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ABSTRACT Soft sensors are vital for online predictions of quality-related yet difficult-to-measure variables
in process industry. In this paper, an adaptive soft sensing approach based on selective ensemble learning
is proposed for multi-output nonlinear and time-varying industrial processes, which we refer to as the
selective ensemble learning for multi-outputs (SEL-MO). Specifically, an adaptive localization approach
is developed for dealing with the process nonlinearity based on the statistical hypothesis testing theory,
which can construct redundancy-free local model set. At the online operation stage, these constructed
local models are partially combined under an adaptive selective ensemble learning framework, where the
weightings of local models are query-sample-oriented such that both gradual and abrupt changes in the
process characteristics can be handled. In addition, an insensitivity strategy is proposed to enhance the online
computational efficiency of the SEL-MO by avoiding the unnecessary search of the historical data set.
Case studies are carried out on a simulated fed-batch penicillin process and a real-life industrial primary
reformer, and the results obtained demonstrate the effectiveness of the proposed method.

INDEX TERMS Adaptive soft sensor, multi-output process, adaptive localization, statistical hypothesis
testing, selective ensemble learning.

I. INTRODUCTION
In many modern industrial processes, a class of variables
closely related to product quality, known as the primary vari-
ables, must be monitored and controlled online in real-time,
in order to increase profit as well as to enhance process safety
and environmental protection [1]. Measurements of these
primary variables often suffer from large measurement delay,
high maintenance cost or low accuracy. Alternatively, they
can be estimated by soft sensors, which are free from mea-
surement delay, easy to maintain, and able to provide accurate
and reliable estimations of the primary variables. Therefore,
in recent years, the soft sensing technology has gained fast-
increasing applications in many industrial processes, such
as distillation column process, polymer production process,
chemical reactor, etc [2], [3].

Data-driven soft sensors have good versatility and do
not require in-depth knowledge of the target process that
is usually difficult to master. Moreover, they are capable

of describing the true process conditions well because they
are based on the real process data directly collected from
plants [4]. With the wide application of computer technology
based distributed control systems, abundant process data have
been gathered [5]. In the past few decades, various statis-
tical and machine learning methods have become powerful
tools to develop predictive data-driven soft sensors. Extensive
reviews of these soft sensing approaches and their applica-
tions to industrial processes can be found in [4] and [6].
Linear modeling approaches, in particular the partial least
squares (PLS), seem to be dominant methods for applications
to industrial plants, according to a questionnaire survey for
process control of chemical plants in Japan [7]. However, lin-
ear soft sensors cannot perform well in nonlinear processes.
An effective solution is to embed linear modeling within the
local learning framework, such as the ensemble learning [1].

Most industrial processes also exhibit time-varying char-
acteristics due to the process drifts resulting from changes
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of operating conditions and raw materials, catalyst deac-
tivation, mechanical abrasions, or external climatic vari-
ations, etc [3], [7]. The adverse consequence of process
drifts, which can be either gradual or abrupt, is causing
the performance deterioration of soft sensor, in particu-
lar, failure to maintain long-term high-accuracy. This is
recognized as the most crucial problem encountered in appli-
cations [7], [8]. Various adaptive mechanisms are employed,
which can realize online self-updating with newly mea-
sured labeled samples in order for soft sensors to main-
tain satisfactory performance over a long operating period.
Commonly adopted adaptive strategies include recursive
strategy [9]–[11], moving-window (MW) strategy [12]–[14],
just-in-time learning (JITL) strategy [15]–[17], ensemble
learning strategy [18], etc.

Recursive methods generally handle gradual changes well
but are unable to give accurate predictions in time after abrupt
changes. Moreover, recursive methods model the entire set of
process states with a single global model, and may not handle
well the situations of process-state dependent nonlinearities.
MW models also provide high-performance for gradually
changing processes and can deal effectively with the degra-
dations caused by drifts of secondary variables, but they
share the same drawback with recursive models in handling
abrupt changes. JITL-basedmodels, which belong to the local
learning framework, can tackle well the process nonlinearity
as well as both gradual and abrupt changes simultaneously.
However, failures in accurately selecting relevant samples
owing to the reasons such as measurement noise or drifts of
secondary variables often prevent JITL-based soft sensors to
perform satisfactorily.

Unlike the above-discussed single model-based adaptive
strategies, ensemble learning-based soft sensors, which first
construct a group of local models and then combine their out-
puts together for prediction, are able to handle process nonlin-
earities and time-varying changes simultaneously. Ensemble
methods have recently become focal point in soft sensor
development [1], [5], [19]–[22]. To effectively deal with
process nonlinearity, ensemble learning performs localiza-
tion to partition the process states into local model regions
upon which corresponding local models are constructed.
Localization methods can be categorized into two groups,
the distance-based ones and the MW-based ones. The former,
which gathers spatially closed samples together, typically
includes clustering methods, Gaussian mixture models [23]
and JITL methods [3], [24]. However, there exist some issues
associated with this group. For example, clustering methods
cannot perform online inclusion of new cluster members
without retraining from scratch. Although JITL methods can
overcome this drawback, they may have difficulty in properly
building the probabilistic data descriptor models, due to high-
dimensionality of secondary variables and co-linearity as a
result of ill-conditioned covariance matrices.

MW-based methods, which gather time-relevant samples
to construct local model regions by exploiting the fact that
‘data measured close in time have strong relationships and

correlations’ [25], are able to solve the problems related to
clustering-based and JITL-based localization methods. The
key task in MW-based methods is to judge whether two local
model regions are significantly different. To fulfill this task,
the studies [3], [19], [24] employed the statistical hypothesis
testing, t-test, to detect the significant difference between two
predicted residuals’ means. The t-test is a versatile supervised
method. However, it neglects the influence of the second-
order information of the predicted residuals, which may lead
to improper judgement. To deal with this issue, employing
χ2-test in addition to t-test was proposed for performing
hypothesis testing [26], where the effectiveness of consider-
ing the variance information was confirmed.

