . . . ,N } such
that f (x) = 1. N is known, thus, finding t is equivalent to
finding p = t

N , the probability of getting an x with f (x) = 1
when x is picked randomly. Based on quantum parallelism
[4], clearly, the quantum counting approach [4], [31], [32] has
higher efficiency than the classical one. In addition, the quan-
tum counting approach achievesmuch faster convergence rate
than the classical one [31]. Furthermore, we simply review
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FIGURE 1. Circuit for the Grover iteration, G.

Algorithm 1 Quantum Counting Algorithm

1. Prepare two registers in the initial state | ψ0〉 =
1
√
M

∑M−1
y=0 | y〉⊗ | s〉,where | s〉 =

1
√
N

∑N−1
x=0 | x〉.

2. Apply CF on | ψ0〉, which implements | y〉⊗ | s〉 →| y〉 ⊗ Gy | s〉. Call the resultant state | ψ1〉.
3. Apply QFT−1 on the first register of | ψ1〉. Call the resultant state | ψ2〉.
4. Measure the first register of | ψ2〉 to obtain | x〉 and output p̃ = sin2( xM π ), the quantum estimator of p.

quantum counting algorithm, and readers may refer to [4],
[31], and [32] for details.

In the above algorithm, G is the amplitude amplification
operator [4], [15], defined by

G = UsUf , (2)

Uf | x〉 =

{
− | x〉 if f (x) = 1,
| x〉 if f (x) = 0,

(3)

Us = 2 | s〉〈s | −I , (4)

where I is the identity operator. Here, the amplitude ampli-
fication operator G is also known as the Grover itera-
tion or Grover operator, whose quantum circuit is illustrated
in fig 1 [17]. In addition, QFT−1 denotes inverse quantum
Fourier transfer, which is defined by,

QFT : | x〉 →
1
√
N

∑N−1

j=0
e2π i

x
M j
| j〉, (5)

QFT−1 : | x〉 →
1
√
N

∑N−1

j=0
e−2π i

x
M j
| j〉. (6)

Theorem 1 [4], [31]: ∀M ∈ N, the quantum counting
algorithm outputs p̃ such that | p− p̃ |≤ 2π

M
√
p(1− p)+ π2

M2 |

1− 2p | with probability at least 8
π2 .

Corollary 1 [4], [31]: ∀M ∈ N, | t−t̃ |≤ 2π
M

√
t(N − t)+

π2

M2 | N − 2t | with probability at least 8
π2 .

III. PROPOSED QUANTUM PSI-CA PROTOCOL
In the following protocol, suppose that the client’s private set
is C and the server’s private set S. Without loss of generality,
we assume that all components of the two sets lie in ZN ,
where ZN = {0, 1, 2, . . . ,N − 1} and N = 2n. The proposed
protocol consists of 4 steps, which are described in detail as
follows.

IV. ANALYSIS AND COMPARISON
A. CORRECTNESS
By the encoding method, if i ∈ C ∧ i ∈ S, then xi = yi = 1.
That is, xi · yi = 1 if i ∈ C ∩ S and xi · yi = 0 otherwise. So,

| C ∩ S |=
∑N−1

i=0
xi · yi. (10)

Furthermore, based on the hiding method of the client,
we can easily get

N−1∑
i=0

xi · yi =
N−1∑
i=0

(x1,i + x2,i + . . .+ xm,i) · yi

=

∑N−1

i=0
x1,i · yi +

∑N−1

i=0
x2,i · yi

+ . . .+
∑N−1

i=0
xm,i · yi. (11)

In addition, in Step 4 of the above proposed protocol,
the server outputs t̃j = Nsin2( x̃jM π ) as an estimator of∑N−1

i=0 xj,i · yi. Accordingly, we further prove its correctness
as follows:

Suppose that there are tj components satisfying xj,i · yi = 1
in the state | ϕj〉 = 1

√
N

∑N−1
i=0 | i〉 | xj,i〉 | yi〉 | xj,i · yi〉. Thus,

tj =
∑N−1

i=0 xj,i · yi. Let | α〉 = 1
√
tj

∑
| i〉 | xj,i〉 | yi〉 | 1〉 and

| β〉 = 1√
N−tj

∑
| i〉 | xj,i〉 | yi〉 | 0〉. That is,

| ϕj〉 =

√
N − tj
N
| β〉 +

√
tj
N
| α〉. (12)