To prevent performance degradation, ensemble learning
needs to provide two levels of online adaptation. The first one
is the adaptation of local model set, including updating local
models recursively [23], [24] and online inclusion/exclusion
of local models [26], [27]. The later is advantageous in
following re-occurred process states. The second adaptation
level is the adaptation of the combining weights for local
models. Commonly used adaptive weighting criteria include
Bayesian posterior probability [23], [24], monitoring statis-
tics (such as T 2, I2 and Q) [5], estimated prediction vari-
ance [28], predicted errors for the newest samples [22], [29].
In addition, weighing local models by mining the information
contained in both labeled and unlabeled samples was pro-
posed to handle both abrupt and gradual changes in process
characteristics [1], [27]. Recently, it has been recognized that
combing part of ensemble members rather than all of them
may achieve better performance, and several selective ensem-
ble learning (SEL) strategies were proposed. For example,
Zhou et al. [30] and Zhou et al. [31] first proved that partial
ensembling of neural networks could perform better, and
subsequently Zhao and Liu used this philosophy to model the
waste water treatment plant with extreme learning machines
where good performance was achieved. Further, Kaneko and
Funatsu combined part of local support vector regression
models for soft sensor development, and their experimental
results demonstrated high-accuracy of SEL [29]. An adaptive
framework was also developed for SEL, which is capable
of balancing prediction bias and variance, and illustrated the
superiority of the SEL over the traditional ensemble learning
strategy [27].

Similar to most of the data-based soft sensors discussed
above, the SEL-based adaptive soft sensors developed in
our previous works [1], [26], [27] were for single-output
soft sensors, i.e., soft sensors for predicting single primary
variable, which is referred to as the SEL-SO. However, a great
deal of industrial processes havemultiple primary variables to
predict, and a naive approach would be to construct multiple
single-output soft sensors, one for each primary variable,
by directly using a single-output soft sensor design. But this
is inappropriate because it will not only dramatically increase
the cost but also ignore the inherent relationships between
the primary variables. Luckily, many data-based soft sensor
designs originally developed for the single-primary-variable
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case, such as the PLS [32], the locally weighted PLS
(LW-PLS) [33], theMWPLS [13] and the JITL-PLS [34], can
easily be extended to design a multi-output soft sensor for
predicting multiple primary variables. However, it is much
more challenging to extend the SEL-SO to multi-output soft
sensor design. This is because the key components of the
SEL-SO, including its adaptive localization scheme, adaptive
local model weighting strategy and adaptive selective ensem-
ble learning framework, are restricted to single-output mod-
eling and they are not applicable to multi-output modeling.
Extending these components to be applicable to the multi-
output case is complicated and certainly nontrivial. Against
this background, this paper develops a new SEL-based adap-
tive soft sensor for multi-output modeling, referred to as the
SEL-MO. Our main contributions are as follows.
• Because the adaptive localization scheme of the
SEL-SO cannot be applied to the multi-output pro-
cess, we develop a new adaptive localization approach
with the appropriate statistics for multi-output model
hypothesis testing in order to construct an accurate and
redundancy-free multi-output local model set.

• During online operation, the local models’ weights may
be updated too frequently, which imposes heavy online
computational burden, particularly, for multi-output pro-
cesses. We propose a new insensitivity strategy for
adaptive weighting, which significantly reduces online
complexity while maintaining satisfactory performance.

• Because the adaptive selective ensemble learning (SEL)
framework developed in our previous works cannot be
applied directly to the multi-output case, we develop
the theoretical framework necessary for adaptive multi-
output soft sensors and, therefore, complete the design
of the effective SEL-MO.

Two case studies, a simulated fed-batch penicillin process
and a real-life industrial primary reformer, are included to
evaluate the effectiveness of our proposed SEL-MO design as
well as to demonstrate its superior performance over several
state-of-the-art adaptive multi-output soft sensor designs.

II. PARTIAL LEAST SQUARES
Since it is a basic regression algorithm in our SEL-MO,
the PLS algorithm is first briefly reviewed.

Let the m- and p-dimensional input and output vectors
of the ith sample be xi =

[
x1,i x2,i · · · xm,i

]T
∈ Rm and

yi =
[
y1,i y2,i · · · yp,i

]T
∈ Rp, respectively, and assume

that there are N data samples for model construction. Then
the input and output data matrices are denoted by X =
[x1 x2 · · · xN ]T ∈ RN×m and Y =

[
y1 y2 · · · yN

]T
∈ RN×p,

respectively. Assuming that the modeling data have been
mean-centered and appropriately scaled, the PLS algorithm
models the mapping relationship between X and Y as

Y ≈ XCPLS , (1)

where CPLS
=

(
XTX

)+
XTY ∈ Rm×p is the regression

coefficient matrix, and (•)+ denotes the generalized inverse

operator. In the PLS algorithm, data matrices X and Y are
first decomposed respectively as

X =
∑A

i=1
t ipTi + EX = TPT

+ EX , (2)

Y =
∑A

i=1
uiqTi + EY = UQT

+ EY , (3)

where A denotes the number of latent variables, T =[
t1 · · · tA

]T
∈ RN×A and U =

[
u1 · · · uA

]T
∈ RN×A denote

the score matrices, and P =
[
p1 · · · pA

]T
∈ Rm×A and

Q =
[
q1 · · · qA

]T
∈ Rp×A represent the loading matrices of

X and Y , respectively, while EX ∈ RN×m and EY ∈ RN×m

denote the respective residual matrices.
Realizing (2) and (3) involves iterative operations, where

in the ith iteration it is required that t i and ui can maximally
represent the variations of X and Y , respectively, while t i can
best explain ui. Thus in the ith iteration, the PLS algorithm
needs to solve the following optimization problem:

max cov (t i,ui) = max
√
var (t i) var (ui)r (t i,ui), (4)

where cov (•, •), var (•) and r (•, •) represent the operators
of calculating covariance, variance and correlation coeffi-
cient, respectively. The optimization (4) can be transformed
into an eigenvector decomposition problem, and the linear
relationship between t i and ui can be obtained via the least
squares regression as ui = bit i with bi = tTi ui

/
tTi t i. Pseudo-

codes and computer programs for the PLS algorithm can
readily be found in [9] and [32].

III. PROPOSED SEL-MO ADAPTIVE SOFT SENSOR
In order to deal with process nonlinearities, the SEL-MO
performs adaptive localization partitioning of the process
states into local model regions, on which locally valid PLS
models are constructed. These operations are implemented
at the offline stage. At the online operation stage, query
sample-oriented SEL strategy is designed, which adaptively
determines the combining weights of ensemble members in
order to provide the soft sensor with adaptive capability.

A. ADAPTIVE LOCALIZATION VIA STATISTICAL
HYPOTHESIS TESTING
The task of the localization is to establish the local experts
{f l}

L
l=1 that are valid in their corresponding local model

regions represented by the sub-datasets {X l,Y l}Ll=1. The
schematic of the proposed localization approach is illustrated
in Fig. 1. The basic idea is as follows. A data windowW ini =

{X ini ∈ RW×m,Y ini ∈ RW×p
} with W consecutive-time

samples is initially set, and an initial local model f ini is built
on it by the PLS algorithm. Subsequently, a shifted window
W sft = {X sft ∈ RW×m,Y sft ∈ RW×p

} is obtained by moving
the window one sample step ahead. If the two local regions,
W ini andW sft , are not significantly different, it is considered
that the samples within W sft come from the same process
state as those withinW ini, and the window is continued to be
shifted forward. Otherwise,W sft is considered to represent a
new state different from the one represented by W ini, and a
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FIGURE 1. Schematic of the adaptive localization for multi-output soft
sensors.

new local model f new should be constructed onW sft and it is
added to the local model set.

Denote the predicted residual matrices of f ini for the data
samples withinW ini andW sft as

Rini = f ini(X ini)− Y ini, (5)

Rsft = f ini(X sft )− Y sft , (6)

respectively, where Rini ∈ RW×p and Rsft ∈ RW×p. If Rini
andRsft are not significantly different, the performance of f ini
on W ini and W sft can be considered to be similar, implying
that the two data windows are essentially the same. As f ini
is a multi-output linear model, Rini and Rsft are consid-
ered not significantly different when both their mean vectors
and covariance matrices are the same. Accordingly, the null
hypothesis, Hµ

0 and H6
0 , are set as

Hµ
0 : µsft = µini, (7)

H6
0 : 6sft = 6ini, (8)

in which µsft and µini are the mean vectors of the populations
where the samples of Rsft and Rini come from, respectively,
while6sft and6ini are the covariance matrices of the popula-
tions where Rsft and Rini come from, respectively. Moreover,
µini and 6ini are estimated directly based on Rini, yielding
µini = 0 and 6ini ≈

1
W−1R

T
iniRini. Note that in [35], only

the null hypothesis test Hµ
0 was employed to judge whether

Rini and Rsft are the same, which is insufficient. In order to
determine whether or not to accept Hµ

0 , the statistic Fµ is
constructed as

Fµ =
(W − p)W
(W − 1)p

(
µ̂sft − µini

)
6̂
−1
sft
(
µ̂sft − µini

)T
, (9)

where µ̂sft and 6̂sft are the mean vector and
covariance matrix of Rsft , respectively, estimated with

6̂sft =
1

W−1

∑W
i=1

(
Rsft (i, :)− µ̂sft

)T (Rsft (i, :)− µ̂sft) and
µ̂sft =

1
W

∑W
i=1 Rsft (i, :) in which Rsft (i, :) denotes the

ith row of Rsft . Assuming that both Rini and Rsft follow
the multivariate normal distributions, then Fµ follows the
F distribution with the degrees of freedom p and W − p,
denoted as Fµ ∼ F(p,W − p), when Hµ

0 holds. Therefore,
the condition of accepting Hµ

0 is

Fµ < λµ, (10)

where λµ is the threshold value given the significance level
αµ which satisfies Pro

{
Fµ < λµ

}
= 1− αµ.

In order to test whether to accept H6
0 or not, we consider

the following statistic

F6 =
W−1
b

(
ln |6ini| − p− ln

∣∣∣ 6̂sft

W−1

∣∣∣+ tr
( 6̂sft6

−1
ini

W−1

))
,

(11)

where |•| and tr (•) denote the determinant and trace oper-
ators, respectively, while b = z1

1−D1−z1/z2
, z1 =

p(p+1)
2 ,

z2 =
z1+2
D2−D2

1
,D1 =

2p+1−2/(p+1)
6(W−1) , andD2 =

(p−1)(p+2)
6(W−1)2

. When

W or p is sufficiently large and H6
0 holds, F6 approximately

follows the F distribution with the degrees of freedom z1 and
z2, and the condition of accepting H6

0 is

F6 < λ6, (12)

where λ6 is the threshold value given the significance level
α6 which satisfies Pro {F6 < λ6} = 1− α6 .

In summary, W ini and W sft are not significantly different
only when both (10) and (12) are satisfied.

Assume that the local model set consists of L > 1 inde-
pendent local models {f l}

L
l=1, and f ini = f L is used. When

W ini andW sft are tested to be different, the new local model
f new is different from f L . However, it cannot be asserted that
f new differs from the rest L − 1 models in {fl}L−1l=1 , as some
process states may re-occur. Thus, redundancy check after
the detection of the new local model is necessary to delete
redundant model. This task is also fulfilled based on the
statistical hypothesis testing. Specifically, let the predicted
residual matrices Rnew and Rl , calculated on the samples of
W sft by f new and the lth local model f l for 1 ≤ l ≤ L − 1,
be denoted respectively as

Rnew = f new
(
X sft

)
− Y sft , (13)

Rl = f l
(
X sft

)
− Y sft . (14)

To test whether Rnew and Rl are significantly different or not,
the two null hypotheses, Hµl

0 and H6l
0 , are set as

Hµl
0 : µl = µnew, (15)

H6l
0 : 6l = 6new, (16)

in which µl and µnew are the mean vectors of the populations
where the samples of Rl and Rnew come from, respectively,
while 6l and 6new are the covariance matrices of the popu-
lations where the samples of Rl and Rnew come from, respec-
tively. Here µnew and 6new are estimated based on Rnew,
respectively, as µnew = 0 and 6new ≈

1
W−1R

T
newRnew.
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Algorithm 1 Adaptive Localization Procedure for Multi-
Output Soft Sensors
1: Step 1) Initialization.
2: SetW ini with W consecutive-time samples from histori-

cal dataset, and construct local PLS model f ini on W ini;

3: Calculate Rini using (5), and estimate µini and 6ini;
4: Set L = 1, f L = f ini, andW sft = W ini;
5: Step 2) New local model detection.
6: Step 2a) Shift W sft one sample step ahead to get new
W sft , calculate Rsft using (6), and estimate µ̂sft and 6̂sft ;

7: Construct Fµ and F6 using (9) and (11), respectively;
8: if both conditions (10) and (12) are satisfied then
9: Go to Step 2a);