Choose θ ∈ (0, π2 ) such that sin2θ = tj
N . Accordingly,

sinθ =
√

tj
N and cosθ =

√
N−tj
N . So,

| ϕj〉 = cosθ | β〉 + sinθ | α〉. (13)
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Algorithm 2 Quantum PSI-CA Protocol
Step 1-Encoding (by two parties)

(1) The client encodes his private set C into a private 0/1 vector (x0, x1, . . . , xN−1) over FN2 , where xi = 1 if i ∈ C and
xi = 0 otherwise, for i = 0, 1, . . . ,N − 1.
(2) The server encodes his private set S into a private 0/1 vector (y0, y1, . . . , yN−1) over FN2 , where yi = 1 if i ∈ S and
yi = 0 otherwise, for i = 0, 1, . . . ,N − 1.
For example, if C = {3, 6, 8, 9, 13} over Z16 then (x0, x1, . . . , x15) = (0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0), where
the number of one in the vector is just equal to the cardinality of the set C .

Step 2-Hiding or secret splitting (by the client)
By the private encoded vector (x0, x1, . . . , xN−1), the client generates m auxiliary vectors
(x1,0, x1,1, . . . , x1,N−1), (x2,0, x2,1, . . . , x2,N−1), . . . , (xm,0, xm,1, . . . , xm,N−1) as follows:
For i = 0, 1, . . . ,N − 1, if xi = 1 all xj,is are equal to 0 (i.e., x1,i = x2,i = · · · = xm,i = 0); if xi = 1, he randomly picks
k from the set {1, 2, . . . ,m}, such that xk,i = 1, and the other xj,i = 0(j 6= k). That is, xi =

∑m
j=1 xj,i for any i.

For example, (x0, x1, . . . , x15) = (0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0)
(x1,0, x1,1, . . . , x1,15) = (0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)
(x2,0, x2,1, . . . , x2,15) = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(x3,0, x3,1, . . . , x3,15) = (0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
(x4,0, x4,1, . . . , x4,15) = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)
Please note that the number of one in all m vectors (m = 4 in above example) is equal to the number of one in the original
vector (x0, x1, . . . , xN−1). That is, each digit ‘‘1’’ of the original vector is hided into one of m components. Obviously,
the digits of ‘‘1’’ become dilute in each auxiliary vector.

Step 3-Quantum transformation and transmission (by the client)
(1) The client prepares m initial states | ψ0〉s, which are all in 1

√
N

∑N−1
i=0 | i〉⊗ | 0〉.

(2) The client performs an oracle operator Uj on each initial state | ψ0〉, which implements 1
√
N

∑N−1
i=0 | i〉⊗ | 0〉 →

1
√
N

∑N−1
i=0 | i〉 | xj,i〉. Let | ψj〉 =

1
√
N

∑N−1
i=0 | i〉 | xj,i〉 for j = 1 to m.

(3) The client sends m quantum states {| ψ1〉, | ψ2〉, . . . , | ψm〉} to the server through the quantum channel.
Step 4-Quantum transformation and quantum counting (by the server)

(1) The server performs a similar oracle operator Us on each received state | ψj〉, which implements 1
√
N

∑N−1
i=0 | i〉 |

xj,i〉⊗ | 0〉 → 1
√
N

∑N−1
i=0 | i〉 | xj,i〉 | yi〉. Let | φj〉 =

1
√
N

∑N−1
i=0 | i〉 | xj,i〉 | yi〉 for j = 1 to m.

(2) The server performs another oracle operator Uf on each state | φj〉, which implements 1
√
N

∑N−1
i=0 | i〉 | xj,i〉 | yi〉⊗ |

0〉 → 1
√
N

∑N−1
i=0 | i〉 | xj,i〉 | yi〉 | xj,i · yi〉. Let | ϕj〉 =

1
√
N

∑N−1
i=0 | i〉 | xj,i〉 | yi〉 | xj,i · yi〉 for j = 1 to m.

(3) The server runs quantum counting algorithms m times to count the number of the components satisfying xj,i · yi = 1
in each | ϕj〉 as follows:
For j = 1 to m
{ Prepare two registers in the initial state | R0〉 = 1

√
M

∑M−1
y=0 | y〉⊗ | ϕj〉.