10: end if
11: Build a new model f new on W sft , calculate Rnew using

(13), and estimate µnew and 6new;
12: Step 3) Redundant local model check.
13: for l = 1, 2, · · · ,L − 1 do
14: Calculate Rl according to (14), and estimate corre-

sponding µ̂l and 6̂l ;
15: Construct F (l)

µ and F (l)
6 according to (17) and (18);

16: if condition (19) is satisfied then
17: Delete f l , set f i = f i+1 for i = l, l + 1, · · · ,L − 1,

set L = L − 1, and go to Step 3a);
18: end if
19: end for
20: Step 3a) Set L=L+1, add f new to local model set as f L ;
21: SetW ini = W sft and f ini = f new, and return to Step 2);

Subsequently, the following two statistics are constructed

F (l)
µ =

(W − p)W
(W − 1)p

(
µ̂l − µnew

)
6̂
−1
l
(
µ̂l − µnew

)T
, (17)

F (l)
6 =

W−1
b

(
ln |6new|−p−ln

∣∣∣ 6̂l

W−1

∣∣∣+tr( 6̂l6
−1
new

W − 1

))
,

(18)

where µ̂l and 6̂l are the mean vector and covari-
ance matrix of Rl , with µ̂l =

1
W

∑W
i=1 Rl(i, :) and

6̂l =
1

W−1

∑W
i=1

(
Rl(i, :)− µ̂l

)T (Rl(i, :)− µ̂l). Under the
assumption that Rl and Rnew follow the multivariate normal
distributions, F (l)

µ ∼F(p,W−p) when Hµl
0 holds, and F (l)

6 ∼

F(z1, z2) when H
6l
0 holds. Hence, f l and f new are regarded

to be identical if the following condition is met

F (l)
µ < λµ & F (l)

6 < λ6 . (19)

Under this circumstance, either f l or f new is redundant and
one of them should be removed. Since f l is relatively ‘older’
than f new, f new is kept and f l is removed.
The proposed adaptive localization procedure is summa-

rized in Algorithm 1.
Remark 1: At the online stage, the process will record

the new secondary-variable measurements or samples {xq}.

FIGURE 2. Schematic diagram of the selective ensemble learning for
multi-output soft sensors.

After the labels or the true outputs yq associated with
these secondary-variable samples xq are eventually known,
for example, provided by online analyzer in a hour later,
the newly acquired ‘online’ labeled data {xq, yq} can be added
to the historical dataset, and the above adaptive localization
procedure can continue by moving the window forward to
identify new local models and discard redundant models from
the local model set. In this way, any newly emerging process
state during the (just finished) online operation period can be
captured and added to the local model set.
Remark 2: The significance levels, αµ and α6 , are usually

set to small values, e.g., 0.05. The selection of the window
size W is a trade-off between the adaptation capability for
capturing fast time-varying process states and the accuracy
of the statistics. How to determine appropriate values for
the algorithmic parameters of the SEL-MO, including W ,
is addressed in Section III-C.

B. SELECTIVE ENSEMBLE LEARNING WITH
INSENSITIVITY STRATEGY
Fig. 2 depicts the schematic diagram of the proposed
SEL-MO for adaptive soft sensor, which makes an ensem-
ble of partial members of the local models generated by
the localization scheme to estimate the output of a query
sample xq. There are three main steps in forming the SEL-
MO based soft sensor: 1) the generalization ability of each
local model for the given xq is measured; 2) some models
with good generalization abilities are selected; and 3) those
selected local models are combined together appropriately.
Accordingly, there are three questions that must be answered:
• Q 1: how to quantify the generalization ability of each
local model given query sample xq?

• Q 2: how to determine which models should be selected
and which models should be filtered out?

• Q 3: how to make the ensemble of those selected models
appropriately?

To answer Q 1, the generalization ability of the lth local
model f l , denoted as ζ (l), for 1 ≤ l ≤ L, must be quantified.
It has been shown that the information contained in the newest
labeled sample and the neighbors of the query sample can
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be utilized to measure the generalization ability of a single-
output local model [26], [27], [35]. Let the newest labeled
sample be denoted as

{
x0, y0

}
. Assume that K nearest neigh-

bors of xq from the historical dataset are utilized, which are
denoted by

{
x(q)k , y

(q)
k

}K
k=1. Further define the absolute error

vector e(l)0 ∈ Rp of the lth local model for
{
x0, y0

}
as

e(l)0 [j] =
∣∣f l(x0)[j]− y0[j]∣∣, (20)

and the absolute error vectors e(l)k ∈ Rp, 1 ≤ k ≤ K , of the
lth local model for

{
x(q)k , y

(q)
k

}K
k=1 as

e(l)k [j] =
∣∣∣f l(x(q)k )[j]− y(q)k [j]

∣∣∣, (21)

where [j] denotes the jth element of the corresponding vector.
Then the generalization ability of the lth multi-output local
model can be quantified by

ζ (l) =
1

β
(
e(l)0
)T
θ + (1− β)

K∑
k=1

wk
(
e(l)k
)T
θ
/ K∑

k=1
wk

=
1

p∑
j=1
θj

(
βe(l)0 [j]+(1−β)

(
K∑
k=1

wke
(l)
k [j]

/ K∑
k=1

wk

)) ,
(22)

where θ =
[
θ1 θ2 · · · θp

]T
∈ Rp with θj representing the

importance of the jth primary variable, and wk is the weight
for the kth neighbor of xq, while β is the linking parameter
that connects the newest sample x0 and the query sample xq.
The importance parameters θj, 1 ≤ j ≤ p, are deter-

mined by the prior knowledge. For those primary variables
that are more important, such as having higher price, higher
values may be assigned to their corresponding importance
parameters. In the case of no prior knowledge, all the primary
variables may be treated with equal importance by assigning
θj = 1 for 1 ≤ j ≤ p. The weighting wk is defined as

wk = exp
(
−d
(
xq, x

(q)
k

)/
σd

)
, (23)

where d(•, •) stands for the Euclidean distance between two
vectors and σd denotes the standard deviation of the distances
between every two samples in the historical dataset. The
linking parameter β is adaptively determined according to

β = exp
(
−ϕd

(
xq, x0

))
, (24)

with ϕ is the scaling factor. It can be inferred that using (23)
reduces the influence of faraway neighbors of xq, while by
using (24) the influence of the newest labeled sample

{
x0, y0

}
on the query sample xq can be adaptively adjusted. These two
rules are helpful to deal with both gradual and abrupt drifts in
the process characteristics. Since the denominator of ζ (l) is
composed of the relevant predicted errors, the larger ζ (l) is,
the better generalization ability the lth local model has. For
the convenience, the normalized ζ (l), denoted as ζ̃ (l), is used,
which is given by

ζ̃ (l) =
ζ (l)

max {ζ (1), ζ (2), · · · , ζ (L)}
∈ (0, 1]. (25)

Q 2 is answered by selecting those local models whose
generalization abilities are above a threshold level δ. Hence,
the indexes of the selected local models, represented by the
index set LM = {l1, · · · , lM }, are determined according to

LM =
{
l
∣∣1 ≤ l ≤ L and ζ̃ (l) ≥ δ

}
, (26)

where M indicates the number of the selected local models
which obviously varies in each prediction round. It can be
seen that due to the normalization in (25), δ ∈ [0, 1] should
be used. With δ = 0, every local model is selected, while
with δ = 1, only one local model is selected. In general,
the smaller δ is set, the more local models are combined,
and vice versa. Thus, the threshold level δ is an important
parameter to facilitate an appropriate implementation of the
SEL-MO.
Q 3 is answered by building an ensemble of those

selected local models under the Bayesian inference frame-
work. Specifically, assume that the prior probabilities of the
local models in the selected model set LM are equal, i.e.,

Pr
(
f lj
)
=

1
M
, lj ∈ LM . (27)

Further define the likelihood that xq can be described by the
ljth local model to be ζ̃ (lj), i.e.,

Pr
(
xq|f lj

)
= ζ̃ (lj). (28)

According to the Bayesian inference, the estimated output ŷq
for the query sample xq is calculated as

ŷq =
∑M

j=1
ζ̃ (lj)f lj (xq)

/∑M

j=1
ζ̃ (lj). (29)

It is worth pointing out that since at the online operation stage,
the weight of each ensemble member is adaptively deter-
mined according to the query sample and the localization
scheme may continue to adaptively update the local model
set, our proposed SEL-MO based soft sensor is self-adaptive.

In each prediction round, searching the historical database
to find the K neighbors of the query sample xq is required
to calculate the generalization measure (22). This is the main
computational burden of the SEL-MO at the online operation
stage, particularly when the size of the historical database is
large and the output dimension p is high. Intuitively, when
there is no abrupt drift in the process, by using only the newest
labeled sample {x0, y0} without involving the neighbors of
xq, the SEL is still capable of providing good estimation
performance. By contrast, when the process is in an abrupt
change, using {x0, y0} alone is insufficient and it is necessary
to search for the neighbors of xq, in order to provide an
accurate estimate. Based on this discussion, an insensitivity
strategy is proposed which limits the search frequency of
the historical database when appropriate, in order for the
SEL-MO to achieve high online computational efficiency,
while maintaining an accurate estimation performance. Note
that this insensitivity strategy has not been discussed in the
existing SEL-related literature.

VOLUME 6, 2018 55633



W. Shao et al.: Adaptive Soft Sensor Development for Multi-Output Industrial Processes Based on SEL

Algorithm 2Online Operations of the SEL-MOBasedAdap-
tive Soft Sensor

1: Calculate β using (24) and e(l)0 for 1 ≤ l ≤ L using (20);
2: if condition (30) holds then
3: Calculate ζ (l) for 1 ≤ l ≤ L using (31);
4: else
5: Search for xq’s K nearest neighbors based on

Euclidean distance;
6: Calculate wk for 1 ≤ k ≤ K using (23), and calculate

e(l)k for 1 ≤ l ≤ L and 1 ≤ k ≤ K using (21);
7: Calculate ζ (l) for 1 ≤ l ≤ L using (22);
8: end if
9: Normalize ζ (l) for 1 ≤ l ≤ L according to (25);
10: Determine indexes of selected local models using (26);
11: Make an ensemble of selected local models to estimate

primary variables using (29);

When the process characteristics are varying slowly, xq is
located near to {x0, y0}, and according to (24), β is large.
By contrast, when abrupt changes in the process occur, xq is
located faraway from {x0, y0}, and β becomes small. There-
fore, the value of β embodies the varying speed of the pro-
cess characteristics, and the process is considered to change
slowly if

β > ε, (30)

where ε ∈ [0, 1] is a pre-set threshold. When (30) holds,
1 − β is small and the second term in the denominator of
ζ (l) becomes small. Thus the SEL-MO is insensitive to the
neighbours of xq when (30) holds, and the generalization
measure of the lth local model can be simplified to

ζ (l) =
1(

e(l)0
)T
θ
=

1∑p
j=1 θje

(l)
0 [j]

. (31)

From (24), β ∈ [0, 1]. Therefore, if ε is set to 0, (30) always
holds and searching for the neighbors of xq never takes place.
On the other hand, if ε = 1 is chosen, searching for the
neighbors of xq always takes place for every xq.

Algorithm 2 summarizes the online operations of the
SEL-MO based adaptive soft sensor given a query sample xq.

C. PSO BASED ALGORITHMIC PARAMETER
OPTIMIZATION
The key algorithmic parameters of the SEL-MO include the
window size W , the number of latent variables in the PLS
algorithm A, the scaling factor ϕ, the query sample’s neigh-
borhood size K , and the degree of the SEL δ. Tuning of these
parameters manually is intractable. Therefore, the particle
swarm optimization (PSO) technique [36]–[38] is employed
to realize the automatic parameter optimization for the
SEL-MO.

The determination of the algorithmic parameters for the
SEL-MO based soft sensor can be casted as the following

optimization problem

ssap? = argmin
ssap

cost(ssap), (32)

where the algorithmic parameter vector of the SEL-MO is

ssap = [W A K ϕ δ]T, (33)

and the cost function calculated on the validation dataset is
given by

cost(ssap) =
∑p

j=1
θjRMSEvalj (ssap). (34)

in which RMSEvalj (ssap) is the predicted root mean squares
error (RMSE) by the SEL-MO with ssap for the jth primary
variable obtained on the validation dataset.

The PSO algorithm is used to solve this optimization prob-
lem and, therefore, to obtain the optimal W ?, A?, K ?, ϕ?

and δ? for the SEL-MO based soft sensor. Implementation
of PSO can readily be found in [36]–[38]. In this PSO based
optimization, ε is set to 1, as this is an offline optimization
and the aim is to achieve the best performance. The influence
of ε on the achievable performance at the online operation
stage will be further investigated in the next section.