Apply CF on | R0〉 which implements | y〉⊗ | ϕj〉 →| y〉 ⊗ Gy | ϕj〉, where G (see Figure 2) is defined by

G = UϕjUf1 , (7)

Uf1 | i〉 | xj,i〉 | yi〉 | xj,i · yi〉 =

{
− | i〉 | xj,i〉 | yi〉 | xj,i · yi〉 if xj,i · yi = 1
| i〉 | xj,i〉 | yi〉 | xj,i · yi〉 if xj,i · yi = 0,

(8)

Uϕj = 2 | ϕj〉〈ϕj | −I , (9)

Similarly, call the resultant state | R1〉.
Apply QFT−1 on the first register of | R1〉. Call the resultant state | R2〉.
Measure the first register of | R2〉 to obtain | x̃j〉 and output t̃j = Nsin2( x̃jM π ). }
(4) The server computes: t =

∑m
j=1 t̃j, which is his final output of the intersection cardinality.

By the definition of the operator G (see Eqs. (7,8,9)),
whose quantum circuit is illustrated in Figure 2, it can get,

G | β〉 = UϕjUf1 | β〉 = Uϕj | β〉

= (2 | ϕj〉〈ϕj | −I ) | β〉

= 2 | ϕj〉〈ϕj | β〉− | β〉
= 2cosθ | ϕj〉− | β〉
= 2cosθ (cosθ | β〉 + sinθ | α〉)− | β〉
= (2cos2θ − 1) | β〉 + 2sinθcosθ | α〉
= cos2θ | β〉 + sin2θ | α〉, (14)
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FIGURE 2. Circuit for the iteration, G, in Step 4.

G | α〉 = UϕjUf1 | α〉 = Uϕj (− | α〉)

= (2 | ϕj〉〈ϕj | −I )(− | α〉)

= −2 | ϕj〉〈ϕj | α〉+ | α〉

= −2sinθ | ϕj〉+ | α〉

= −2sinθ (cosθ | β〉 + sinθ | α〉)+ | α〉

= −2sinθcosθ | β〉 + (1− 2sin2θ ) | α〉

= −sin2θ | β〉 + cos2θ | α〉. (15)

Furthermore, we define two orthogonal states as follows:

| φ+〉 =
1
√
2
(| β〉 − i | α〉), (16)

| φ−〉 =
1
√
2
(| β〉 − i | α〉). (17)

Then,

G | φ+〉 =
1
√
2
(G | β〉 − iG | α〉)

=
1
√
2
(cos2θ | β〉 + sin2θ | α〉 + isin2θ | β〉

− icos2θ | α〉)

(by Eqs.(14) and (15))

=
ei2θ
√
2
(| β〉 − i | α〉)

(by ei2θ = cos2θ + isin2θ )

= ei2θ | φ+〉, (18)

G | φ−〉 =
1
√
2
(G | β〉 + iG | α〉)

=
1
√
2
(cos2θ | β〉 + sin2θ | α〉 − isin2θ | β〉

+ icos2θ | α〉)

(by Eqs. (14) and (15))

=
e−i2θ
√
2
(| β〉 + i | α〉)

(by e−i2θ = cos2θ − isin2θ )

= e−i2θ | φ−〉. (19)

That is, | φ+〉 and | φ−〉 are eigenvectors of G with
eigenvalues e2iθ and e−2iθ , respectively. Let θ = πω, then

| ϕj〉 = cosθ | β〉 + sinθ | α〉 = eiπω
√
2
| φ+〉 +

e−iπω
√
2
| φ−〉.If

we apply G to | ϕj〉 for y times, then

Gy | ϕj〉 =
eiπ (2y+1)ω
√
2

| φ+〉 +
e−iπ (2y+1)ω
√
2

| φ−〉. (20)

Accordingly, we will get

| R1〉 =
1
√
M

M−1∑
y=0

| y〉 ⊗ Gy | ϕj〉

=
1
√
M

M−1∑
y=0

[| y〉 ⊗ (
eiπ (2y+1)ω
√
2

| φ+〉

+
e−iπ (2y+1)ω
√
2

| φ−〉)]

=
eiπω
√
2M

M−1∑
y=0

ei2πyω | y〉 | φ+〉

+
e−iπω
√
2M

M−1∑
y=0

e−i2πyω | y〉 | φ−〉

=
eiπω
√
2M

∑M−1

y=0
ei2πyω | y〉 | φ+〉

+
e−iπω
√
2M

∑M−1

y=0
ei2πy(1−ω) | y〉 | φ−〉. (21)

After applying QFT−1 to the first logM qubits of the state
| R1〉, we have

QFT−1 ⊗ I | R1〉

= QFT−1 ⊗ I [
eiπω
√
2M

M−1∑
y=0

ei2πyω | y〉 | φ+〉

+
e−iπω
√
2M

M−1∑
y=0

ei2πy(1−ω) | y〉 | φ−〉]