IV. CASE STUDIES
The performance of the proposed soft sensor is investi-
gated using two chemical processes, a simulated penicillin
fermentation process with three primary variables and a
real-life industrial primary reformer with four primary vari-
ables. Three PLS based soft sensors, the LW-PLS [33],
the MWPLS [13] and the JITL-PLS [34], as well as the least
squares support vector regression (LSSVR) [39] with Gaus-
sian kernel are used as the benchmarks. We also implement
the p multiple single-output soft sensors using our previous
SEL-SO [26] as a comparison. To quantitatively evaluate the
performance of a soft sensor, the RMSE is adopted, which is
defined as

RMSEj =

√∑Nt

t=1

(̂
yj,t − yj,t

)2/Nt , (35)

for 1 ≤ j ≤ p, where yj,t is the jth primary variable of the
tth query sample, and ŷj,t denotes the predicted value of yj,t ,
while Nt is the number of the test samples.

A. FED-BATCH PENICILLIN FERMENTATION PROCESS
The penicillin fermentation process is a biochemical fed-
batch process with nonlinear dynamics and multi-phase char-
acteristics, which has been widely adopted for performance
assessment of adaptive soft sensors [2], [3]. A simulator for
simulating this fermentation process under a variety of oper-
ating conditions, referred to as PenSim, is available at [40].
For our soft sensor modeling of this fermentation process,
the penicillin concentration, biomass concentration and sub-
strate concentration are selected as the primary variables,
while the other 10 process variables are used as the secondary
variables, as tabulated in Table 1.
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TABLE 1. Secondary and primary variables of soft sensors for the
fermentation process [2].

The measurement noise is added to each of the secondary
variables, and the noise level is specified by

noise level = (σn/σs)× 100%, (36)

where σs and σn represent the standard deviation of the sec-
ondary variable considered and that of the noise, respectively.
Six batches of data were generated using the PenSim tool
with default simulation conditions [40], where the simulation
duration was 400 h and the sampling interval was set to 0.5 h.
Therefore, each batch is composed of 800 samples. The entire
dataset is divided into three parts: the first two batches of
samples are used as the training dataset, the middle two
batches of samples are used as the validation dataset, and the
last two batches of samples are used as the testing dataset.

When optimizing the five algorithmic parameters of the
SEL-MO using the PSO on the validation dataset, ε was set
to 1, i.e., the insensitivity strategy was not invoked, while the
noise level was set to 10%. In addition, the three primary
variables were assigned to the same importance, i.e., θ1 =
θ2 = θ3 = 1. The parameters of the five benchmark soft
sensing approaches were also optimized on the same valida-
tion dataset using the PSO. The optimized parameters of all
the six soft sensing methods for the penicillin fermentation
process are summarized as follows.

• LSSVR: The kernel width is 2.99 and the regularization
parameter is 98061.

• LW-PLS: The neighborhood size of query sample is 15,
A = 1, and the scaling parameter is 5.26.

• JITL-PLS: The neighborhood size of query sample is 15,
and A = 3.

• MWPLS: The window size is 15, and A = 2.
• Three SEL-SOs: for penicillin, W = 16, A = 2, K = 3,
ϕ = 1.469, and δ = 0.383; for biomass, W = 16, A =
3, K = 41, ϕ = 0.545, and δ = 0.360; for substrate,
W = 39, A = 8, K = 5, ϕ = 2.742, and δ = 0.433.

• SEL-MO: W = 15, A = 2, K = 5, ϕ = 0.5, and
δ = 0.47.

Note that for the LW-PLS, JITL-PLS, MWPLS, three
SEL-SOs and SEL-MO, the lower limit of the searching range
for the neighborhood size or the window size was set to 15,
because too small a window size or neighborhood size should
be avoided, in terms of model stability and noise resistance.

FIGURE 3. Predictions of the penicillin concentration by the LSSVR with
(a) noise level 10%, and (b) noise level 30%.

FIGURE 4. Predictions of the penicillin concentration by the LW-PLS with
(a) noise level 10%, and (b) noise level 30%.

FIGURE 5. Predictions of the penicillin concentration by the JITL-PLS with
(a) noise level 10%, and (b) noise level 30%.

FIGURE 6. Predictions of the penicillin concentration by the MWPLS with
(a) noise level 10%, and (b) noise level 30%.

The predictions of the three primary variables of the fer-
mentation process by the six soft sensors on the two testing
batches consisting of 1600 samples are plotted in Figs. 3 to 8,
Figs. 9 to 14, and Figs. 15 to 20, respectively, for the two given
noise levels of 10% and 30%. The quantitative prediction
accuracies of the six soft sensors, in terms of RMSE, are
further tabulated in Table 2 for various noise levels, where
the results of the proposed SEL-MO were obtained without
the insensitivity strategy, i.e., with ε = 1.

It can be seen that the nonlinear LSSVR is inferior
to the two adaptive nonlinear local learning methods, the
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FIGURE 7. Predictions of the penicillin concentration by the SEL-SO with
(a) noise level 10%, and (b) noise level 30%.

FIGURE 8. Predictions of the penicillin concentration by the SEL-MO with
(a) noise level 10%, and (b) noise level 30%.

FIGURE 9. Predictions of the biomass concentration by the LSSVR with
(a) noise level 10%, and (b) noise level 30%.

FIGURE 10. Predictions of the biomass concentration by the LW-PLS with
(a) noise level 10%, and (b) noise level 30%.

JIT-PLS and MWPLS, and the LSSVR based soft sensor is
prone to the measurement noise. However, the performance
of the JIT-PLS soft sensor is also prone to the measurement
noise, while the prediction accuracy of the MWPLS soft
sensor deteriorates sharply when the process characteristics
are changing rapidly. The results of Figs. 3 to 20 and Table 2
confirm that the proposed SEL-MO is much more superior
to the LSSVR, LW-PLS, JIT-PLS and MWPLS soft sensing
methods, as it can deal with the process nonlinearity and
time-varying characteristics as well as the measurement noise
much more effectively.

FIGURE 11. Predictions of the biomass concentration by the JITL-PLS
with (a) noise level 10%, and (b) noise level 30%.