=
eiπω
√
2M

M−1∑
y=0

ei2πyω(QFT−1 | y〉) | φ+〉

+
e−iπω
√
2M

M−1∑
y=0

ei2πy(1−ω)(QFT−1 | y〉) | φ−〉
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=
eiπω
√
2M

M−1∑
y=0

ei2πyω(
1
√
M

M−1∑
x=0

e−i2π
y
M x
| x〉) | φ+〉

+
e−iπω
√
2M

M−1∑
y=0

ei2πy(1−ω)(
1
√
M

M−1∑
x=0

e−i2π
y
M x
| x〉) | φ−〉

=
eiπω
√
2

M−1∑
x=0

{
1
M

M−1∑
y=0

ei2πy(ω−
x
M )
} | x〉 | φ+〉

+
e−iπω
√
2

M−1∑
x=0

{
1
M

M−1∑
y=0

ei2πy[(1−ω)−
x
M ]
} | x〉 | φ−〉

=
eiπω
√
2
| x̃+〉 | φ+〉 +

e−iπω
√
2
| x̃−〉 | φ−〉, (22)

where

| x̃+〉 =
∑M−1

x=0
{
1
M

∑M−1

y=0
ei2πy(ω−

x
M )
} | x〉, (23)

| x̃−〉 =
∑M−1

x=0
{
1
M

∑M−1

y=0
ei2πy[(1−ω)−

x
M ]
} | x〉. (24)

If making a measurement on | x̃+〉 in the computational basis
{| 0〉, | 1〉, . . . , | M − 1〉}, it will get | x〉 with the probability
of | 1M

∑M−1
y=0 ei2πy(ω−

x
M )
|
2, where P(| xM − ω| ≤

1
M ) > 8

π2

(see Refs. [15], [33]). That is, if we make a measurement on
| x̃+〉, the probability of getting either bMωc or dMωe is at
least 8

π2 , which can provide an estimation for ω within the
error 1

M . Similarly, if we make a measurement on | x̃−〉,
the probability of getting either bM (1 − ω)c or dM (1 − ω)e
is at least 8

π2 , which can provide an estimation for (1 − ω)
within the error 1

M .
Since θ = πω, tj = Nsin2πω. Accordingly, for the first

case (i.e., | x̃+〉), ω ≈
x̃j
M , so tj ≈ Nsin2(π x̃j

M ), where x̃j is
the final measurement result of the first logM qubits of the
state | R2〉 in Step 4; for the second case (i.e., | x̃−〉), ω ≈
1− x̃j

M , so tj ≈ Nsin2(π −π x̃j
M ) = Nsin2(π x̃j

M ). In both cases,
it gives the same estimation of tj (i.e.,

∑N−1
i=0 xj,i · yi). That is,

the single estimation of
∑N−1

i=0 xj,i · yi for any j is correct.
To sum up, the proposed quantumPSI-CA protocol ensures

the correctness.

B. SECURITY
In the whole protocol proposed above, the server does not
send out any quantum or classical message. Clearly, the client
cannot get any private information about the server’s set. That
is, Server Privacy is unconditionally secure. In the following
section, we focus on Client Privacy.

In the proposed protocol, the client only sends out m quan-
tum states: | ψ1〉, | ψ2〉, . . . , | ψm〉, without any classical
message, where | ψj〉 = 1

√
N

∑N−1
i=0 | i〉 | xj,i〉 for j = 1

to m. Although all classical information about his private
vectors is embedded into these states, no one can extract
all this information by the physical principles of quantum
mechanics. For a dishonest server, he can extract the client’s
partial private information from these received states by the
following possible attacks.

The first attack is to directly make a projective measure-
ment on the state | ψj〉 (i.e., 1

√
N

∑N−1
i=0 | i〉 | xj,i〉).

Accordingly, he will get | xj,i〉 for any i with the probability
of 1

N . If xj,i = 0, he cannot get any privacy information of
the client because he cannot determine whether xi is equal
to 0, where xi =

∑m
i=0 xj,i. If xj,i = 1, he can deduce that

i ∈ C (i.e., he knows a component of the client’s private
set). Furthermore, by the encoding and hiding methods, it is
clearly shown that the probability of the result of xj,i = 1 is
|C|
mN . Here m is a secure parameter, which can be determined
by the client in advance, such that |C|mN is small enough.
It implies that if the server wants to learn a component of the
client’s private set from one of his received quantum states,
the successful probability is very low (i.e., |C|mN ) Even if he
measures all received quantum states: | ψ1〉, | ψ2〉, . . . , |

ψm〉, the probability of rightly getting r components of the
client’s set is just ( |C|mN )

r (1− |C|mN )
(m−r), where r ≤ m. In fact,

the client always can determine a secure parameter m by the
size of his private set and the public parameterN , such that the
amount of information leakage is small enough. In addition,
if the server performs this attack, he will lose the chance to
further compute the final result of |C ∩ S|, due to No-cloning
Theorem which forbids the creation of identical copies of an
arbitrary unknown quantum state.

The second attack is to count the number of | xj,i〉 satis-
fying xj,i = 1 or 0 in each quantum state | ψj〉 by using
quantum counting algorithm. Furthermore, the server can get
an estimator of |C| in theory. But he cannot get any privacy
information about the contents of the client’s setC . Similarly,
if he performs this attack, he will also lose the opportunity to
finally get the intersection cardinality.

In addition, the dishonest server still can perform a more
complicated attack that he tries to compute the summation of
all received quantum states by the help of a powerful oracle
operator, since he knows that the client uses the classical
secret splitting technology to hide his private encoded vector.
Suppose that there is an oracle operator O, which is defined
by,

O :| i1〉⊗ | i2〉 ⊗ · · ·⊗ | im〉⊗ | 0〉

→ | i1〉⊗ | i2〉 ⊗ · · ·⊗ | im〉⊗ | i1 + i2 + · · · + im〉, (25)

for any ij ∈ {0, 1}. Then, after applying the oracle operator O
on all received quantum states, the dishonest server will get,

O[
1
√
N

N−1∑
i=0

| i〉 | x1,i〉 ⊗
1
√
N

N−1∑
i=0

| i〉 | x2,i〉

⊗ · · · ⊗
1
√
N

N−1∑
i=0

| i〉 | xm,i〉⊗ | 0〉]

=
1
√
Nm

∑
i1,i2,...,im

| i1〉 | i2〉 · · · | im〉 | x1,i1〉 | x2,i2〉

· · · | xm,im〉 | x1,i1 + x2,i2 + · · · + xm,im〉. (26)

In Eq.26, if i1 = i2 = · · · = im = i, then x1,i1 +
x2,i2 + · · · + xm,im = xi. However, due to the randomness
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TABLE 1. The comparison of different protocols.

of the measurement, the probability of extracting a private
component of the client’s encoded vector (i.e., xi) from the
final quantum state in Eq.26 is only 1

Nm−1 , which is negligible.
Therefore, our proposed protocol can resist this attack. And
if the server performs this attack, he will also lose the chance
to finally get the intersection cardinality.

We have analyzed the security of proposed protocols in
ideal settings. That is, our proposed quantum PSI-CA proto-
col achieves the unconditional security of Server Privacy and
the statistical security of Client Privacy. However, in practical
settings, there may be some faults (e.g., noise and error) in
the quantum channel and measurement. In order to ensure
its security in practical settings, we can use the fault toler-
ant technologies, such as decoherence-free states and error-
correcting code, which were introduced in [33] and [34].
In addition, we can also use the decoy-particle technology [4]
to ensure the security of the quantum channel.

C. PERFORMANCE AND COMPARISON
In the proposed protocol, it only requires to transmit m quan-
tum states from the client to the server, and it mainly runs
m quantum counting algorithms. Therefore, the computation
complexity and the communication complexity are O(m),
which is independent of the size of the sets.

On the one hand, the bigger the secure parameter m is,
the higher the security of the protocol is. On the other hand,
the bigger the parameter m is, the higher the communication
costs are. However, |C|mN < 1

m , so m is usually a small integer,
e.g., m = 4 in our above example. Especially, for some
applications with small |C|, we can let m = 2. In general,
the size of the server’s set is bigger than that of the client’s
set in many practical applications, e.g., anonymous authen-
tication [4]. Accordingly, we can make m = 2 in these
applications. Of cause, the client can choose an appropriate
parameterm against information leakage by practical require-
ments. No matter what,m is usually a very small integer, e.g.,
m = 2, 3, 4, 5.

Furthermore, we give a comparison of our new protocol
and other related protocols in Table 1. Compared with the
most efficient classical PSI-CA protocol with the linear com-
plexity (i.e., O(|C| + |S|)), Obviously, our protocol requires
lower communication and computation costs, especially in

applications with big data sets. In addition, our protocol
obtains higher security, because it can resist the attacks of the
quantum computer or the adversary with quantum computing
power.