FIGURE 12. Predictions of the biomass concentration by the MWPLS with
(a) noise level 10%, and (b) noise level 30%.

FIGURE 13. Predictions of the biomass concentration by the SEL-SO with
(a) noise level 10%, and (b) noise level 30%.

It should be pointed out that with noise levels set as 5%,
10% and 25%, the generalized RMSE for predicting the
concentration of substrate by the SEL-MO based soft sensor
is larger than that by the SEL-SO based one. This may be
explained from the objective function for parameter optimiza-
tion defined in (34). In the SEL-MO, the PSO makes trade-
off among various primary variables; in contrast, the SEL-SO
just needs to consider one single primary variable. On the
other hand, as can be seen from Figs. 15 to 20, for quite a
long period, the substrate concentration is basically constant,
where no correlation with the other two primary variables can
be extracted. Therefore, the SEL-SO is able to achieve slight
advantage over the SEL-MO. However, we should notice
that the accuracy enhancement for the penicillin and biomass
concentrations made by the SEL-MO is more remarkable
compared with that for the substrate concentration made by
the SEL-SO.

The reason that the JITL-PLS is prone to the effect of
noise is because it is a spatial method [41], where the relevant
samples for local model construction are selected according
to the Euclidean distance metric. In the case of strong process
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FIGURE 14. Predictions of the biomass concentration by the SEL-MO with
(a) noise level 10%, and (b) noise level 30%.

FIGURE 15. Predictions of the substrate concentration by the LSSVR with
(a) noise level 10%, and (b) noise level 30%.

FIGURE 16. Predictions of the substrate concentration by the LW-PLS with
(a) noise level 10%, and (b) noise level 30%.

FIGURE 17. Predictions of the substrate concentration by the JITL-PLS
with (a) noise level 10%, and (b) noise level 30%.

nonlinearity, the selected samples become less relevant with
the query sample as the noise level increases, which con-
tributes to the performance deterioration of the JITL-PLS.
The temporal MWPLS and the SEL-MO on the other hand
construct the local sample set based on the time-relevance
criterion instead of the distance-relevance criterion, which
is much less affected by the measurement noise. There-
fore, the MWPLS and SEL-MO are more robust against the
noise than the JITL-PLS. Furthermore, in the SEL-MO, the
newest labeled samples that dominate the online weighting

FIGURE 18. Predictions of the substrate concentration by the MWPLS
with (a) noise level 10%, and (b) noise level 30%.

FIGURE 19. Predictions of the substrate concentration by the SEL-SO with
(a) noise level 10%, and (b) noise level 30%.

FIGURE 20. Predictions of the substrate concentration by the SEL-MO
with (a) noise level 10%, and (b) noise level 30%.

of local models in most test samples are also free of noise.
Thus, the SEL-MO is more robust against the noise than the
MWPLS.

The performance of the MWPLS is poor when the process
undergoes abrupt changes. This issue is effectively tackled by
the SEL-MO, because the information of the query sample
is taken into consideration using (22). Fig. 21 compares the
performance of the MWPLS and SEL-MO on a segment of
the testing samples. As can be seen from Fig. 21, unlike
the MWPLS which produces large errors when the abrupt
changes occur at the beginning of the new batch and at
the beginning of the exponential phase within one batch,
the SEL-MO can adapt to a new state quickly and accurately.
This property of the SEL-MO is highly desirable for model-
ing systems with transition process, because the completion
of the transition can be detected in time with the SEL-MO,
which is extremely useful for reducing the amount of off-
grade products [42].

Compared to the SEL-MO soft sensor, using three SEL-SO
soft sensors to predict the three primary variables imposes
three times more computational complexity in the off-line
model construction and more critically requires three times
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TABLE 2. RMSE prediction performance of various soft sensors for the
penicillin fermentation process.

more online computational costs. Moreover, the results of
Figs. 7, 8, 13, 14, 19 and 20 as well as Table 2 also con-
firm that the proposed SEL-MO soft sensor provides more
accurate predictions for the penicillin, biomass and substrate
concentrations than the three SEL-SO soft sensors.

The above results for the SEL-MO are obtained without
the insensitivity strategy, i.e., with ε = 1. Fig. 22 plots
the variations of the connecting factor β given the noise
level 15%. Observe from Fig. 22 that for most of the testing
samples, β is close to 1, and it drops significantly only when
abrupt changes occur, e.g., the start of a new batch. This
fact implies that when the process characteristics are vary-
ing slowly, the information of the newest labeled sample is
dominant in quantifying the generalization ability of a local
model using (22) and the neighbors of the query sample may
be dispensable.

When ε is set to be smaller than 1, the insensitivity strategy
is applied. The influence of ε on the achievable performance
and computational complexity of the SEL-MO is now inves-
tigated. Specifically, its prediction RMSE, the search times
of database to find the neighbors of query sample, and the
online consumed physical CPU time (CPTonline, in seconds),
are calculated. The CPTonline is obtained by averaging over

FIGURE 21. Comparisons between the predictions of the MWPLS and the
SEL-MO with the noise level 30% for: (a) penicillin concentration,
(b) biomass concentration, and (c) substrate concentration.

FIGURE 22. Time plot of β given the noise level 15% for the penicillin
fermentation process.

ten independent simulation runs, and the simulations are run
using MATLAB version R2010a on a computer with Core i5
(2.6GHz), 8GB RAM, and Windows 7OS.
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FIGURE 23. Influence of the threshold value ε on: (a) database search
times, and (b) CPTonline, for the penicillin fermentation process.

FIGURE 24. Influence of the threshold value ε on: (a) RMSE for the
penicillin concentration, (b) RMSE for the biomass concentration, and
(c) RMSE for the substrate concentration.

For various noise levels, the search times and CPTonline

as the functions of ε are depicted in Fig. 23, while the pre-
diction RMSEs as the functions of ε are shown in Fig. 24.
It can be seen from Fig. 23 that the online computational
efficiency improves significantly when ε is reduced from
the peak value 1 to 0.8, and reaches the minimum online
complexity when ε < 0.8. By contrast, the prediction
accuracies for the three primary variables deteriorate very

TABLE 3. Performance comparison for the fermentation process by the
SEL-MO given ε = 1 and 0.9 with the noise level 10%.

FIGURE 25. Flow chart of the primary reformer.