Compared with our recently proposed protocol [4],
the biggest advantage of our new proposed protocol is to
discard two additional assumptions about the cardinalities of
two sets, which limits its wider applications. That is, our new
protocol does not have any limitation, so it is suitable for
any application in theory, including any large size of the sets.
Of cause, our new protocol enhances the performance with
slightly lower computation and communication complexity.

In addition, we can easily see that the necessary quantum
resource, the most complex quantum operator and the most
complex quantum measurement in our new proposed quan-
tum PSI-CA protocol are 2n-qubit entangled state prepared
by the client in Step 3, the Grover operator G and the von
Neumann measurement in N -dimensional Hilbert space per-
formed by the server in Step 4, respectively. Currently, it
is difficult to implement some complicated quantum oper-
ators and measurements in high-dimensional Hilbert space.
However, there are also lots of great implementation achieve-
ments in quantum information processing by the newest
reports [35]–[42]. Especially, it can successfully implement
the preparing and transmitting multi-qubit entangled states
[35], [40], [41]. Therefore, at present, although our protocol
only provides a theoretical approach to the PSI-CA problem,
we believe that it is possible to implement it in the near
future.

V. CONCLUSION
In this paper, we present a stronger quantum PSI-CA protocol
without any assumption and limitation. The proposed quan-
tum PSI-CA protocol makes the best of quantum parallelism
of quantum encoding and the randomness of quantum mea-
surement, and subtly introduces the classical secret splitting
technology, and accordingly it achieves better performances,
i.e., the constant computation and communication complexi-
ties, the perfect security of Server Privacy and the statistical
security of Client Privacy. Furthermore, we hope that our
methods can provide some new ideas to solve more secure
multi-party computations in future.

73108 VOLUME 6, 2018



R.-H. Shi et al.: Efficient Quantum Protocol for PSI-CA

REFERENCES
[1] X.-B. Chen, Y. Su, G. Xu, Y. Sun, and Y.-X. Yang, ‘‘Quantum state secure

transmission in network communications,’’ Inf. Sci., vol. 276, pp. 363–376,
Aug. 2014.

[2] S. Li, C. Wu, D. Wang, and Y. Dai, ‘‘Secure multiparty computation
of solid geometric problems and their applications,’’ Inf. Sci., vol. 282,
pp. 401–413, Oct. 2014.

[3] A. C. Yao, ‘‘Protocols for secure computations,’’ in Proc. 23th Annu. Symp.
Found. Comput. Sci. (FOCS), Nov. 1982, pp. 160–164.

[4] R.-H. Shi, Y. Mu, H. Zhong, S. Zhang, and J. Cui, ‘‘Quantum private set
intersection cardinality and its application to anonymous authentication,’’
Inf. Sci., vols. 370–371, pp. 147–158, Nov. 2016.

[5] M.-E. Wu, S.-Y. Chang, C.-J. Lu, and H.-M. Sun, ‘‘A communication-
efficient private matching scheme in Client–Server model,’’ Inf. Sci.,
vol. 275, pp. 348–359, Aug. 2014.

[6] F. Buccafurri, L. Fotia, G. Lax, and V. Saraswat, ‘‘Analysis-preserving
protection of user privacy against information leakage of social-network
likes,’’ Inf. Sci., vol. 328, pp. 340–358, Jan. 2016.

[7] M.Kantarcioglu, R. Nix, and J. Vaidya, ‘‘An efficient approximate protocol
for privacy-preserving association rule mining,’’ in Proc. Adv. Knowl.
Discovery Data Mining (Lecture Notes in Computer Science), vol. 5476.
Springer, 2009, pp. 515–524.

[8] A. Narayanan, N. Thiagarajan, M. Lakhani, M. Hamburg, and D. Boneh,
‘‘Location privacy via private proximity testing,’’ in Proc. Netw. Dis-
trib. Syst. Secur. Symp., 2011. [Online]. Available: https://crypto.stanford.
edu/~dabo/pubs/papers/locpriv.pdf

[9] E. De Cristofaro, P. Gasti, and G. Tsudik, ‘‘Fast and private computation
of cardinality of set intersection and union,’’ in Cryptology and Net-
work Security—CANC (Lecture Notes in Computer Science), vol. 7712.
Springer, 2012, pp. 218–231.

[10] M. J. Freedman, K. Nissim, and B. Pinkas, ‘‘Efficient private matching and
set intersection,’’ in Proc. EUROCRYPT, in Lecture Notes in Computer
Science, vol. 3027. Springer, 2004, pp. 1–19.

[11] J. Camenisch and G. M. Zaverucha, ‘‘Private intersection of certified
sets,’’ in Financial Cryptography and Data Security—FC (Lecture Notes
in Computer Science), vol. 5628. Springer, 2009, pp. 108–127.

[12] S. K. Debnath and R. Dutta, ‘‘Secure and efficient private set intersection
cardinality using Bloom filter,’’ in Proc. Inf. Secur. (ISC) in Lecture Notes
in Computer Science, vol. 9290. Springer, 2015, pp. 209–226.

[13] S. Hohenberger and S. A. Weis, ‘‘Honest-verifier private disjointness
testing without random oracles,’’ in Privacy Enhancing Technology—
PET (Lecture Notes in Computer Science), vol. 4258, Springer, 2006,
pp. 277–294.

[14] L. Kissner and D. Song, ‘‘Privacy-preserving set operations,’’ in Advances
in Cryptology—CRYPTO (Lecture Notes in Computer Science), vol. 3621.
Springer, 2005, pp. 241–257.

[15] J. Vaidya and C. Clifton, ‘‘Secure set intersection cardinality with appli-
cation to association rule mining,’’ J. Comput. Secur., vol. 13, no. 4,
pp. 593–622, 2005.

[16] S. Zander, L. L. H. Andrew, and G. Armitage. (2013). Scalable
Private Set Intersection Cardinality for Capture-Recapture With
Multiple Private Datasets. [Online]. Available: http://caia.swin.edu.au/
reports/130930A/CAIA-TR-130930A. pdf

[17] L. K. Grover, ‘‘A fast quantum mechanical algorithm for database search,’’
in Proc. 28th Annu. ACM Symp. Theory Comput., 1996, pp. 212–219.

[18] P. W. Shor, ‘‘Algorithms for quantum computation: Discrete logarithms
and factoring,’’ in Proc. 35th Annu. Symp. Found. Comput. Sci., Nov. 1994,
pp. 124–134.

[19] C. H. Bennett and G. Brassard, ‘‘Quantum cryptography: Public key dis-
tribution and coin tossing,’’ in Proc. IEEE Int. Conf. Comput., Syst., Signal
Process., Dec. 1984, pp. 175–179.

[20] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and
W. K. Wootters, ‘‘Teleporting an unknown quantum state via dual classical
and Einstein-Podolsky-Rosen channels,’’ Phys. Rev. Lett., vol. 70, no. 13,
pp. 1895–1899, 1993.

[21] M. Hillery, V. Bužek, and A. Berthiaume, ‘‘Quantum secret sharing,’’Phys.
Rev. A, Gen. Phys., vol. 59, no. 3, p. 1829, 1999.

[22] C.Wang, F.-G. Deng, Y.-S. Li, X.-S. Liu, andG. L. Long, ‘‘Quantum secure
direct communication with high-dimension quantum superdense coding,’’
Phys. Rev. A, Gen. Phys., vol. 71, no. 4, p. 044305, 2005.

[23] R. J. Collins et al., ‘‘Realization of quantum digital signatures without
the requirement of quantum memory,’’ Phys. Rev. Lett., vol. 113, no. 4,
p. 040502, 2014.

[24] M. Ben-Or, C. Crepeau, D. Gottesman, A. Hassidim, and A. Smith,
‘‘Secure multiparty quantum computation with (only) a strict honest
majority,’’ in Proc. 47th Annu. IEEE Symp. Found. Comput. Sci. (FOCS),
Oct. 2006, pp. 249–260.

[25] C. Crépeau, D. Gottesman, and A. Smith, ‘‘Secure multi-party quantum
computation,’’ in Proc. 34th Annu. ACM Symp. Theory Comput. (STOC),
2002, pp. 643–652.

[26] D. Unruh, ‘‘Universally composable quantum multi-party computation,’’
in Advances in Cryptology—EUROCRYPT (Lecture Notes in Computer
Science), vol. 6110. Springer, 2010, pp. 486–505.

[27] H.-K. Lo, ‘‘Insecurity of quantum secure computations,’’ Phys. Rev. A,
Gen. Phys., vol. 56, pp. 1154–1162, 1997.