TABLE 4. Descriptions of selected secondary variables for soft sensing
concentrations of CH4, CO, CO2 and H2.

slightly as ε reduces. The exception is for the noise level 30%,
where the predicted RMSEs suddenly increase sharply when
ε is lower than approximately 0.52. This is because under
this situation, the information related to the query sample is
neglected even when abrupt changes occur. Table 3 compares
the achievable performance of the SEL-MO given ε = 1
and 0.9 for the noise level 10%. It can be clearly seen that
by applying the insensitivity strategy with an appropriately
chosen value of ε < 1, the online computational complexity
can be reduced dramatically, while the prediction accuracies
are hardly affected.

B. PRIMARY REFORMER
Fig. 25 depicts the primary reformer, a unit of the ammonia
(NH3) synthesis process (ASP) [43]. Processed gases are fed
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into the primary reformer for producing hydrogen (H2). The
chemical reactions carried out in the primary reformer using
nickel catalyst are as follows:

CnH2n+2 + nH2O
1

←−−−→ nCO+ (2n+ 1)H2,

CH4 + H2O
1

←−−−→ CO+ 3H2,

CO+ H2O
1

←−−−→ CO2 + H2. (37)

The hydrogen made from the primary reformer is the key
source material for the ASP to yield NH3. Reaction temper-
ature is crucial for reactions in (37). In the ASP, the reaction
temperature is controlled by adjusting the burning condi-
tion of fuel gases. According to (37), the outlet gases of
the primary reformer consist of H2, methane (CH4), carbon
monoxide (CO) and carbon dioxide (CO2), which are the
source gases for the down streaming units, including the high-
low temperature transformer, CO2 absorption column and
ammonia synthesis unit, etc. These gases have significant
impacts on the down streaming operations, such as energy
consumption, production yield and process safety. Thus, the
concentrations of these outlet gases need to be strictly moni-
tored. Conventionally, they aremeasured by amass spectrom-
eter AI03002A, marked with deep green rectangle in Fig. 25,
which is not only expensive but also often malfunctions.
Therefore, a soft sensor is desired for online predicting the
concentrations of these gases.

Secondary variables of the soft sensor for predicting the
concentrations of CH4, CO, CO2 and H2 were selected
using the expert knowledge by field engineers, which are
listed in Table 4. Due to the complex burning conditions
and variations in source natural gases, the primary reformer
is nonlinear and time-varying. Dataset for developing soft
sensors for the target gases was collected from the database
of the distributed control systems for a real-life industrial
ASP. The sampling rate for the concentrations of the target
gases is 10 minutes, and 6400 samples have been collected.
In our investigation, the training set contains 1600 samples
that are evenly selected from the first half of the dataset, and
the second half of the dataset is partitioned evenly into the
validation dataset and the testing dataset. Similar to the first
case study, in addition to the proposed SEL-MO, the LSSVR,
LW-PLS, JIT-PLS, MW-PLS and four SEL-SOs are also
employed to develop soft sensors for this primary reformer,
and all the algorithmic parameters of the six soft sensing
approaches were optimized by the PSO using the validation
dataset. Note that in this case, the lower limits of the win-
dow size or neighborhood size for the LW-PLS, MW-PLS,
SEL-SO and SEL-SOs were set to 20, and the four primary
variables share the same importance. After optimization by
the PSO, the algorithmic parameters of the SEL-MOwere set
as: W = 22, A = 2, K = 14, ϕ = 0.5375, and δ = 0.3135.
The accuracies of various soft sensors for all the four

primary variables are quantitatively presented in Table 5,
in terms of generalization RMSE. As expected, the proposed
SEL-MO based soft sensor produces the best results. More-
over, the computational complexity of the proposed SEL-MO

FIGURE 26. Predictions of the SEL-MO for: (a) CH4 concentration, (b) CO
concentration, (c) CO2 concentration, and (d) H2 concentration.

for offline model construction and online prediction is only
25% of the complexity imposed by our previous SEL-SO
approach. Predictions of the concentrations of CH4, CO, CO2
and H2 achieved by the SEL-MO based soft sensor on the
testing dataset are visualised in Fig. 26. As can be seen, the
predicted values can well track the true values, indicating that
the SEL-MO is able to provide good estimations for the four
gas concentrations. Note that the SEL-SO soft sensor obtains
slightly better performance for the CO, and the reasons have
been analyzed in the previous subsection.

The prediction performance of the SEL-MO listed
in Table 5 was obtained with ε = 1. We also apply the
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TABLE 5. Predicted RMSEs of various soft sensors for the primary reformer.

TABLE 6. Performance comparison for the primary reformer by the
SEL-MO given various values of ε.

insensitivity strategy to the SEL-MO, and the performance
of the SEL-MO with various values of ε are summarized
in Table 6. As can be seen, as ε is reduced from 1 to 0.7,
the data base search times and online computational burden
decrease considerably but the estimation accuracy hardly
changes. Therefore, by appropriately choosing the value of ε,
a significantly decreasing in the online computational burden
can be achieved with only a slight loss in prediction accu-
racy. For example, by using ε = 0.95, the online database
search times and CPTonline are reduced by 58% and 31%,
respectively, while the prediction accuracy deteriorations for
the CH4, CO, CO2 and H2 are only 0.35%, 0.51%, 0.0% and
0.22%, respectively, in comparison to ε = 1. Note that the
improvement of online computational efficiency provided by
our insensitivity strategy will be more prominent when the
historical database is large.

V. CONCLUSIONS
In this paper, an adaptive soft sensor modeling approach,
referred to as the SEL-MO, has been developed for nonlinear
and time-varying industrial processes. Our novel contribution
has been twofold. Firstly, a generic localization scheme and
a selective ensemble learning framework have been devel-
oped for industrial processes with multiple primary variables.
Secondly, a new insensitivity strategy for the SEL-MO based
soft sensing method has been proposed, which is capable of
significantly reducing the online computational load while
maintaining high prediction accuracy performance. Two case
studies have been conducted, involving a simulated industrial
process and a real-life industrial process. Our results have
demonstrated that the proposed SEL-MO soft sensor outper-
forms the existing state-of-the-art adaptive soft sensors for
nonlinear and time-varying industrial processes. In particular,
it has been shown that our SEL-MO is very robust to the
measurement noise and can deal with effectively the process
nonlinearity as well as both gradual and abrupt changes in
the process characteristics. The effectiveness of the proposed
novel insensitivity strategy has also been verified.
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