[28] R. Colbeck, ‘‘Impossibility of secure two-party classical computation,’’
Phys. Rev. A, Gen. Phys., vol. 76, no. 6, p. 062308, 2007.

[29] H. Buhrman, M. Christandl, and C. Schaffner, ‘‘Complete insecurity of
quantum protocols for classical two-party computation,’’ Phys. Rev. Lett.,
vol. 109, no. 16, p. 160501, 2012.

[30] L. Hardy and A. Kent, ‘‘Cheat sensitive quantum bit commitment,’’ Phys.
Rev. Lett., vol. 92, no. 15, p. 157901, 2004.

[31] Z. Diao, C. Huang, and K.Wang, ‘‘Quantum counting: Algorithm and error
distribution,’’ Acta Appl. Math., vol. 118, pp. 147–159, 2012.

[32] G. Brassard, P. Høyer, and A. Tapp, ‘‘Quantum counting,’’ in Proc. 25th
ICALP, in Lecture Notes in Computer Science, vol. 1443. Springer, 1998,
pp. 820–831.

[33] Y.-B. Li, S.-J. Qin, Z. Yuan, W. Huang, and Y. Sun, ‘‘Quantum private
comparison against decoherence noise,’’ Quantum Inf. Process., vol. 12,
no. 6, pp. 2191–2205, 2013.

[34] Y.B. Li, T.Y. Wang, H.Y, Chen, M.D. Li, Y.T. Yang, ‘‘Fault-tolerate quan-
tum private comparison based on GHZ states and ECC,’’ Int. J. Theor.
Phys., vol. 52, no. 8, pp. 2818–2825, 2013.

[35] Y.-H. Chen, Y. Xia, Q.-Q. Chen, and J. Song, ‘‘Fast and noise-resistant
implementation of quantum phase gates and creation of quantum entangled
states,’’ Phys. Rev. A, Gen. Phys., vol. 91, no. 1, p. 012325, 2015.

[36] S. Dogra, A. Dorai, and K. Dorai, ‘‘Implementation of the quantum Fourier
transform on a hybrid qubit–qutrit NMR quantum emulator,’’ Int. J. Quan-
tum Inf., vol. 13, no. 7, p. 1550059, 2015.

[37] D. Dong, Y.-L. Zhang, C.-L. Zou, X.-B. Zou, and G.-C. Guo, ‘‘Scheme for
purifying a general mixed entangled state and its linear optical implemen-
tation,’’ Chin. Phys. B, vol. 24, no. 10, p. 100306, 2015.

[38] W.-A. Li and L.-F. Wei, ‘‘One-step implementation of quantum controlled-
phase gate via quantum zeno dynamics,’’ Quantum Inf. Compt., vol. 14,
nos. 1–2, pp. 137–143, 2014.

[39] Y.-L. Li, J.-S. Huang, and Z.-H. Xu, ‘‘Implementation of a remote three-
qubit controlled-Z gate via quantum zeno dynamics,’’ Int. J. Theor. Phys.,
vol. 54, no. 5, pp. 1680–1688, 2015.

[40] H.-W. Liu, F. Wang, H.-R. Li, Y. Deng, and M.-X. Luo, ‘‘Optimal bipartite
entanglement transfer and photonic implementations,’’ Opt. Commun.,
vol. 334, pp. 273–279, Jan. 2015.

[41] M. Smania, A. M. Elhassan, A. Tavakoli, and M. Bourennane, ‘‘Experi-
mental quantummultiparty communication protocols,’’NPJ Quantum Inf.,
vol. 2, Jun. 2016, Art. no. 16010.

[42] S. Weimann et al., ‘‘Implementation of quantum and classical discrete
fractional Fourier transforms,’’ Nature Commun., vol. 7, Mar. 2016,
Art. no. 11027.

RUN-HUA SHI received the Ph.D. degree from
the University of Science and Technology of
China in 2011. He is currently a Professor with
North China Electric PowerUniversity. His current
research interests include classical and quantum
cryptography, in particular, privacy-preserving
multi-party computation.

VOLUME 6, 2018 73109


	INTRODUCTION
	PRELIMINARIES
	RELATED WORKS
	PRIVATE SET INTERSECTION CARDINALITY
	QUANTUM COUNTING

	PROPOSED QUANTUM PSI-CA PROTOCOL
	ANALYSIS AND COMPARISON
	CORRECTNESS
	SECURITY
	PERFORMANCE AND COMPARISON

	CONCLUSION
	REFERENCES
	Biographies
	RUN-HUA SHI


